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Abstract. In this paper, we investigate the uniqueness of meromorphic functions of finite
order f(z) concerning their difference operators ∆cf(z) and derivatives f ′(z) and prove that if
∆cf(z) and f ′(z) share a(z), b(z), ∞ CM, where a(z) and b(z) are two distinct polynomials, then
they assume one of following cases: (1) f ′(z) ≡ ∆cf(z); (2) f(z) reduces to a polynomial and
f ′(z)−A∆cf(z) ≡ (1−A)(cnzn+cn−1zn−1+ · · ·+c1z+c0), where A(̸= 1) is a nonzero constant
and cn, cn−1, · · · , c1, c0 are all constants. This generalizes the corresponding results due to Qi et
al. and Deng et al.
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1. Introduction and main results

As we know, Nevanlinna theory plays a significant role in the study of the

uniqueness theory of meromorphic functions. Recent years, the research about

difference analogue of meromorphic functions has become a subject of some interests

and there are extensive results on them. For the related results, the readers can

refer to[1, 2, 6, 7, 10, 12, 16, 17, 20]. Throughout this paper, c always means a

nonzero complex constant. Given a meromorphic function f(z), we recall that a

difference operator ∆cf(z) is defined by ∆cf(z) = f(z + c) − f(z). Suppose that

f(z) and g(z) are two meromorphic functions and a is a finite complex constant.

If f(z) − a and g(z) − a have the same zeros, then we say that they share a

IM(ignoring multiplicities). If f(z) − a and g(z) − a have the same zeros with

the same multiplicities, then we say that they share a CM(counting multiplicities).

And the above definition also applies when a is a polynomial. Furthermore we use

ρ(f) to denote the order of f(z).

In 2013, Chen and Yi[3] studied the unicity of ∆cf(z) and f(z) sharing three

values CM and proved the following result.

1This work was supported by the Natural Science Foundation of Fujian Province, China (Grant
No. 2021J01651).
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Theorem 1.1. [3] Let f(z) be a transcendental meromorphic function such that

ρ(f) is not an integer or infinite, and let a and b be two distinct constants. If

∆cf(z) and f(z) share a, b, ∞ CM, where ∆cf(z) ̸≡ 0, then f(z) ≡ ∆cf(z).

Remark 1.1. In [3], Chen and Yi conjectured that in Theorem 1.1, the condition

that “ρ(f) is not an integer” can be omitted.

In 2014, Zhang et al.[20], Liu et al.[13] respectively confirmed this conjecture

and proved the following result.

Theorem 1.2. [20, 13] Let f(z) be a transcendental entire function of finite order,

and let a and b be two distinct constants. If ∆cf(z) and f(z) share a, b CM, where

∆cf(z) ̸≡ 0, then f(z) ≡ ∆cf(z).

Later, Li et al.[11], Cui et al.[5], Lü et al.[14] successively considered a meromorphic

function rather than a transcendental meromorphic function in Theorem 1.2 and

obtained the following result.

Theorem 1.3. [11, 5, 14] Let f(z) be a meromorphic function of finite order, and

let a and b be two distinct constants. If ∆cf(z) and f(z) share a, b, ∞ CM, where

∆cf(z) ̸≡ 0, then f(z) ≡ ∆cf(z).

In 2019, Li[12] continued the study of the unicity of ∆cf(z) and f(z) sharing

polynomials CM rather than values CM, which generalizes Theorem 1.3.

Theorem 1.4. [12] Let f(z) be a transcendental meromorphic function of finite

order. If ∆cf(z) and f(z) share P1, P2, ∞ CM where P1 and P2 are two distinct

polynomials, then f(z) ≡ ∆cf(z).

During the study of the uniqueness of ∆cf(z) and f(z), many researchers may

be inspired to think about the following question.

Question 1.1. Do the theorems above still hold if it is ∆cf(z) and f ′(z) that share

values CM since there are certain similarities between derivatives and difference

operators of meromorphic functions?

In 2018, Qi et al.[15] gave a positive answer to this question and proved the

following result.

Theorem 1.5. [15] Let f(z) be a transcendental meromorphic function such that

ρ(f) is not an integer or infinite, and let a and b be two distinct constants. If ∆cf(z)

and f ′(z) share a, b, ∞ CM, then f ′(z) ≡ ∆cf(z).
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Remark 1.2. In [15], Qi et al. conjectured that Theorem 1.5 is still valid without

the condition that “ρ(f) is not an integer.”

In 2019, Deng et al.[6] not only confirmed this conjecture, but also showed that

the condition “f(z) is a transcendental meroporhic function"in Theorem 1.5 can be

extended to “f(z) is a meromorphic function."

Theorem 1.6. [6] Let f(z) be a meromorphic function of finite order, and let a and

b be two distinct constants. If ∆cf(z) and f ′(z) share a, b, ∞ CM, then f ′(z) ≡
∆cf(z) or f(z) = Az +B, where A, B are all constants and A ̸= a, b, Ac ̸= a, b.

To further generalize and improve Theorem 1.6, a natural problem can be posed

as follows.

Question 1.2. Does Theorem 1.6 still hold if ∆cf(z) and f ′(z) share polynomials

CM?

In this paper, we study this problem and obtain the following main result.

Theorem 1.7. Let f(z) be a meromorphic function of finite order, and let a(z)

and b(z) be two distinct polynomials. If ∆cf(z) and f ′(z) share a(z), b(z), ∞ CM,

then they assume one of following cases.

(1) f ′(z) ≡ ∆cf(z);

(2) f(z) reduces to a polynomial and f ′(z) − A∆cf(z) ≡ (1 − A)(cnz
n +

cn−1z
n−1 + · · · + c1z + c0), where A(̸= 1) is a nonzero constant and cn,

cn−1, · · · , c1, c0 are all constants.

Remark 1.3. Theorem 1.6 is a special case of Theorem 1.7, which implies that

Theorem 1.7 generalizes the result of Theorem 1.6.

Example 1.1. Let f(z) = 2z + 1, c = 2, a(z) = 1, b(z) = 0. Then f ′(z) = 2,

∆cf(z) = 4. Obviously, ∆cf(z) and f ′(z) share a(z), b(z), ∞ CM and f ′(z) −
1
2∆cf(z) = 0. This example illustrates that the case (2) in Theorem 1.7 may occur.

Example 1.2. Let f(z) = z2, c = 1, a(z) = 2z + 3, b(z) = 2z + 2. Then f ′(z) =

2z, ∆cf(z) = 2z + 1. Obviously, ∆cf(z) and f ′(z) share a(z), b(z), ∞ CM and

f ′(z)− 2∆cf(z) = −(2z+2). This example illustrates that the case (2) in Theorem

1.7 may occur.

Example 1.3. Let f(z) = z3, c = 1, a(z) = 3z2 + 3
2z + 1

2 , b(z) = 3z2 + 6z + 2.

Then f ′(z) = 3z2, ∆cf(z) = 3z2 +3z+1. Obviously, ∆cf(z) and f ′(z) share a(z),

b(z), ∞ CM and f ′(z)− 2∆cf(z) = −(3z2 + 6z + 2). This example illustrates that

the case (2) in Theorem 1.7 may occur.
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2. Some lemmas

We assume that the reader is familiar with the fundamental results and the

standard notations of Nevanlinna theory, as founded in[9, 18, 19]. Next, we give

some lemmas, which play a key role in proving Theorem 1.7.

Lemma 2.1. [4, 8] Suppose that f(z) is a meromorphic function of finite order,

and c is a nonzero complex constant. Then

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.2. [4, 8] Let f(z) be a meromorphic function of finite order, let c be a

nonzero complex constant, and let k be a positive integer. Then

m

(
r,
∆k

cf(z)

f(z)

)
= S(r, f).

Lemma 2.3. [18, 19] Suppose that fi(z) (i = 1, · · · , n) (n ≥ 2) are meromorphic

functions and gi(z) (i = 1, · · · , n) (n ≥ 2) are entire functions satisfying

(1)
∑n

i=1 fi(z)e
gi(z) ≡ 0;

(2) when 1 ≤ k < l ≤ n, gk(z)− gl(z) are not constants;

(3) when 1 ≤ i ≤ n, 1 ≤ k < l ≤ n,

T (r, fi) = o{T
(
r, egk−gl

)
}, (r → ∞, r ̸∈ E),

where E ⊂ (1,∞) is of finite linear measure or logarithmic measure.

Then fi ≡ 0 for any i = 1, · · · , n.

Lemma 2.4. Suppose that a(z) is a polynomial satisfying a(z + c)− a(z) = a′(z)
R ,

where R is a nonzero constant. Then

(1) when c = 1
R , a(z) is a polynomial of degree one or a constant;

(2) when c ̸= 1
R , a(z) is a constant.

Proof. Suppose that a(z) = anz
n + an−1z

n−1 + an−2z
n−2 + an−3z

n−3 + · · · +
a1z + a0, where an, an−1, · · · , a0 are all constants. Then

a′(z) =nanz
n−1 + (n− 1)an−1z

n−2 + (n− 2)an−2z
n−3 + · · ·+ a1,

a(z + c) =an(z + c)n + an−1(z + c)n−1 + an−2(z + c)n−2 + · · ·+ a1(z + c) + a0

=an(z
n + C1

nz
n−1c1 + C2

nz
n−2c2 + · · ·+ Cn−1

n z1cn−1 + cn)

+ an−1(z
n−1 + C1

n−1z
n−2c1 + C2

n−1z
n−3c2 + · · ·+ Cn−2

n−1z
1cn−2 + cn−1) + · · ·

+ a1(z + c) + a0

=anz
n + (anC

1
nc

1 + an−1)z
n−1 + (anC

2
nc

2 + an−1C
1
n−1c

1 + an−2)z
n−2 + · · ·

+ (anC
n−1
n cn−1 + an−1C

n−2
n−1c

n−2 + · · ·+ a2C
1
2c

1 + a1)z
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+ (anc
n + an−1c

n−1 + · · ·+ a1c
1 + a0).

Thus,

a(z + c)− a(z) =anC
1
nc

1zn−1 + (anC
2
nc

2 + an−1C
1
n−1c

1)zn−2

+ (anC
3
nc

3 + an−1C
2
n−1c

2 + an−2C
1
n−2c

1)zn−3

+ · · ·+ (anC
n−1
n cn−1 + an−1C

n−2
n−1c

n−2 + · · ·+ a2C
1
2c

1)z

+ (anc
n + an−1c

n−1 + · · ·+ a2c
2 + a1c

1).

When c = 1
R , by a(z + c)− a(z) = a′(z)

R , we can get an = an−1 = an−2 = · · · =
a2 = 0. Hence, a(z) is a polynomial of degree one or a constant.

When c ̸= 1
R , by a(z + c)− a(z) = a′(z)

R , we can get an = an−1 = an−2 = · · · =
a1 = 0. Hence, a(z) is a constant.

3. Proof of theorem 1.7

If ∆cf(z) ≡ a(z), then by the condition that ∆cf(z) and f ′(z) share a(z)

CM, we can get f ′(z) ≡ a(z). Thus f ′(z) ≡ ∆cf(z). If ∆cf(z) ≡ b(z), then we can

also get f ′(z) ≡ ∆cf(z) in the same way. Next, we consider the case of ∆cf(z) ̸≡
a(z), b(z).

Note that ∆cf(z) and f ′(z) share a(z), b(z), ∞ CM and f(z) is a meromorphic

function of finite order. Then by Lemma 2.1, we have

(3.1)
f ′(z)− a(z)

∆cf(z)− a(z)
= eα(z),

f ′(z)− b(z)

∆cf(z)− b(z)
= eβ(z),

where α(z) and β(z) are two polynomials such that max{deg α(z),deg β(z)} ≤ ρ(f).

It follows from (3.1) that

(3.2) (eα(z) − eβ(z))∆cf(z) = a(z)eα(z) − b(z)eβ(z) − a(z) + b(z).

If eα(z) ≡ eβ(z), then from (3.2) we can obtain

[a(z)− b(z)](eα(z) − 1) = 0.

Since a(z) ̸≡ b(z), we have eα(z) ≡ 1. Hence by (3.1), we can get f ′(z) ≡ ∆cf(z).

Next we consider the case of eα(z) ̸≡ eβ(z).

It follows from (3.2), (3.1) that

(3.3) ∆cf(z) =
a(z)eα(z) − b(z)eβ(z) − a(z) + b(z)

eα(z) − eβ(z)
,

(3.4) f ′(z) =
eα(z)[a(z)eα(z) − b(z)eβ(z) − a(z) + b(z)]

eα(z) − eβ(z)
− a(z)eα(z) + a(z).
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Differentiating (3.3) yields

[∆cf(z)]
′ =

a′(z)e2α(z) + b′(z)e2β(z) + [(a(z)− b(z))(β′(z)− α′(z))− a′(z)− b′(z)]eα(z)+β(z)

(eα(z) − eβ(z))2

+
[(a(z)− b(z))α′(z)− a′(z) + b′(z)]eα(z) − [(a(z)− b(z))β′(z)− a′(z) + b′(z)]eβ(z)

(eα(z) − eβ(z))2
.

(3.5)

It follows from (3.4) that

∆cf
′(z) =

eα(z+c)[a(z + c)eα(z+c) − b(z + c)eβ(z+c) − a(z + c) + b(z + c)]

eα(z+c) − eβ(z+c)

− eα(z)[a(z)eα(z) − b(z)eβ(z) − a(z) + b(z)]

eα(z) − eβ(z)

− a(z + c)eα(z+c) + a(z)eα(z) + a(z + c)− a(z).(3.6)

By (3.5) and (3.6), we obtain

[a(z + c)− b(z + c)]e2α(z)+α(z+c)+β(z+c) + [a(z + c)− b(z + c)]eα(z+c)+2β(z)+β(z+c)

− 2[a(z + c)− b(z + c)]eα(z)+α(z+c)+β(z)+β(z+c) −Q1(z)e
2α(z)+α(z+c)

+ [a(z)− b(z)]e2α(z)+β(z)+β(z+c) + [a(z)− b(z)]eα(z)+α(z+c)+2β(z)

− [a(z)− b(z)]eα(z)+2β(z)+β(z+c) − [a(z)− b(z)]e2α(z)+α(z+c)+β(z)

−Q2(z)e
α(z+c)+2β(z) −Q3(z)e

α(z)+α(z+c)+β(z) +Q4(z)e
2α(z)+β(z+c)

+Q5(z)e
2β(z)+β(z+c) +Q6(z)e

α(z)+β(z)+β(z+c) −Q7(z)e
α(z)+α(z+c)

+Q7(z)e
α(z)+β(z+c) +Q8(z)e

α(z+c)+β(z) −Q8(z)e
β(z)+β(z+c) ≡ 0,

(3.7)

where

Q1(z) = a′(z) + b(z)− b(z + c),

Q2(z) = b′(z) + a(z)− b(z + c),

Q3(z) = [a(z)− b(z)][β′(z)− α′(z)]− a′(z)− b′(z)− a(z)− b(z) + 2b(z + c),

Q4(z) = a′(z) + b(z)− a(z + c),

Q5(z) = b′(z) + a(z)− a(z + c),

Q6(z) = [a(z)− b(z)][β′(z)− α′(z)]− a′(z)− b′(z)− a(z)− b(z) + 2a(z + c),

Q7(z) = [a(z)− b(z)]α′(z)− a′(z) + b′(z),

Q8(z) = [a(z)− b(z)]β′(z)− a′(z) + b′(z).

(3.8)

Next we consider three cases about deg α(z) and deg β(z).
71



M.-H. WANG, J.-F. CHEN

Case 1. deg α(z) > deg β(z). Then (3.7) can be rewritten as

(3.9) A3(z)e
3α(z) +A2(z)e

2α(z) +A1(z)e
α(z) +A0(z) ≡ 0,

where

A3(z) = [a(z + c)− b(z + c)]e∆cα(z)+β(z+c) − [a(z)− b(z)]e∆cα(z)+β(z) −Q1(z)e
∆cα(z),

A2(z) = −2[a(z + c)− b(z + c)]e∆cα(z)+β(z)+β(z+c) + [a(z)− b(z)]eβ(z)+β(z+c)

+ [a(z)− b(z)]e∆cα(z)+2β(z) −Q3(z)e
∆cα(z)+β(z) +Q4(z)e

β(z+c) −Q7(z)e
∆cα(z),

A1(z) = [a(z + c)− b(z + c)]e∆cα(z)+2β(z)+β(z+c) − [a(z)− b(z)]e2β(z)+β(z+c)

−Q2(z)e
∆cα(z)+2β(z) +Q6(z)e

β(z)+β(z+c) +Q7(z)e
β(z+c) +Q8(z)e

∆cα(z)+β(z),

A0(z) = Q5(z)e
2β(z)+β(z+c) −Q8(z)e

β(z)+β(z+c).

(3.10)

Obviously, for any i = 0, 1, 2, 3, we have

ρ(Ai(z)) < deg α(z).

Hence, it follows from Lemma 2.3 that

Ai(z) ≡ 0 (i = 0, 1, 2, 3).

Next we discuss two subcases as follows.

Subcase 1.1. deg β(z) = 0. Then β(z) is a constant.

It follows from (3.8), (3.10) and A3(z) ≡ A0(z) ≡ 0 that

∆ca(z)e
β + (1− eβ)∆cb(z) ≡ a′(z),(3.11)

∆ca(z)e
β ≡ a′(z) + b′(z)(eβ − 1).(3.12)

Combining (3.11) with (3.12) yields

(eβ − 1)[b′(z)−∆cb(z)] ≡ 0.

If eβ = 1, then by (3.1), we can get f ′(z) ≡ ∆cf(z) and eα(z) ≡ eβ(z) ≡ 1, which

contradicts deg α(z) > deg β(z).

If b′(z)−∆cb(z) ≡ 0, then it follows from Lemma 2.4 that when c = 1, b(z) is a

polynomial of degree one or a constant; when c ̸= 1, b(z) is a constant.

Subcase 1.1.1. b(z) is a constant. We let b(z) ≡ b. Then by (3.12), we can

get a′(z) ≡ eβ∆ca(z). It follows from Lemma 2.4 that when c = e−β , a(z) is a

polynomial of degree one or a constant; when c ̸= e−β , a(z) is a constant.

If a(z) is a constant, then we let a(z) ≡ a. By (3.8), (3.10) and A2(z) ≡ A1(z) ≡
0, we have {[

e2β − eβ − α′(z)(eβ − 1)
]
e∆cα(z) + eβ(1− eβ) ≡ 0,

eβ(1− eβ)e∆cα(z) + e2β − eβ + α′(z)(eβ − 1) ≡ 0.
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Thus, we get eβ = 1. Similarly, we can get a contradiction.

If a(z) is a polynomial of degree one, then we can get c = e−β at once. Next

we let a(z) = Az + B, where A( ̸= 0), B are all constants. By (3.8), (3.10) and

A2(z) ≡ A1(z) ≡ 0, we have

e∆cα(z)
[
α′(z)(Az +B − b)(eβ − 1)− (Az +B − b)e2β − (A−Az −B + b)eβ +A

]
+ (Az +B − b)e2β + (A−Az −B + b)eβ −A ≡ 0,

α′(z)(Az +B − b)(eβ − 1) + (Az +B − b)e2β + (A−Az −B + b)eβ −A

− e∆cα(z)
[
(Az +B − b)e2β + (A−Az −B + b)eβ −A

]
≡ 0.

Thus, we get eβ = 1. Similarly, we can get a contradiction.

Subcase 1.1.2. b(z) is a polynomial of degree one. Firstly, we can get c = 1.

We let b(z) = Dz + E, where D( ̸= 0), E are all constants. By (3.12), we can get

a(z) is a polynomial of degree one or a constant.

If a(z) is a constant, then by (3.12), we can get eβ = 1. Similarly, we can get a

contradiction.

If a(z) is a polynomial of degree one, then by (3.12), we can get eβ = 1 or

a(z) = Dz+F , where F (̸= E) is a constant. When a(z) = Dz+F , by (3.8), (3.10)

and A2(z) ≡ A1(z) ≡ 0, we have{[
e2β − eβ − α′(z)(eβ − 1)

]
e∆cα(z) + eβ(1− eβ) ≡ 0,

eβ(1− eβ)e∆cα(z) + e2β − eβ + α′(z)(eβ − 1) ≡ 0.

Thus, we get eβ = 1, which implies that we can only get eβ = 1 in this case.

Similarly, we can get a contradiction.

Subcase 1.2. deg β(z) ≥ 1. It follows from (3.10), A0(z) ≡ 0 that Q8(z) ≡ 0.

By (3.8), we have

(3.13) β′(z) ≡ a′(z)− b′(z)

a(z)− b(z)
.

Since deg β(z) ≥ 1, we can get β′(z) ̸≡ 0. Then it follows from (3.13) that a(z) −
b(z) ≡ Ãeβ(z), where Ã is a nonzero constant. But this is a contradiction.

Case 2. deg β(z) > deg α(z). Then (3.7) can be rewritten as

(3.14) B3(z)e
3β(z) +B2(z)e

2β(z) +B1(z)e
β(z) +B0(z) ≡ 0,

where

B3(z) = [a(z + c)− b(z + c)]eα(z+c)+∆cβ(z) − [a(z)− b(z)]eα(z)+∆cβ(z) +Q5(z)e
∆cβ(z),

B2(z) = −2[a(z + c)− b(z + c)]eα(z)+α(z+c)+∆cβ(z) + [a(z)− b(z)]e2α(z)+∆cβ(z)

+ [a(z)− b(z)]eα(z)+α(z+c) −Q2(z)e
α(z+c) +Q6(z)e

α(z)+∆cβ(z) −Q8(z)e
∆cβ(z),

B1(z) = [a(z + c)− b(z + c)]e2α(z)+α(z+c)+∆cβ(z) − [a(z)− b(z)]e2α(z)+α(z+c)
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−Q3(z)e
α(z)+α(z+c) +Q4(z)e

2α(z)+∆cβ(z) +Q7(z)e
α(z)+∆cβ(z) +Q8(z)e

α(z+c),

B0(z) = −Q1(z)e
2α(z)+α(z+c) −Q7(z)e

α(z)+α(z+c).

(3.15)

Obviously, for any i = 0, 1, 2, 3, we have

ρ(Bi(z)) < deg β(z).

Hence, it follows from Lemma 2.3 that

Bi(z) ≡ 0 (i = 0, 1, 2, 3).

Next we discuss two subcases as follows.

Subcase 2.1. deg α(z) = 0. Then α(z) is a constant.

It follows from (3.8), (3.15) and B3(z) ≡ B0(z) ≡ 0 that

∆cb(z)e
α + (1− eα)∆ca(z) ≡ b′(z),(3.16)

∆cb(z)e
α ≡ b′(z) + a′(z)(eα − 1).(3.17)

Combining (3.16) with (3.17) yields

(eα − 1)[a′(z)−∆ca(z)] ≡ 0.

If eα = 1, then by (3.1), we can get f ′(z) ≡ ∆cf(z) and eα(z) ≡ eβ(z) ≡ 1, which

contradicts deg β(z) > deg α(z).

If a′(z) −∆ca(z) ≡ 0, then it follows from Lemma 2.4 that when c = 1, a(z) is

a polynomial of degree one or a constant; when c ̸= 1, a(z) is a constant.

Subcase 2.1.1. a(z) is a constant. We let a(z) ≡ a. Then by (3.17), we can

get b′(z) ≡ eα∆ca(z). It follows from Lemma 2.4 that when c = e−α, b(z) is a

polynomial of degree one or a constant; when c ̸= e−α, b(z) is a constant.

If b(z) is a constant, then we let b(z) ≡ b. By (3.8), (3.15) and B2(z) ≡ B1(z) ≡ 0,

we have {[
e2α − eα − β′(z)(eα − 1)

]
e∆cβ(z) + eα(1− eα) ≡ 0,

eα(1− eα)e∆cβ(z) + e2α − eα + β′(z)(eα − 1) ≡ 0.

Thus, we get eα = 1. Similarly, we can get a contradiction.

If b(z) is a polynomial of degree one, then we can get c = e−α at once. Next

we let b(z) = Dz + E, where D(̸= 0), E are all constants. By (3.8), (3.15) and

B2(z) ≡ B1(z) ≡ 0, we have

e∆cβ(z)
[
β′(z)(a−Dz − E)(eα − 1)− (a−Dz − E)e2α + (D + a−Dz − E)eα −D

]
+ (a−Dz − E)e2α − (D + a−Dz − E)eα +D ≡ 0,

β′(z)(a−Dz − E)(eα − 1) + (a−Dz − E)e2α − (D + a−Dz − E)eα +D

− e∆cβ(z)
[
(a−Dz − E)e2α − (D + a−Dz − E)eα +D

]
≡ 0.
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Thus, we get eα = 1. Similarly, we can get a contradiction.

Subcase 2.1.2. a(z) is a polynomial of degree one. Firstly, we can get c = 1.

We let a(z) = Az + B, where A(̸= 0), B are all constants. By (3.17), we can get

b(z) is a polynomial of degree one or a constant.

If b(z) is a constant, then by (3.17), we can get eα = 1. Similarly, we can get a

contradiction.

If b(z) is a polynomial of degree one, then by (3.17), we can get eα = 1 or

b(z) = Az + F , where F ( ̸= B) is a constant. When b(z) = Az + F , by (3.8), (3.15)

and B2(z) ≡ B1(z) ≡ 0, we have{[
e2α − eα − β′(z)(eα − 1)

]
e∆cβ(z) + eα(1− eα) ≡ 0,

eα(1− eα)e∆cβ(z) + e2α − eα + β′(z)(eα − 1) ≡ 0.

Thus, we get eα = 1, which implies that we can only get eα = 1 in this case.

Similarly, we can get a contradiction.

Subcase 2.2. deg α(z) ≥ 1. It follows from (3.15), B0(z) ≡ 0 that Q7(z) ≡ 0.

By (3.8), we have

(3.18) α′(z) ≡ a′(z)− b′(z)

a(z)− b(z)
.

Since deg α(z) ≥ 1, we can get α′(z) ̸≡ 0. Then it follows from (3.18) that a(z) −
b(z) ≡ B̃eα(z), where B̃ is a nonzero constant. But this is a contradiction.

Case 3. deg α(z) = deg β(z).

Subcase 3.1. deg α(z) = deg β(z) = 0. Then, α(z) and β(z) are constants, which

implies that eα(z) and eβ(z) are constants, too. It follows from (3.4) that f ′(z) can be

represented as a linear representation of a(z) and b(z). Thus, f ′(z) is a polynomial.

Then, f(z) is a polynomial, too. By (3.1) we can deduce that f ′(z) − A∆cf(z) ≡
(1−A)(cnz

n + cn−1z
n−1 + · · ·+ c1z+ c0), where A(̸= 0), cn, cn−1, · · · , c1, c0 are all

constants. And when A = 1, we have f ′(z) ≡ ∆cf(z). Then from (3.1), we have

eα(z) ≡ eβ(z) ≡ 1. But this contradicts the hypothesis eα(z) ̸≡ eβ(z). Hence, A ̸= 1.

Subcase 3.2. deg α(z) = deg β(z) ≥ 1. Then (3.7) can be rewritten as

C1(z)e
3α(z)+β(z) + C2(z)e

α(z)+3β(z) + C3(z)e
2α(z)+2β(z) + C4(z)e

3α(z)

+ C5(z)e
α(z)+2β(z) + C6(z)e

2α(z)+β(z) + C7(z)e
3β(z) + C8(z)e

2α(z)

+ C9(z)e
α(z)+β(z) + C10(z)e

2β(z) ≡ 0,(3.19)

where

C1(z) = [a(z + c)− b(z + c)]e∆cα(z)+∆cβ(z) − [a(z)− b(z)]e∆cα(z),

C2(z) = [a(z + c)− b(z + c)]e∆cα(z)+∆cβ(z) − [a(z)− b(z)]e∆cβ(z),

C3(z) = −2[a(z + c)− b(z + c)]e∆cα(z)+∆cβ(z) + [a(z)− b(z)]e∆cβ(z)+

75



M.-H. WANG, J.-F. CHEN

+ [a(z)− b(z)]e∆cα(z),

C4(z) = −Q1(z)e
∆cα(z), C5(z) = −Q2(z)e

∆cα(z) +Q6(z)e
∆cβ(z),

C6(z) = −Q3(z)e
∆cα(z) +Q4(z)e

∆cβ(z), C7(z) = Q5(z)e
∆cβ(z),

C8(z) = −Q7(z)e
∆cα(z), C9(z) = Q7(z)e

∆cβ(z) +Q8(z)e
∆cα(z),

C10(z) = −Q8(z)e
∆cβ(z).(3.20)

If deg(α(z)−β(z)) = deg(2α(z)−β(z)) = deg(α(z)+β(z)) = deg(3α(z)−β(z)) =

deg(3β(z)−α(z)) = deg(α(z)−2β(z)) = deg(3α(z)−2β(z)) = deg(3β(z)−2α(z)) =

deg α(z) = deg β(z), then for any 1 ≤ i < j ≤ 10, 1 ≤ n ≤ 10, we can get

ρ(Cn(z)) < ρ(egi(z)−gj(z)) = deg α(z).

It follows from Lemma 2.3 that Cn(z) ≡ 0(n = 1, 2, · · · , 10). Then

C10(z) = −Q8(z)e
∆cβ(z) ≡ 0,

which implies that Q8(z) ≡ 0. Thus by (3.8), we have

β′(z) ≡ a′(z)− b′(z)

a(z)− b(z)
.

Therefore, using the same method as in the proof of Subcase 1.2, we can get a

contradiction.

Hence, we can only need to discuss the cases that some of deg(α(z)−β(z)), deg(2α(z)−
β(z)), deg(α(z)+β(z)), deg(3α(z)−β(z)), deg(3β(z)−α(z)), deg(α(z)− 2β(z)),

deg(3α(z)− 2β(z)), deg(3β(z)− 2α(z)) are less than deg α(z).

Subcase 3.2.1. deg(α(z) − β(z)) < deg α(z). Let α(z) − β(z) = p1(z). Then

β(z) = α(z)− p1(z). And (3.19) can be rewritten as

D4(z)e
4α(z) +D3(z)e

3α(z) +D2(z)e
2α(z) ≡ 0,

where

D4(z) = C1(z)e
−p1(z) + C3(z)e

−2p1(z) + C2(z)e
−3p1(z),

D3(z) = C4(z) + C6(z)e
−p1(z) + C5(z)e

−2p1(z) + C7(z)e
−3p1(z),

D2(z) = C8(z) + C9(z)e
−p1(z) + C10(z)e

−2p1(z).

Combining this with (3.20), we obtain that for any i = 2, 3, 4,

ρ(Di(z)) < deg α(z).

It then follows from Lemma 2.3 that

D4(z) = D3(z) = D2(z) ≡ 0.
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It is easy to deduce that ∆cβ(z) = ∆cα(z)−∆cp1(z) since β(z) = α(z)− p1(z).

Hence, by (3.20) and D2(z) ≡ 0, we have

e∆cα(z)[−Q7 + (Q7e
−∆cp1(z) +Q8)e

−p1(z) −Q8e
−∆cp1(z)e−2p1(z)] ≡ 0.

Equally,

(3.21) −Q7 + (Q7e
−∆cp1(z) +Q8)e

−p1(z) −Q8e
−∆cp1(z)e−2p1(z) ≡ 0.

If deg p1(z) ≥ 1, then by (3.8) and Lemma 2.3, we can get Q7(z) ≡ 0, and thus

α′(z) ≡ a′(z)− b′(z)

a(z)− b(z)
.

Therefore, using the same method as in the proof of Subcase 2.2, we can get a

contradiction.

Thus deg p1(z) = 0 and so p1(z) = α(z)− β(z) is a constant and

(3.22) ∆cp1(z) ≡ 0, α′(z) ≡ β′(z).

From (3.22) and (3.8), we can get Q7(z) ≡ Q8(z). Combining this, (3.21) and (3.22),

we have

e2p1(z) − 2ep1(z) + 1 ≡ 0.

Then ep1(z) ≡ 1, which implies that eα(z) ≡ eβ(z). This contradicts the assumption

eα(z) ̸≡ eβ(z).

Subcase 3.2.2. deg(2α(z)− β(z)) < deg α(z). Let 2α(z)− β(z) = p2(z). Then

β(z) = 2α(z)− p2(z). And (3.19) can be rewritten as

E7(z)e
7α(z)+E6(z)e

6α(z)+E5(z)e
5α(z)+E4(z)e

4α(z)+E3(z)e
3α(z)+E2(z)e

2α(z) ≡ 0,

where

E7(z) = C2(z)e
−3p2(z), E6(z) = C3(z)e

−2p2(z) + C7(z)e
−3p2(z),

E5(z) = C1(z)e
−p2(z) + C5(z)e

−2p2(z), E4(z) = C6(z)e
−p2(z) + C10(z)e

−2p2(z),

E3(z) = C4(z) + C9(z)e
−p2(z), E2(z) = C8(z).

Combining this with (3.20), we obtain that for any i = 2, ..7, ρ(Ei(z)) < deg α(z). It

then follows from Lemma 2.3 and (3.20) that E2(z) = C8(z) = −Q7(z)e
∆cα(z) ≡ 0.

Thus Q7(z) ≡ 0. Combining this with (3.8) yields

α′(z) ≡ a′(z)− b′(z)

a(z)− b(z)
.

Therefore, using the same method as in the proof of Subcase 2.2, we can get a

contradiction.

Subcase 3.2.3. deg(α(z) + β(z)) < deg α(z). Let α(z) + β(z) = p3(z). Then

β(z) = −α(z) + p3(z). And (3.19) can be rewritten as

F3(z)e
3α(z)+F2(z)e

2α(z)+F1(z)e
α(z)+F0+F−1(z)e

−α(z)+F−2(z)e
−2α(z)+F−3(z)e

−3α(z) ≡ 0,
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where

F3(z) = C4(z), F2(z) = C1(z)e
p3(z) + C8(z), F1(z) = C6(z)e

p3(z),

F0(z) = C3(z)e
2p3(z) + C9(z)e

p3(z), F−1(z) = C5(z)e
2p3(z),

F−2(z) = C2(z)e
3p3(z) + C10(z)e

2p3(z), F−3(z) = C7(z)e
3p3(z).

Combining this with (3.20), we obtain that for any i = −3,−2, · · · , 2, 3,

ρ(Fi(z)) < deg α(z).

It then follows from Lemma 2.3 that

F3(z) = F2(z) = F1(z) = F0(z) = F−1(z) = F−2(z) = F−3(z) ≡ 0.

Thus from (3.20) and F2(z) ≡ F−2(z) ≡ 0 we have

(3.23)
{
[a(z + c)− b(z + c)]e∆cβ(z) − [a(z)− b(z)]

}
ep3(z) −Q7(z) ≡ 0,

(3.24)
{
[a(z + c)− b(z + c)]e∆cα(z) − [a(z)− b(z)]

}
ep3(z) −Q8(z) ≡ 0.

Obviously, by deg(α(z) + β(z)) < deg α(z) = deg β(z) and p3(z) = α(z) + β(z),

we can get deg p3(z) ≤ deg ∆cβ(z) = deg β(z)− 1.

If deg p3(z) < deg ∆cβ(z) = deg β(z)− 1, then by (3.23) we have

T (r, e∆cβ(z)) = T

(
r,
Q7(z) + [a(z)− b(z)]ep3(z)

ep3(z)[a(z + c)− b(z + c)]

)
≤ S(r, e∆cβ(z)).

Thus e∆cβ(z) is a constant, which contradicts 0 ≤ deg p3(z) < deg ∆cβ(z).

Hence deg p3(z) = deg ∆cβ(z).

If deg p3(z) = deg ∆cβ(z) ≥ 1, then (3.23) can be rewritten as

(3.25) [a(z + c)− b(z + c)]e∆cβ(z)+p3(z) ≡ [a(z)− b(z)]ep3(z) +Q7(z),

where Q7(z) ̸≡ 0. By the second fundamental theroem and (3.25), we have

T (r, ep3(z)) ≤ N(r, ep3(z)) +N

(
r,

1

ep3(z)

)
+N

r,
1

ep3(z) + Q7(z)
a(z)−b(z)

+ S(r, ep3(z))

≤ N

r,
1

a(z+c)−b(z+c)
a(z)−b(z) e∆cβ(z)+p3(z)

+ S(r, ep3(z)) ≤ S(r, ep3(z)).

Thus ep3(z) is a constant, which contradicts deg p3(z) ≥ 1.

If deg p3(z) = deg(α(z) + β(z)) = deg ∆cβ(z) = 0, then α(z) and β(z) are

polynomials of degree one. We let

(3.26) α(z) = a1z + a0, β(z) = −a1z + b0,
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where a1 ̸= 0, a0 and b0 are all constants. Then it follows from (3.8), (3.23), (3.24)

and (3.26) that

(3.27){
[a(z + c)− b(z + c)]e−a1c − a(z) + b(z)

}
ep3(z)− [a(z)−b(z)]a1+a′(z)−b′(z) ≡ 0,

(3.28)

{[a(z + c)− b(z + c)]ea1c − a(z) + b(z)} ep3(z) + [a(z)− b(z)]a1 + a′(z)− b′(z) ≡ 0.

Combining (3.27) with (3.28) yields

(3.29){
[a(z + c)− b(z + c)](ea1c + e−a1c)− 2[a(z)− b(z)]

}
ep3(z) + 2[a′(z)− b′(z)] ≡ 0.

If a(z)−b(z) is a nonzero constant, then a(z+c)−b(z+c) is a nonzero constant,

too. In addition, we can get a(z + c)− b(z + c) = a(z)− b(z) and a′(z)− b′(z) ≡ 0.

From this and (3.29), we have ea1c + e−a1c − 2 = 0. Hence ea1c = 1. Substituting

ea1c = 1 into (3.27), we can deduce that a1 = 0, a contradiction.

If a(z)− b(z) is a nonconstant, then deg(a′(z)− b′(z)) < deg(a(z)− b(z)). Next

we let h(z) = a(z) − b(z) = hnz
n + · · · + h1z + h0, where hn(̸= 0), hn−1, hn−2,

· · · , h1, h0 are all constants and n ≥ 1. Substituting this into (3.29), we have

ea1c + e−a1c − 2 = 0. Then ea1c = 1. Substituting ea1c = 1 into (3.27), we can

deduce that a1 = 0, a contradiction.

Subcase 3.2.4. deg(3α(z)− β(z)) < deg α(z). Let 3α(z)− β(z) = p4(z). Then

β(z) = 3α(z)− p4(z). And (3.19) can be rewritten as

G10(z)e
10α(z) +G9(z)e

9α(z) +G8(z)e
8α(z) +G7(z)e

7α(z) +G6(z)e
6α(z)

+G5(z)e
5α(z) +G4(z)e

4α(z) +G3(z)e
3α(z) +G2(z)e

2α(z) ≡ 0,

where

G10(z) = C2(z)e
−3p4(z), G9(z) = C7(z)e

−3p4(z),

G8(z) = C3(z)e
−2p4(z), G7(z) = C5(z)e

−2p4(z),

G6(z) = C1(z)e
−p4(z) + C10(z)e

−2p4(z), G5(z) = C6(z)e
−p4(z),

G4(z) = C9(z)e
−p4(z), G3(z) = C4(z), G2(z) = C8(z).

Combining this with (3.20), we obtain that for any i = 2, 3, · · · , 10, ρ(Gi(z)) <

deg α(z). It then follows from Lemma 2.3 and (3.20) that G2(z) = C8(z) =

−Q7(z)e
∆cα(z) ≡ 0. Thus Q7(z) ≡ 0. Combining this with (3.8) yields

α′(z) ≡ a′(z)− b′(z)

a(z)− b(z)
.

Therefore, using the same method as in the proof of Subcase 2.2, we can get a

contradiction.
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Subcase 3.2.5. deg(3β(z)−α(z)) < deg α(z). Let 3β(z)−α(z) = p5(z). Then

α(z) = 3β(z)− p5(z). And (3.19) can be rewritten as

J10(z)e
10β(z) + J9(z)e

9β(z) + J8(z)e
8β(z) + J7(z)e

7β(z) + J6(z)e
6β(z)

+ J5(z)e
5β(z) + J4(z)e

4β(z) + J3(z)e
3β(z) + J2(z)e

2β(z) ≡ 0,

where

J10(z) = C1(z)e
−3p5(z), J9(z) = C4(z)e

−3p5(z),

J8(z) = C3(z)e
−2p5(z), J7(z) = C6(z)e

−2p5(z),

J6(z) = C2(z)e
−p5(z) + C8(z)e

−2p5(z), J5(z) = C5(z)e
−p5(z),

J4(z) = C9(z)e
−p5(z), J3(z) = C7(z), J2(z) = C10(z).

Combining this with (3.20), we obtain that for any i = 2, 3, · · · , 10, ρ(Ji(z)) <

deg β(z). It then follows from Lemma 2.3 and (3.20) that J2(z) = C10(z) =

−Q8(z)e
∆cβ(z) ≡ 0. Thus Q8(z) ≡ 0. Combining this with (3.8) yields

β′(z) ≡ a′(z)− b′(z)

a(z)− b(z)
.

Therefore, using the same method as in the proof of Subcase 1.2, we can get a

contradiction.

Subcase 3.2.6. deg(α(z)− 2β(z)) < deg α(z). Let α(z)− 2β(z) = p6(z). Then

α(z) = 2β(z) + p6(z). And (3.19) can be rewritten as

K7(z)e
7β(z)+K6(z)e

6β(z)+K5(z)e
5β(z)+K4(z)e

4β(z)+K3(z)e
3β(z)+K2(z)e

2β(z) ≡ 0,

where

K7(z) = C1(z)e
3p6(z), K6(z) = C3(z)e

2p6(z) + C4(z)e
3p6(z),

K5(z) = C2(z)e
p6(z) + C6(z)e

2p6(z), K4(z) = C5(z)e
p6(z) + C8(z)e

2p6(z),

K3(z) = C7(z) + C9(z)e
p6(z), K2(z) = C10(z).

Combining this with (3.20), we obtain that for any i = 2, 3, · · · , 7, ρ(Ki(z)) <

deg β(z). It then follows from Lemma 2.3 and (3.20) that K2(z) = C10(z) =

−Q8(z)e
∆cβ(z) ≡ 0. Thus Q8(z) ≡ 0. Combining this with (3.8) yields

β′(z) ≡ a′(z)− b′(z)

a(z)− b(z)
.

Therefore, using the same method as in the proof of Subcase 1.2, we can get a

contradiction.

Subcase 3.2.7. deg(3α(z) − 2β(z)) < deg α(z). Let 3α(z) − 2β(z) = p7(z).

Then β(z) = 3
2α(z)−

1
2p7(z). And (3.19) can be rewritten as

L 11
2
(z)e

11
2 α(z) + L5(z)e

5α(z) + L 9
2
(z)e

9
2α(z) + L4(z)e

4α(z)
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+ L 7
2
(z)e

7
2α(z) + L3(z)e

3α(z) + L 5
2
(z)e

5
2α(z) + L2(z)e

2α(z) ≡ 0,

where

L 11
2
(z) = C2(z)e

− 3
2p7(z), L5(z) = C3(z)e

−p7(z),

L 9
2
(z) = C1(z)e

− 1
2p7(z) + C7(z)e

− 3
2p7(z), L4(z) = C5(z)e

−p7(z),

L 7
2
(z) = C6(z)e

− 1
2p7(z), L3(z) = C4(z) + C10(z)e

−p7(z),

L 5
2
(z) = C9(z)e

− 1
2p7(z), L2(z) = C8(z).

Combining this with (3.20), we obtain that for any i = 2, 5
2 , 3,

7
2 , 4,

9
2 , 5,

11
2 ,

ρ(Li(z)) < deg α(z).

It then follows from Lemma 2.3 and (3.20) that L2(z) = C8(z) = −Q7(z)e
∆cα(z) ≡

0. Thus Q7(z) ≡ 0. Combining this with (3.8) yields

α′(z) ≡ a′(z)− b′(z)

a(z)− b(z)
.

Therefore, using the same method as in the proof of Subcase 2.2, we can get a

contradiction.

Subcase 3.2.8. deg(3β(z) − 2α(z)) < deg α(z). Let 3β(z) − 2α(z) = p8(z).

Then α(z) = 3
2β(z)−

1
2p8(z). And (3.19) can be rewritten as

M 11
2
(z)e

11
2 β(z) +M5(z)e

5β(z) +M 9
2
(z)e

9
2β(z) +M4(z)e

4β(z)

+M 7
2
(z)e

7
2β(z) +M3(z)e

3β(z) +M 5
2
(z)e

5
2β(z) +M2(z)e

2β(z) ≡ 0,

where

M 11
2
(z) = C1(z)e

− 3
2p8(z), M5(z) = C3(z)e

−p8(z),

M 9
2
(z) = C4(z)e

− 3
2p8(z) + C2(z)e

− 1
2p8(z), M4(z) = C6(z)e

−p8(z),

M 7
2
(z) = C5(z)e

− 1
2p8(z), M3(z) = C7(z) + C8(z)e

−p8(z),

M 5
2
(z) = C9(z)e

− 1
2p8(z), M2(z) = C10(z).

Combining this with (3.20), we obtain that for any i = 2, 5
2 , 3,

7
2 , 4,

9
2 , 5,

11
2 ,

ρ(Mi(z)) < deg β(z).

It then follows from Lemma 2.3 and (3.20) that M2(z) = C10(z) = −Q8(z)e
∆cβ(z) ≡

0. Thus Q8(z) ≡ 0. Combining this with (3.8) yields

β′(z) ≡ a′(z)− b′(z)

a(z)− b(z)
.

Therefore, using the same method as in the proof of Subcase 1.2, we can get a

contradiction. This completes the proof of Theorem 1.7.
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