Известия НАН Армении, Математика, том 58, н. 6, 2023, стр. 66 – 82.

DERIVATIVES OF MEROMORPHIC FUNCTIONS SHARING POLYNOMIALS WITH THEIR DIFFERENCE OPERATORS

M.-H. WANG, J.-F. CHEN

School of Mathematics and Statistics, Fujian Normal University, P.R. China¹ E-mails: wangmh9812@163.com; junfanchen@163.com

Abstract. In this paper, we investigate the uniqueness of meromorphic functions of finite order f(z) concerning their difference operators $\Delta_c f(z)$ and derivatives f'(z) and prove that if $\Delta_c f(z)$ and f'(z) share $a(z), b(z), \infty$ CM, where a(z) and b(z) are two distinct polynomials, then they assume one of following cases: (1) $f'(z) \equiv \Delta_c f(z)$; (2) f(z) reduces to a polynomial and $f'(z) - A\Delta_c f(z) \equiv (1-A)(c_n z^n + c_{n-1} z^{n-1} + \cdots + c_1 z + c_0)$, where $A(\neq 1)$ is a nonzero constant and $c_n, c_{n-1}, \cdots, c_1, c_0$ are all constants. This generalizes the corresponding results due to Qi et al.

MSC2020 numbers: 39B32, 30D35.

Keywords: meromorphic function; polynomial; uniqueness; difference operator.

1. INTRODUCTION AND MAIN RESULTS

As we know, Nevanlinna theory plays a significant role in the study of the uniqueness theory of meromorphic functions. Recent years, the research about difference analogue of meromorphic functions has become a subject of some interests and there are extensive results on them. For the related results, the readers can refer to [1, 2, 6, 7, 10, 12, 16, 17, 20]. Throughout this paper, c always means a nonzero complex constant. Given a meromorphic function f(z), we recall that a difference operator $\Delta_c f(z)$ is defined by $\Delta_c f(z) = f(z+c) - f(z)$. Suppose that f(z) and g(z) are two meromorphic functions and a is a finite complex constant. If f(z) - a and g(z) - a have the same zeros, then we say that they share a IM(ignoring multiplicities). If f(z) - a and g(z) - a have the same zeros with the same multiplicities, then we say that they share a CM(counting multiplicities). And the above definition also applies when a is a polynomial. Furthermore we use $\rho(f)$ to denote the order of f(z).

In 2013, Chen and Yi[3] studied the unicity of $\Delta_c f(z)$ and f(z) sharing three values CM and proved the following result.

 $^{^1{\}rm This}$ work was supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2021J01651).

Theorem 1.1. [3] Let f(z) be a transcendental meromorphic function such that $\rho(f)$ is not an integer or infinite, and let a and b be two distinct constants. If $\Delta_c f(z)$ and f(z) share a, b, ∞ CM, where $\Delta_c f(z) \neq 0$, then $f(z) \equiv \Delta_c f(z)$.

Remark 1.1. In [3], Chen and Yi conjectured that in Theorem 1.1, the condition that " $\rho(f)$ is not an integer" can be omitted.

In 2014, Zhang et al.[20], Liu et al.[13] respectively confirmed this conjecture and proved the following result.

Theorem 1.2. [20, 13] Let f(z) be a transcendental entire function of finite order, and let a and b be two distinct constants. If $\Delta_c f(z)$ and f(z) share a, b CM, where $\Delta_c f(z) \neq 0$, then $f(z) \equiv \Delta_c f(z)$.

Later, Li et al.[11], Cui et al.[5], Lü et al.[14] successively considered a meromorphic function rather than a transcendental meromorphic function in Theorem 1.2 and obtained the following result.

Theorem 1.3. [11, 5, 14] Let f(z) be a meromorphic function of finite order, and let a and b be two distinct constants. If $\Delta_c f(z)$ and f(z) share a, b, ∞ CM, where $\Delta_c f(z) \neq 0$, then $f(z) \equiv \Delta_c f(z)$.

In 2019, Li[12] continued the study of the unicity of $\Delta_c f(z)$ and f(z) sharing polynomials CM rather than values CM, which generalizes Theorem 1.3.

Theorem 1.4. [12] Let f(z) be a transcendental meromorphic function of finite order. If $\Delta_c f(z)$ and f(z) share P_1 , P_2 , ∞ CM where P_1 and P_2 are two distinct polynomials, then $f(z) \equiv \Delta_c f(z)$.

During the study of the uniqueness of $\Delta_c f(z)$ and f(z), many researchers may be inspired to think about the following question.

Question 1.1. Do the theorems above still hold if it is $\Delta_c f(z)$ and f'(z) that share values CM since there are certain similarities between derivatives and difference operators of meromorphic functions?

In 2018, Qi et al.[15] gave a positive answer to this question and proved the following result.

Theorem 1.5. [15] Let f(z) be a transcendental meromorphic function such that $\rho(f)$ is not an integer or infinite, and let a and b be two distinct constants. If $\Delta_c f(z)$ and f'(z) share a, b, ∞ CM, then $f'(z) \equiv \Delta_c f(z)$.

Remark 1.2. In [15], Qi et al. conjectured that Theorem 1.5 is still valid without the condition that " $\rho(f)$ is not an integer."

In 2019, Deng et al.[6] not only confirmed this conjecture, but also showed that the condition "f(z) is a transcendental meroportic function" Theorem 1.5 can be extended to "f(z) is a meromorphic function."

Theorem 1.6. [6] Let f(z) be a meromorphic function of finite order, and let a and b be two distinct constants. If $\Delta_c f(z)$ and f'(z) share a, b, ∞ CM, then $f'(z) \equiv \Delta_c f(z)$ or f(z) = Az + B, where A, B are all constants and $A \neq a, b, Ac \neq a, b$.

To further generalize and improve Theorem 1.6, a natural problem can be posed as follows.

Question 1.2. Does Theorem 1.6 still hold if $\Delta_c f(z)$ and f'(z) share polynomials *CM*?

In this paper, we study this problem and obtain the following main result.

Theorem 1.7. Let f(z) be a meromorphic function of finite order, and let a(z)and b(z) be two distinct polynomials. If $\Delta_c f(z)$ and f'(z) share a(z), b(z), ∞ CM, then they assume one of following cases.

(1) $f'(z) \equiv \Delta_c f(z);$

(2) f(z) reduces to a polynomial and $f'(z) - A\Delta_c f(z) \equiv (1 - A)(c_n z^n + c_{n-1}z^{n-1} + \cdots + c_1 z + c_0)$, where $A(\neq 1)$ is a nonzero constant and c_n , $c_{n-1}, \cdots, c_1, c_0$ are all constants.

Remark 1.3. Theorem 1.6 is a special case of Theorem 1.7, which implies that Theorem 1.7 generalizes the result of Theorem 1.6.

Example 1.1. Let f(z) = 2z + 1, c = 2, a(z) = 1, b(z) = 0. Then f'(z) = 2, $\Delta_c f(z) = 4$. Obviously, $\Delta_c f(z)$ and f'(z) share a(z), b(z), ∞ CM and $f'(z) - \frac{1}{2}\Delta_c f(z) = 0$. This example illustrates that the case (2) in Theorem 1.7 may occur.

Example 1.2. Let $f(z) = z^2$, c = 1, a(z) = 2z + 3, b(z) = 2z + 2. Then f'(z) = 2z, $\Delta_c f(z) = 2z + 1$. Obviously, $\Delta_c f(z)$ and f'(z) share a(z), b(z), ∞ CM and $f'(z) - 2\Delta_c f(z) = -(2z+2)$. This example illustrates that the case (2) in Theorem 1.7 may occur.

Example 1.3. Let $f(z) = z^3$, c = 1, $a(z) = 3z^2 + \frac{3}{2}z + \frac{1}{2}$, $b(z) = 3z^2 + 6z + 2$. Then $f'(z) = 3z^2$, $\Delta_c f(z) = 3z^2 + 3z + 1$. Obviously, $\Delta_c f(z)$ and f'(z) share a(z), b(z), ∞ CM and $f'(z) - 2\Delta_c f(z) = -(3z^2 + 6z + 2)$. This example illustrates that the case (2) in Theorem 1.7 may occur. DERIVATIVES OF MEROMORPHIC FUNCTIONS ...

2. Some Lemmas

We assume that the reader is familiar with the fundamental results and the standard notations of Nevanlinna theory, as founded in[9, 18, 19]. Next, we give some lemmas, which play a key role in proving Theorem 1.7.

Lemma 2.1. [4, 8] Suppose that f(z) is a meromorphic function of finite order, and c is a nonzero complex constant. Then

$$T(r, f(z+c)) = T(r, f) + S(r, f).$$

Lemma 2.2. [4, 8] Let f(z) be a meromorphic function of finite order, let c be a nonzero complex constant, and let k be a positive integer. Then

$$m\left(r, \frac{\Delta_c^k f(z)}{f(z)}\right) = S(r, f).$$

Lemma 2.3. [18, 19] Suppose that $f_i(z)$ $(i = 1, \dots, n)$ $(n \ge 2)$ are meromorphic functions and $g_i(z)$ $(i = 1, \dots, n)$ $(n \ge 2)$ are entire functions satisfying

- (1) $\sum_{i=1}^{n} f_i(z) e^{g_i(z)} \equiv 0;$
- (2) when $1 \le k < l \le n$, $g_k(z) g_l(z)$ are not constants;
- (3) when $1 \le i \le n, \ 1 \le k < l \le n$,

$$T(r, f_i) = o\{T(r, e^{g_k - g_l})\}, \quad (r \to \infty, \ r \notin E),$$

where $E \subset (1, \infty)$ is of finite linear measure or logarithmic measure. Then $f_i \equiv 0$ for any $i = 1, \dots, n$.

Lemma 2.4. Suppose that a(z) is a polynomial satisfying $a(z + c) - a(z) = \frac{a'(z)}{R}$, where R is a nonzero constant. Then

- (1) when $c = \frac{1}{R}$, a(z) is a polynomial of degree one or a constant;
- (2) when $c \neq \frac{1}{R}$, a(z) is a constant.

Proof. Suppose that $a(z) = a_n z^n + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + a_{n-3} z^{n-3} + \dots + a_1 z + a_0$, where a_n, a_{n-1}, \dots, a_0 are all constants. Then

$$\begin{aligned} a'(z) &= na_n z^{n-1} + (n-1)a_{n-1} z^{n-2} + (n-2)a_{n-2} z^{n-3} + \dots + a_1, \\ a(z+c) &= a_n (z+c)^n + a_{n-1} (z+c)^{n-1} + a_{n-2} (z+c)^{n-2} + \dots + a_1 (z+c) + a_0 \\ &= a_n (z^n + C_n^1 z^{n-1} c^1 + C_n^2 z^{n-2} c^2 + \dots + C_n^{n-1} z^1 c^{n-1} + c^n) \\ &+ a_{n-1} (z^{n-1} + C_{n-1}^1 z^{n-2} c^1 + C_{n-1}^2 z^{n-3} c^2 + \dots + C_{n-1}^{n-2} z^1 c^{n-2} + c^{n-1}) + \dots \\ &+ a_1 (z+c) + a_0 \\ &= a_n z^n + (a_n C_n^1 c^1 + a_{n-1}) z^{n-1} + (a_n C_n^2 c^2 + a_{n-1} C_{n-1}^1 c^1 + a_{n-2}) z^{n-2} + \dots \\ &+ (a_n C_n^{n-1} c^{n-1} + a_{n-1} C_{n-1}^{n-2} c^{n-2} + \dots + a_2 C_2^1 c^1 + a_1) z \end{aligned}$$

+
$$(a_nc^n + a_{n-1}c^{n-1} + \dots + a_1c^1 + a_0).$$

Thus,

$$\begin{aligned} a(z+c) - a(z) &= a_n C_n^1 c^1 z^{n-1} + (a_n C_n^2 c^2 + a_{n-1} C_{n-1}^1 c^1) z^{n-2} \\ &+ (a_n C_n^3 c^3 + a_{n-1} C_{n-1}^2 c^2 + a_{n-2} C_{n-2}^1 c^1) z^{n-3} \\ &+ \dots + (a_n C_n^{n-1} c^{n-1} + a_{n-1} C_{n-1}^{n-2} c^{n-2} + \dots + a_2 C_2^1 c^1) z \\ &+ (a_n c^n + a_{n-1} c^{n-1} + \dots + a_2 c^2 + a_1 c^1). \end{aligned}$$

When $c = \frac{1}{R}$, by $a(z+c) - a(z) = \frac{a'(z)}{R}$, we can get $a_n = a_{n-1} = a_{n-2} = \cdots = a_2 = 0$. Hence, a(z) is a polynomial of degree one or a constant.

When $c \neq \frac{1}{R}$, by $a(z+c) - a(z) = \frac{a'(z)}{R}$, we can get $a_n = a_{n-1} = a_{n-2} = \cdots = a_1 = 0$. Hence, a(z) is a constant.

3. Proof of theorem 1.7

If $\Delta_c f(z) \equiv a(z)$, then by the condition that $\Delta_c f(z)$ and f'(z) share a(z)CM, we can get $f'(z) \equiv a(z)$. Thus $f'(z) \equiv \Delta_c f(z)$. If $\Delta_c f(z) \equiv b(z)$, then we can also get $f'(z) \equiv \Delta_c f(z)$ in the same way. Next, we consider the case of $\Delta_c f(z) \neq a(z), b(z)$.

Note that $\Delta_c f(z)$ and f'(z) share $a(z), b(z), \infty$ CM and f(z) is a meromorphic function of finite order. Then by Lemma 2.1, we have

(3.1)
$$\frac{f'(z) - a(z)}{\Delta_c f(z) - a(z)} = e^{\alpha(z)}, \quad \frac{f'(z) - b(z)}{\Delta_c f(z) - b(z)} = e^{\beta(z)},$$

where $\alpha(z)$ and $\beta(z)$ are two polynomials such that $\max\{\deg \alpha(z), \deg \beta(z)\} \le \rho(f)$. It follows from (3.1) that

(3.2)
$$(e^{\alpha(z)} - e^{\beta(z)})\Delta_c f(z) = a(z)e^{\alpha(z)} - b(z)e^{\beta(z)} - a(z) + b(z).$$

If $e^{\alpha(z)} \equiv e^{\beta(z)}$, then from (3.2) we can obtain

$$[a(z) - b(z)](e^{\alpha(z)} - 1) = 0.$$

Since $a(z) \neq b(z)$, we have $e^{\alpha(z)} \equiv 1$. Hence by (3.1), we can get $f'(z) \equiv \Delta_c f(z)$.

Next we consider the case of $e^{\alpha(z)} \neq e^{\beta(z)}$.

It follows from (3.2), (3.1) that

(3.3)
$$\Delta_c f(z) = \frac{a(z)e^{\alpha(z)} - b(z)e^{\beta(z)} - a(z) + b(z)}{e^{\alpha(z)} - e^{\beta(z)}}$$

(3.4)
$$f'(z) = \frac{e^{\alpha(z)}[a(z)e^{\alpha(z)} - b(z)e^{\beta(z)} - a(z) + b(z)]}{e^{\alpha(z)} - e^{\beta(z)}} - a(z)e^{\alpha(z)} + a(z).$$

Differentiating (3.3) yields

$$\begin{aligned} (3.5)\\ [\Delta_c f(z)]' &= \\ \frac{a'(z)e^{2\alpha(z)} + b'(z)e^{2\beta(z)} + [(a(z) - b(z))(\beta'(z) - \alpha'(z)) - a'(z) - b'(z)]e^{\alpha(z) + \beta(z)}}{(e^{\alpha(z)} - e^{\beta(z)})^2} \\ &+ \frac{[(a(z) - b(z))\alpha'(z) - a'(z) + b'(z)]e^{\alpha(z)} - [(a(z) - b(z))\beta'(z) - a'(z) + b'(z)]e^{\beta(z)}}{(e^{\alpha(z)} - e^{\beta(z)})^2}. \end{aligned}$$

It follows from (3.4) that

$$\Delta_{c}f'(z) = \frac{e^{\alpha(z+c)}[a(z+c)e^{\alpha(z+c)} - b(z+c)e^{\beta(z+c)} - a(z+c) + b(z+c)]}{e^{\alpha(z+c)} - e^{\beta(z+c)}} - \frac{e^{\alpha(z)}[a(z)e^{\alpha(z)} - b(z)e^{\beta(z)} - a(z) + b(z)]}{e^{\alpha(z)} - e^{\beta(z)}}$$

$$(3.6) \qquad -a(z+c)e^{\alpha(z+c)} + a(z)e^{\alpha(z)} + a(z+c) - a(z).$$

By (3.5) and (3.6), we obtain

$$\begin{split} & [a(z+c)-b(z+c)]e^{2\alpha(z)+\alpha(z+c)+\beta(z+c)} + [a(z+c)-b(z+c)]e^{\alpha(z+c)+2\beta(z)+\beta(z+c)} \\ & - 2[a(z+c)-b(z+c)]e^{\alpha(z)+\alpha(z+c)+\beta(z)+\beta(z+c)} - Q_1(z)e^{2\alpha(z)+\alpha(z+c)} \\ & + [a(z)-b(z)]e^{2\alpha(z)+\beta(z)+\beta(z+c)} + [a(z)-b(z)]e^{\alpha(z)+\alpha(z+c)+2\beta(z)} \\ & - [a(z)-b(z)]e^{\alpha(z)+2\beta(z)+\beta(z+c)} - [a(z)-b(z)]e^{2\alpha(z)+\alpha(z+c)+\beta(z)} \\ & - Q_2(z)e^{\alpha(z+c)+2\beta(z)} - Q_3(z)e^{\alpha(z)+\alpha(z+c)+\beta(z)} + Q_4(z)e^{2\alpha(z)+\beta(z+c)} \\ & + Q_5(z)e^{2\beta(z)+\beta(z+c)} + Q_6(z)e^{\alpha(z)+\beta(z+c)} - Q_7(z)e^{\alpha(z)+\alpha(z+c)} \\ & + Q_7(z)e^{\alpha(z)+\beta(z+c)} + Q_8(z)e^{\alpha(z+c)+\beta(z)} - Q_8(z)e^{\beta(z)+\beta(z+c)} \equiv 0, \end{split}$$

where

$$Q_{1}(z) = a'(z) + b(z) - b(z + c),$$

$$Q_{2}(z) = b'(z) + a(z) - b(z + c),$$

$$Q_{3}(z) = [a(z) - b(z)][\beta'(z) - \alpha'(z)] - a'(z) - b'(z) - a(z) - b(z) + 2b(z + c),$$

$$Q_{4}(z) = a'(z) + b(z) - a(z + c),$$

$$Q_{5}(z) = b'(z) + a(z) - a(z + c),$$

$$Q_{6}(z) = [a(z) - b(z)][\beta'(z) - \alpha'(z)] - a'(z) - b'(z) - a(z) - b(z) + 2a(z + c),$$

$$Q_{7}(z) = [a(z) - b(z)]\alpha'(z) - a'(z) + b'(z),$$
(3.8)
$$Q_{8}(z) = [a(z) - b(z)]\beta'(z) - a'(z) + b'(z).$$

Next we consider three cases about deg $\alpha(z)$ and deg $\beta(z)$.

M.-H. WANG, J.-F. CHEN

Case 1. deg $\alpha(z) > \deg \beta(z)$. Then (3.7) can be rewritten as

(3.9)
$$A_3(z)e^{3\alpha(z)} + A_2(z)e^{2\alpha(z)} + A_1(z)e^{\alpha(z)} + A_0(z) \equiv 0$$

where

$$\begin{split} A_{3}(z) &= [a(z+c) - b(z+c)]e^{\Delta_{c}\alpha(z) + \beta(z+c)} - [a(z) - b(z)]e^{\Delta_{c}\alpha(z) + \beta(z)} - Q_{1}(z)e^{\Delta_{c}\alpha(z)}\\ A_{2}(z) &= -2[a(z+c) - b(z+c)]e^{\Delta_{c}\alpha(z) + \beta(z) + \beta(z+c)} + [a(z) - b(z)]e^{\beta(z) + \beta(z+c)}\\ &+ [a(z) - b(z)]e^{\Delta_{c}\alpha(z) + 2\beta(z)} - Q_{3}(z)e^{\Delta_{c}\alpha(z) + \beta(z)} + Q_{4}(z)e^{\beta(z+c)} - Q_{7}(z)e^{\Delta_{c}\alpha(z)},\\ A_{1}(z) &= [a(z+c) - b(z+c)]e^{\Delta_{c}\alpha(z) + 2\beta(z) + \beta(z+c)} - [a(z) - b(z)]e^{2\beta(z) + \beta(z+c)}\\ &- Q_{2}(z)e^{\Delta_{c}\alpha(z) + 2\beta(z)} + Q_{6}(z)e^{\beta(z) + \beta(z+c)} + Q_{7}(z)e^{\beta(z+c)} + Q_{8}(z)e^{\Delta_{c}\alpha(z) + \beta(z)},\\ (3.10)\\ A_{0}(z) &= Q_{5}(z)e^{2\beta(z) + \beta(z+c)} - Q_{8}(z)e^{\beta(z) + \beta(z+c)}. \end{split}$$

Obviously, for any i = 0, 1, 2, 3, we have

$$\rho(A_i(z)) < \deg \alpha(z).$$

Hence, it follows from Lemma 2.3 that

$$A_i(z) \equiv 0 \ (i = 0, 1, 2, 3).$$

Next we discuss two subcases as follows.

Subcase 1.1. deg $\beta(z) = 0$. Then $\beta(z)$ is a constant.

It follows from (3.8), (3.10) and $A_3(z) \equiv A_0(z) \equiv 0$ that

(3.11)
$$\Delta_c a(z)e^{\beta} + (1 - e^{\beta})\Delta_c b(z) \equiv a'(z)$$

(3.12)
$$\Delta_c a(z)e^\beta \equiv a'(z) + b'(z)(e^\beta - 1)$$

Combining (3.11) with (3.12) yields

$$(e^{\beta} - 1)[b'(z) - \Delta_c b(z)] \equiv 0.$$

If $e^{\beta} = 1$, then by (3.1), we can get $f'(z) \equiv \Delta_c f(z)$ and $e^{\alpha(z)} \equiv e^{\beta(z)} \equiv 1$, which contradicts deg $\alpha(z) > \deg \beta(z)$.

If $b'(z) - \Delta_c b(z) \equiv 0$, then it follows from Lemma 2.4 that when c = 1, b(z) is a polynomial of degree one or a constant; when $c \neq 1$, b(z) is a constant.

Subcase 1.1.1. b(z) is a constant. We let $b(z) \equiv b$. Then by (3.12), we can get $a'(z) \equiv e^{\beta} \Delta_c a(z)$. It follows from Lemma 2.4 that when $c = e^{-\beta}$, a(z) is a polynomial of degree one or a constant; when $c \neq e^{-\beta}$, a(z) is a constant.

If a(z) is a constant, then we let $a(z) \equiv a$. By (3.8), (3.10) and $A_2(z) \equiv A_1(z) \equiv 0$, we have

$$\begin{cases} \left[e^{2\beta} - e^{\beta} - \alpha'(z)(e^{\beta} - 1) \right] e^{\Delta_c \alpha(z)} + e^{\beta}(1 - e^{\beta}) \equiv 0, \\ e^{\beta}(1 - e^{\beta})e^{\Delta_c \alpha(z)} + e^{2\beta} - e^{\beta} + \alpha'(z)(e^{\beta} - 1) \equiv 0. \end{cases}$$

Thus, we get $e^{\beta} = 1$. Similarly, we can get a contradiction.

If a(z) is a polynomial of degree one, then we can get $c = e^{-\beta}$ at once. Next we let a(z) = Az + B, where $A(\neq 0), B$ are all constants. By (3.8), (3.10) and $A_2(z) \equiv A_1(z) \equiv 0$, we have

$$\begin{cases} e^{\Delta_c \alpha(z)} \left[\alpha'(z)(Az + B - b)(e^{\beta} - 1) - (Az + B - b)e^{2\beta} - (A - Az - B + b)e^{\beta} + A \right] \\ + (Az + B - b)e^{2\beta} + (A - Az - B + b)e^{\beta} - A \equiv 0, \\ \alpha'(z)(Az + B - b)(e^{\beta} - 1) + (Az + B - b)e^{2\beta} + (A - Az - B + b)e^{\beta} - A \\ - e^{\Delta_c \alpha(z)} \left[(Az + B - b)e^{2\beta} + (A - Az - B + b)e^{\beta} - A \right] \equiv 0. \end{cases}$$

Thus, we get $e^{\beta} = 1$. Similarly, we can get a contradiction.

Subcase 1.1.2. b(z) is a polynomial of degree one. Firstly, we can get c = 1. We let b(z) = Dz + E, where $D(\neq 0), E$ are all constants. By (3.12), we can get a(z) is a polynomial of degree one or a constant.

If a(z) is a constant, then by (3.12), we can get $e^{\beta} = 1$. Similarly, we can get a contradiction.

If a(z) is a polynomial of degree one, then by (3.12), we can get $e^{\beta} = 1$ or a(z) = Dz + F, where $F(\neq E)$ is a constant. When a(z) = Dz + F, by (3.8), (3.10) and $A_2(z) \equiv A_1(z) \equiv 0$, we have

$$\begin{cases} \left[e^{2\beta} - e^{\beta} - \alpha'(z)(e^{\beta} - 1)\right]e^{\Delta_c \alpha(z)} + e^{\beta}(1 - e^{\beta}) \equiv 0,\\ e^{\beta}(1 - e^{\beta})e^{\Delta_c \alpha(z)} + e^{2\beta} - e^{\beta} + \alpha'(z)(e^{\beta} - 1) \equiv 0. \end{cases}$$

Thus, we get $e^{\beta} = 1$, which implies that we can only get $e^{\beta} = 1$ in this case. Similarly, we can get a contradiction.

Subcase 1.2. deg $\beta(z) \ge 1$. It follows from (3.10), $A_0(z) \equiv 0$ that $Q_8(z) \equiv 0$. By (3.8), we have

(3.13)
$$\beta'(z) \equiv \frac{a'(z) - b'(z)}{a(z) - b(z)}.$$

Since deg $\beta(z) \ge 1$, we can get $\beta'(z) \ne 0$. Then it follows from (3.13) that $a(z) - b(z) \equiv \tilde{A}e^{\beta(z)}$, where \tilde{A} is a nonzero constant. But this is a contradiction.

Case 2. deg $\beta(z) > \deg \alpha(z)$. Then (3.7) can be rewritten as

(3.14)
$$B_3(z)e^{3\beta(z)} + B_2(z)e^{2\beta(z)} + B_1(z)e^{\beta(z)} + B_0(z) \equiv 0,$$

where

$$\begin{split} B_{3}(z) &= [a(z+c) - b(z+c)]e^{\alpha(z+c) + \Delta_{c}\beta(z)} - [a(z) - b(z)]e^{\alpha(z) + \Delta_{c}\beta(z)} + Q_{5}(z)e^{\Delta_{c}\beta(z)} \\ B_{2}(z) &= -2[a(z+c) - b(z+c)]e^{\alpha(z) + \alpha(z+c) + \Delta_{c}\beta(z)} + [a(z) - b(z)]e^{2\alpha(z) + \Delta_{c}\beta(z)} \\ &+ [a(z) - b(z)]e^{\alpha(z) + \alpha(z+c)} - Q_{2}(z)e^{\alpha(z+c)} + Q_{6}(z)e^{\alpha(z) + \Delta_{c}\beta(z)} - Q_{8}(z)e^{\Delta_{c}\beta(z)}, \\ B_{1}(z) &= [a(z+c) - b(z+c)]e^{2\alpha(z) + \alpha(z+c) + \Delta_{c}\beta(z)} - [a(z) - b(z)]e^{2\alpha(z) + \alpha(z+c)} \end{split}$$

$$-Q_{3}(z)e^{\alpha(z)+\alpha(z+c)} + Q_{4}(z)e^{2\alpha(z)+\Delta_{c}\beta(z)} + Q_{7}(z)e^{\alpha(z)+\Delta_{c}\beta(z)} + Q_{8}(z)e^{\alpha(z+c)}$$
(3.15)

$$B_{0}(z) = -Q_{1}(z)e^{2\alpha(z)+\alpha(z+c)} - Q_{7}(z)e^{\alpha(z)+\alpha(z+c)}.$$

Obviously, for any i = 0, 1, 2, 3, we have

$$\rho(B_i(z)) < \deg \beta(z).$$

Hence, it follows from Lemma 2.3 that

$$B_i(z) \equiv 0 \ (i = 0, 1, 2, 3).$$

Next we discuss two subcases as follows.

Subcase 2.1. deg $\alpha(z) = 0$. Then $\alpha(z)$ is a constant.

It follows from (3.8), (3.15) and $B_3(z) \equiv B_0(z) \equiv 0$ that

(3.16) $\Delta_c b(z) e^{\alpha} + (1 - e^{\alpha}) \Delta_c a(z) \equiv b'(z),$

(3.17)
$$\Delta_c b(z) e^{\alpha} \equiv b'(z) + a'(z)(e^{\alpha} - 1).$$

Combining (3.16) with (3.17) yields

$$(e^{\alpha} - 1)[a'(z) - \Delta_c a(z)] \equiv 0.$$

If $e^{\alpha} = 1$, then by (3.1), we can get $f'(z) \equiv \Delta_c f(z)$ and $e^{\alpha(z)} \equiv e^{\beta(z)} \equiv 1$, which contradicts deg $\beta(z) > \deg \alpha(z)$.

If $a'(z) - \Delta_c a(z) \equiv 0$, then it follows from Lemma 2.4 that when c = 1, a(z) is a polynomial of degree one or a constant; when $c \neq 1$, a(z) is a constant.

Subcase 2.1.1. a(z) is a constant. We let $a(z) \equiv a$. Then by (3.17), we can get $b'(z) \equiv e^{\alpha} \Delta_c a(z)$. It follows from Lemma 2.4 that when $c = e^{-\alpha}$, b(z) is a polynomial of degree one or a constant; when $c \neq e^{-\alpha}$, b(z) is a constant.

If b(z) is a constant, then we let $b(z) \equiv b$. By (3.8), (3.15) and $B_2(z) \equiv B_1(z) \equiv 0$, we have

$$\begin{cases} \left[e^{2\alpha} - e^{\alpha} - \beta'(z)(e^{\alpha} - 1)\right] e^{\Delta_c \beta(z)} + e^{\alpha}(1 - e^{\alpha}) \equiv 0, \\ e^{\alpha}(1 - e^{\alpha})e^{\Delta_c \beta(z)} + e^{2\alpha} - e^{\alpha} + \beta'(z)(e^{\alpha} - 1) \equiv 0. \end{cases}$$

Thus, we get $e^{\alpha} = 1$. Similarly, we can get a contradiction.

If b(z) is a polynomial of degree one, then we can get $c = e^{-\alpha}$ at once. Next we let b(z) = Dz + E, where $D(\neq 0), E$ are all constants. By (3.8), (3.15) and $B_2(z) \equiv B_1(z) \equiv 0$, we have

$$\begin{cases} e^{\Delta_c \beta(z)} \left[\beta'(z)(a - Dz - E)(e^{\alpha} - 1) - (a - Dz - E)e^{2\alpha} + (D + a - Dz - E)e^{\alpha} - D \right] \\ + (a - Dz - E)e^{2\alpha} - (D + a - Dz - E)e^{\alpha} + D \equiv 0, \\ \beta'(z)(a - Dz - E)(e^{\alpha} - 1) + (a - Dz - E)e^{2\alpha} - (D + a - Dz - E)e^{\alpha} + D \\ - e^{\Delta_c \beta(z)} \left[(a - Dz - E)e^{2\alpha} - (D + a - Dz - E)e^{\alpha} + D \right] \equiv 0. \end{cases}$$

Thus, we get $e^{\alpha} = 1$. Similarly, we can get a contradiction.

Subcase 2.1.2. a(z) is a polynomial of degree one. Firstly, we can get c = 1. We let a(z) = Az + B, where $A(\neq 0)$, B are all constants. By (3.17), we can get b(z) is a polynomial of degree one or a constant.

If b(z) is a constant, then by (3.17), we can get $e^{\alpha} = 1$. Similarly, we can get a contradiction.

If b(z) is a polynomial of degree one, then by (3.17), we can get $e^{\alpha} = 1$ or b(z) = Az + F, where $F(\neq B)$ is a constant. When b(z) = Az + F, by (3.8), (3.15) and $B_2(z) \equiv B_1(z) \equiv 0$, we have

$$\begin{cases} \left[e^{2\alpha} - e^{\alpha} - \beta'(z)(e^{\alpha} - 1)\right]e^{\Delta_c\beta(z)} + e^{\alpha}(1 - e^{\alpha}) \equiv 0,\\ e^{\alpha}(1 - e^{\alpha})e^{\Delta_c\beta(z)} + e^{2\alpha} - e^{\alpha} + \beta'(z)(e^{\alpha} - 1) \equiv 0. \end{cases}$$

Thus, we get $e^{\alpha} = 1$, which implies that we can only get $e^{\alpha} = 1$ in this case. Similarly, we can get a contradiction.

Subcase 2.2. deg $\alpha(z) \ge 1$. It follows from (3.15), $B_0(z) \equiv 0$ that $Q_7(z) \equiv 0$. By (3.8), we have

(3.18)
$$\alpha'(z) \equiv \frac{a'(z) - b'(z)}{a(z) - b(z)}.$$

Since deg $\alpha(z) \ge 1$, we can get $\alpha'(z) \ne 0$. Then it follows from (3.18) that $a(z) - b(z) \equiv \tilde{B}e^{\alpha(z)}$, where \tilde{B} is a nonzero constant. But this is a contradiction.

Case 3. deg $\alpha(z) = \deg \beta(z)$.

Subcase 3.1. deg $\alpha(z) = \text{deg } \beta(z) = 0$. Then, $\alpha(z)$ and $\beta(z)$ are constants, which implies that $e^{\alpha(z)}$ and $e^{\beta(z)}$ are constants, too. It follows from (3.4) that f'(z) can be represented as a linear representation of a(z) and b(z). Thus, f'(z) is a polynomial. Then, f(z) is a polynomial, too. By (3.1) we can deduce that $f'(z) - A\Delta_c f(z) \equiv$ $(1-A)(c_n z^n + c_{n-1} z^{n-1} + \dots + c_1 z + c_0)$, where $A(\neq 0), c_n, c_{n-1}, \dots, c_1, c_0$ are all constants. And when A = 1, we have $f'(z) \equiv \Delta_c f(z)$. Then from (3.1), we have $e^{\alpha(z)} \equiv e^{\beta(z)} \equiv 1$. But this contradicts the hypothesis $e^{\alpha(z)} \not\equiv e^{\beta(z)}$. Hence, $A \neq 1$.

Subcase 3.2. deg $\alpha(z) = \deg \beta(z) \ge 1$. Then (3.7) can be rewritten as

$$C_{1}(z)e^{3\alpha(z)+\beta(z)} + C_{2}(z)e^{\alpha(z)+3\beta(z)} + C_{3}(z)e^{2\alpha(z)+2\beta(z)} + C_{4}(z)e^{3\alpha(z)} + C_{5}(z)e^{\alpha(z)+2\beta(z)} + C_{6}(z)e^{2\alpha(z)+\beta(z)} + C_{7}(z)e^{3\beta(z)} + C_{8}(z)e^{2\alpha(z)} + C_{9}(z)e^{\alpha(z)+\beta(z)} + C_{10}(z)e^{2\beta(z)} \equiv 0,$$

where

(3.19)

$$C_{1}(z) = [a(z+c) - b(z+c)]e^{\Delta_{c}\alpha(z) + \Delta_{c}\beta(z)} - [a(z) - b(z)]e^{\Delta_{c}\alpha(z)},$$

$$C_{2}(z) = [a(z+c) - b(z+c)]e^{\Delta_{c}\alpha(z) + \Delta_{c}\beta(z)} - [a(z) - b(z)]e^{\Delta_{c}\beta(z)},$$

$$C_{3}(z) = -2[a(z+c) - b(z+c)]e^{\Delta_{c}\alpha(z) + \Delta_{c}\beta(z)} + [a(z) - b(z)]e^{\Delta_{c}\beta(z)} + b^{2}(z)e^{\Delta_{c}\beta(z)} + b^{2}(z$$

M.-H. WANG, J.-F. CHEN

$$+ [a(z) - b(z)]e^{\Delta_{c}\alpha(z)},$$

$$C_{4}(z) = -Q_{1}(z)e^{\Delta_{c}\alpha(z)}, \quad C_{5}(z) = -Q_{2}(z)e^{\Delta_{c}\alpha(z)} + Q_{6}(z)e^{\Delta_{c}\beta(z)},$$

$$C_{6}(z) = -Q_{3}(z)e^{\Delta_{c}\alpha(z)} + Q_{4}(z)e^{\Delta_{c}\beta(z)}, \quad C_{7}(z) = Q_{5}(z)e^{\Delta_{c}\beta(z)},$$

$$C_{8}(z) = -Q_{7}(z)e^{\Delta_{c}\alpha(z)}, \quad C_{9}(z) = Q_{7}(z)e^{\Delta_{c}\beta(z)} + Q_{8}(z)e^{\Delta_{c}\alpha(z)},$$

$$C_{10}(z) = -Q_{0}(z)e^{\Delta_{c}\beta(z)}$$

(3.20) $C_{10}(z) = -Q_8(z)e^{\Delta_c\beta(z)}.$

$$\begin{split} &\text{If } \deg(\alpha(z) - \beta(z)) = \deg(2\alpha(z) - \beta(z)) = \deg(\alpha(z) + \beta(z)) = \deg(3\alpha(z) - \beta(z)) = \\ & \deg(3\beta(z) - \alpha(z)) = \deg(\alpha(z) - 2\beta(z)) = \deg(3\alpha(z) - 2\beta(z)) = \deg(3\beta(z) - 2\alpha(z)) = \\ & \deg(\alpha(z) - \alpha(z)) = \deg(\beta(z), \text{ then for any } 1 \le i < j \le 10, 1 \le n \le 10, \text{ we can get} \end{split}$$

$$\rho(C_n(z)) < \rho(e^{g_i(z) - g_j(z)}) = \deg \alpha(z).$$

It follows from Lemma 2.3 that $C_n(z) \equiv 0 (n = 1, 2, \dots, 10)$. Then

$$C_{10}(z) = -Q_8(z)e^{\Delta_c\beta(z)} \equiv 0,$$

which implies that $Q_8(z) \equiv 0$. Thus by (3.8), we have

$$\beta'(z) \equiv \frac{a'(z) - b'(z)}{a(z) - b(z)}.$$

Therefore, using the same method as in the proof of Subcase 1.2, we can get a contradiction.

Hence, we can only need to discuss the cases that some of $\deg(\alpha(z) - \beta(z))$, $\deg(2\alpha(z) - \beta(z))$, $\deg(\alpha(z) + \beta(z))$, $\deg(3\alpha(z) - \beta(z))$, $\deg(3\beta(z) - \alpha(z))$, $\deg(\alpha(z) - 2\beta(z))$, $\deg(3\beta(z) - 2\alpha(z))$ are less than $\deg \alpha(z)$.

Subcase 3.2.1. deg $(\alpha(z) - \beta(z)) < \text{deg } \alpha(z)$. Let $\alpha(z) - \beta(z) = p_1(z)$. Then $\beta(z) = \alpha(z) - p_1(z)$. And (3.19) can be rewritten as

$$D_4(z)e^{4\alpha(z)} + D_3(z)e^{3\alpha(z)} + D_2(z)e^{2\alpha(z)} \equiv 0,$$

where

$$D_4(z) = C_1(z)e^{-p_1(z)} + C_3(z)e^{-2p_1(z)} + C_2(z)e^{-3p_1(z)},$$

$$D_3(z) = C_4(z) + C_6(z)e^{-p_1(z)} + C_5(z)e^{-2p_1(z)} + C_7(z)e^{-3p_1(z)},$$

$$D_2(z) = C_8(z) + C_9(z)e^{-p_1(z)} + C_{10}(z)e^{-2p_1(z)}.$$

Combining this with (3.20), we obtain that for any i = 2, 3, 4,

$$\rho(D_i(z)) < \deg \alpha(z).$$

It then follows from Lemma 2.3 that

$$D_4(z) = D_3(z) = D_2(z) \equiv 0.$$

76

It is easy to deduce that $\Delta_c\beta(z) = \Delta_c\alpha(z) - \Delta_c p_1(z)$ since $\beta(z) = \alpha(z) - p_1(z)$. Hence, by (3.20) and $D_2(z) \equiv 0$, we have

$$e^{\Delta_c \alpha(z)} \left[-Q_7 + (Q_7 e^{-\Delta_c p_1(z)} + Q_8) e^{-p_1(z)} - Q_8 e^{-\Delta_c p_1(z)} e^{-2p_1(z)} \right] \equiv 0.$$

Equally,

(3.21)
$$-Q_7 + (Q_7 e^{-\Delta_c p_1(z)} + Q_8) e^{-p_1(z)} - Q_8 e^{-\Delta_c p_1(z)} e^{-2p_1(z)} \equiv 0.$$

If deg $p_1(z) \ge 1$, then by (3.8) and Lemma 2.3, we can get $Q_7(z) \equiv 0$, and thus

$$\alpha'(z) \equiv \frac{a'(z) - b'(z)}{a(z) - b(z)}.$$

Therefore, using the same method as in the proof of Subcase 2.2, we can get a contradiction.

Thus deg $p_1(z) = 0$ and so $p_1(z) = \alpha(z) - \beta(z)$ is a constant and

(3.22)
$$\Delta_c p_1(z) \equiv 0, \quad \alpha'(z) \equiv \beta'(z).$$

From (3.22) and (3.8), we can get $Q_7(z) \equiv Q_8(z)$. Combining this, (3.21) and (3.22), we have

$$e^{2p_1(z)} - 2e^{p_1(z)} + 1 \equiv 0.$$

Then $e^{p_1(z)} \equiv 1$, which implies that $e^{\alpha(z)} \equiv e^{\beta(z)}$. This contradicts the assumption $e^{\alpha(z)} \neq e^{\beta(z)}$.

Subcase 3.2.2. $\deg(2\alpha(z) - \beta(z)) < \deg \alpha(z)$. Let $2\alpha(z) - \beta(z) = p_2(z)$. Then $\beta(z) = 2\alpha(z) - p_2(z)$. And (3.19) can be rewritten as

$$E_7(z)e^{7\alpha(z)} + E_6(z)e^{6\alpha(z)} + E_5(z)e^{5\alpha(z)} + E_4(z)e^{4\alpha(z)} + E_3(z)e^{3\alpha(z)} + E_2(z)e^{2\alpha(z)} \equiv 0.$$

where

$$\begin{split} E_7(z) &= C_2(z)e^{-3p_2(z)}, \quad E_6(z) = C_3(z)e^{-2p_2(z)} + C_7(z)e^{-3p_2(z)}, \\ E_5(z) &= C_1(z)e^{-p_2(z)} + C_5(z)e^{-2p_2(z)}, \quad E_4(z) = C_6(z)e^{-p_2(z)} + C_{10}(z)e^{-2p_2(z)}, \\ E_3(z) &= C_4(z) + C_9(z)e^{-p_2(z)}, \quad E_2(z) = C_8(z). \end{split}$$

Combining this with (3.20), we obtain that for any $i = 2, ..., \rho(E_i(z)) < \deg \alpha(z)$. It then follows from Lemma 2.3 and (3.20) that $E_2(z) = C_8(z) = -Q_7(z)e^{\Delta_c \alpha(z)} \equiv 0$. Thus $Q_7(z) \equiv 0$. Combining this with (3.8) yields

$$\alpha'(z) \equiv \frac{a'(z) - b'(z)}{a(z) - b(z)}$$

Therefore, using the same method as in the proof of Subcase 2.2, we can get a contradiction.

Subcase 3.2.3. $\deg(\alpha(z) + \beta(z)) < \deg \alpha(z)$. Let $\alpha(z) + \beta(z) = p_3(z)$. Then $\beta(z) = -\alpha(z) + p_3(z)$. And (3.19) can be rewritten as $F_3(z)e^{3\alpha(z)} + F_2(z)e^{2\alpha(z)} + F_1(z)e^{\alpha(z)} + F_0 + F_{-1}(z)e^{-\alpha(z)} + F_{-2}(z)e^{-2\alpha(z)} + F_{-3}(z)e^{-3\alpha(z)} \equiv 0$, where

$$F_{3}(z) = C_{4}(z), \quad F_{2}(z) = C_{1}(z)e^{p_{3}(z)} + C_{8}(z), \quad F_{1}(z) = C_{6}(z)e^{p_{3}(z)},$$

$$F_{0}(z) = C_{3}(z)e^{2p_{3}(z)} + C_{9}(z)e^{p_{3}(z)}, \quad F_{-1}(z) = C_{5}(z)e^{2p_{3}(z)},$$

$$F_{-2}(z) = C_{2}(z)e^{3p_{3}(z)} + C_{10}(z)e^{2p_{3}(z)}, \quad F_{-3}(z) = C_{7}(z)e^{3p_{3}(z)}.$$

Combining this with (3.20), we obtain that for any $i = -3, -2, \cdots, 2, 3$,

$$\rho(F_i(z)) < \deg \alpha(z).$$

It then follows from Lemma 2.3 that

$$F_3(z) = F_2(z) = F_1(z) = F_0(z) = F_{-1}(z) = F_{-2}(z) = F_{-3}(z) \equiv 0.$$

Thus from (3.20) and $F_2(z) \equiv F_{-2}(z) \equiv 0$ we have

(3.23)
$$\left\{ [a(z+c) - b(z+c)]e^{\Delta_c\beta(z)} - [a(z) - b(z)] \right\} e^{p_3(z)} - Q_7(z) \equiv 0,$$

(3.24)
$$\left\{ [a(z+c) - b(z+c)]e^{\Delta_c \alpha(z)} - [a(z) - b(z)] \right\} e^{p_3(z)} - Q_8(z) \equiv 0.$$

Obviously, by $\deg(\alpha(z) + \beta(z)) < \deg \alpha(z) = \deg \beta(z)$ and $p_3(z) = \alpha(z) + \beta(z)$, we can get $\deg p_3(z) \le \deg \Delta_c \beta(z) = \deg \beta(z) - 1$.

If deg $p_3(z) < \deg \Delta_c \beta(z) = \deg \beta(z) - 1$, then by (3.23) we have

$$T(r, e^{\Delta_c \beta(z)}) = T\left(r, \frac{Q_7(z) + [a(z) - b(z)]e^{p_3(z)}}{e^{p_3(z)}[a(z+c) - b(z+c)]}\right) \le S(r, e^{\Delta_c \beta(z)}).$$

Thus $e^{\Delta_c \beta(z)}$ is a constant, which contradicts $0 \leq \deg p_3(z) < \deg \Delta_c \beta(z)$.

Hence deg $p_3(z) = \deg \Delta_c \beta(z)$.

If deg $p_3(z) = \deg \Delta_c \beta(z) \ge 1$, then (3.23) can be rewritten as

(3.25)
$$[a(z+c) - b(z+c)]e^{\Delta_c\beta(z) + p_3(z)} \equiv [a(z) - b(z)]e^{p_3(z)} + Q_7(z),$$

where $Q_7(z) \neq 0$. By the second fundamental theorem and (3.25), we have

$$\begin{split} T(r, e^{p_3(z)}) &\leq N(r, e^{p_3(z)}) + N\left(r, \frac{1}{e^{p_3(z)}}\right) + N\left(r, \frac{1}{e^{p_3(z)} + \frac{Q_7(z)}{a(z) - b(z)}}\right) + S(r, e^{p_3(z)}) \\ &\leq N\left(r, \frac{1}{\frac{a(z+c) - b(z+c)}{a(z) - b(z)}}e^{\Delta_c \beta(z) + p_3(z)}\right) + S(r, e^{p_3(z)}) \leq S(r, e^{p_3(z)}). \end{split}$$

Thus $e^{p_3(z)}$ is a constant, which contradicts deg $p_3(z) \ge 1$.

If deg $p_3(z) = \deg(\alpha(z) + \beta(z)) = \deg \Delta_c \beta(z) = 0$, then $\alpha(z)$ and $\beta(z)$ are polynomials of degree one. We let

(3.26)
$$\alpha(z) = a_1 z + a_0, \quad \beta(z) = -a_1 z + b_0,$$

78

where $a_1 \neq 0$, a_0 and b_0 are all constants. Then it follows from (3.8), (3.23), (3.24) and (3.26) that

$$(3.27) \\ \left\{ [a(z+c) - b(z+c)]e^{-a_1c} - a(z) + b(z) \right\} e^{p_3(z)} - [a(z) - b(z)]a_1 + a'(z) - b'(z) \equiv 0, \\ (3.28) \\ \left\{ [a(z+c) - b(z+c)]e^{a_1c} - a(z) + b(z) \right\} e^{p_3(z)} + [a(z) - b(z)]a_1 + a'(z) - b'(z) \equiv 0.$$

Combining (3.27) with (3.28) yields

(3.29)

$$\left\{ [a(z+c) - b(z+c)](e^{a_1c} + e^{-a_1c}) - 2[a(z) - b(z)] \right\} e^{p_3(z)} + 2[a'(z) - b'(z)] \equiv 0.$$

If a(z) - b(z) is a nonzero constant, then a(z+c) - b(z+c) is a nonzero constant, too. In addition, we can get a(z+c) - b(z+c) = a(z) - b(z) and $a'(z) - b'(z) \equiv 0$. From this and (3.29), we have $e^{a_1c} + e^{-a_1c} - 2 = 0$. Hence $e^{a_1c} = 1$. Substituting $e^{a_1c} = 1$ into (3.27), we can deduce that $a_1 = 0$, a contradiction.

If a(z) - b(z) is a nonconstant, then $\deg(a'(z) - b'(z)) < \deg(a(z) - b(z))$. Next we let $h(z) = a(z) - b(z) = h_n z^n + \cdots + h_1 z + h_0$, where $h_n \neq 0$, h_{n-1} , h_{n-2} , \cdots , h_1 , h_0 are all constants and $n \geq 1$. Substituting this into (3.29), we have $e^{a_1c} + e^{-a_1c} - 2 = 0$. Then $e^{a_1c} = 1$. Substituting $e^{a_1c} = 1$ into (3.27), we can deduce that $a_1 = 0$, a contradiction.

Subcase 3.2.4. deg $(3\alpha(z) - \beta(z)) < \text{deg } \alpha(z)$. Let $3\alpha(z) - \beta(z) = p_4(z)$. Then $\beta(z) = 3\alpha(z) - p_4(z)$. And (3.19) can be rewritten as

$$\begin{aligned} G_{10}(z)e^{10\alpha(z)} + G_9(z)e^{9\alpha(z)} + G_8(z)e^{8\alpha(z)} + G_7(z)e^{7\alpha(z)} + G_6(z)e^{6\alpha(z)} \\ &+ G_5(z)e^{5\alpha(z)} + G_4(z)e^{4\alpha(z)} + G_3(z)e^{3\alpha(z)} + G_2(z)e^{2\alpha(z)} \equiv 0, \end{aligned}$$

where

$$\begin{split} G_{10}(z) &= C_2(z)e^{-3p_4(z)}, \quad G_9(z) = C_7(z)e^{-3p_4(z)}, \\ G_8(z) &= C_3(z)e^{-2p_4(z)}, \quad G_7(z) = C_5(z)e^{-2p_4(z)}, \\ G_6(z) &= C_1(z)e^{-p_4(z)} + C_{10}(z)e^{-2p_4(z)}, \quad G_5(z) = C_6(z)e^{-p_4(z)}, \\ G_4(z) &= C_9(z)e^{-p_4(z)}, \quad G_3(z) = C_4(z), \quad G_2(z) = C_8(z). \end{split}$$

Combining this with (3.20), we obtain that for any $i = 2, 3, \dots, 10$, $\rho(G_i(z)) < \deg \alpha(z)$. It then follows from Lemma 2.3 and (3.20) that $G_2(z) = C_8(z) = -Q_7(z)e^{\Delta_c\alpha(z)} \equiv 0$. Thus $Q_7(z) \equiv 0$. Combining this with (3.8) yields

$$\alpha'(z) \equiv \frac{a'(z) - b'(z)}{a(z) - b(z)}.$$

Therefore, using the same method as in the proof of Subcase 2.2, we can get a contradiction.

Subcase 3.2.5. $\deg(3\beta(z) - \alpha(z)) < \deg \alpha(z)$. Let $3\beta(z) - \alpha(z) = p_5(z)$. Then $\alpha(z) = 3\beta(z) - p_5(z)$. And (3.19) can be rewritten as

$$J_{10}(z)e^{10\beta(z)} + J_9(z)e^{9\beta(z)} + J_8(z)e^{8\beta(z)} + J_7(z)e^{7\beta(z)} + J_6(z)e^{6\beta(z)} + J_5(z)e^{5\beta(z)} + J_4(z)e^{4\beta(z)} + J_3(z)e^{3\beta(z)} + J_2(z)e^{2\beta(z)} \equiv 0,$$

where

$$\begin{split} J_{10}(z) &= C_1(z)e^{-3p_5(z)}, \quad J_9(z) = C_4(z)e^{-3p_5(z)}, \\ J_8(z) &= C_3(z)e^{-2p_5(z)}, \quad J_7(z) = C_6(z)e^{-2p_5(z)}, \\ J_6(z) &= C_2(z)e^{-p_5(z)} + C_8(z)e^{-2p_5(z)}, \quad J_5(z) = C_5(z)e^{-p_5(z)}, \\ J_4(z) &= C_9(z)e^{-p_5(z)}, \quad J_3(z) = C_7(z), \quad J_2(z) = C_{10}(z). \end{split}$$

Combining this with (3.20), we obtain that for any $i = 2, 3, \dots, 10$, $\rho(J_i(z)) < \deg \beta(z)$. It then follows from Lemma 2.3 and (3.20) that $J_2(z) = C_{10}(z) = -Q_8(z)e^{\Delta_c\beta(z)} \equiv 0$. Thus $Q_8(z) \equiv 0$. Combining this with (3.8) yields

$$\beta'(z) \equiv \frac{a'(z) - b'(z)}{a(z) - b(z)}.$$

Therefore, using the same method as in the proof of Subcase 1.2, we can get a contradiction.

Subcase 3.2.6. deg $(\alpha(z) - 2\beta(z)) < \text{deg } \alpha(z)$. Let $\alpha(z) - 2\beta(z) = p_6(z)$. Then $\alpha(z) = 2\beta(z) + p_6(z)$. And (3.19) can be rewritten as

$$K_7(z)e^{7\beta(z)} + K_6(z)e^{6\beta(z)} + K_5(z)e^{5\beta(z)} + K_4(z)e^{4\beta(z)} + K_3(z)e^{3\beta(z)} + K_2(z)e^{2\beta(z)} \equiv 0,$$

where

$$\begin{split} K_7(z) &= C_1(z)e^{3p_6(z)}, \quad K_6(z) = C_3(z)e^{2p_6(z)} + C_4(z)e^{3p_6(z)}, \\ K_5(z) &= C_2(z)e^{p_6(z)} + C_6(z)e^{2p_6(z)}, \quad K_4(z) = C_5(z)e^{p_6(z)} + C_8(z)e^{2p_6(z)}, \\ K_3(z) &= C_7(z) + C_9(z)e^{p_6(z)}, \quad K_2(z) = C_{10}(z). \end{split}$$

Combining this with (3.20), we obtain that for any $i = 2, 3, \dots, 7$, $\rho(K_i(z)) < \deg \beta(z)$. It then follows from Lemma 2.3 and (3.20) that $K_2(z) = C_{10}(z) = -Q_8(z)e^{\Delta_c\beta(z)} \equiv 0$. Thus $Q_8(z) \equiv 0$. Combining this with (3.8) yields

$$\beta'(z) \equiv \frac{a'(z) - b'(z)}{a(z) - b(z)}.$$

Therefore, using the same method as in the proof of Subcase 1.2, we can get a contradiction.

Subcase 3.2.7. deg $(3\alpha(z) - 2\beta(z)) < \text{deg } \alpha(z)$. Let $3\alpha(z) - 2\beta(z) = p_7(z)$. Then $\beta(z) = \frac{3}{2}\alpha(z) - \frac{1}{2}p_7(z)$. And (3.19) can be rewritten as

$$L_{\frac{11}{2}}(z)e^{\frac{11}{2}\alpha(z)} + L_5(z)e^{5\alpha(z)} + L_{\frac{9}{2}}(z)e^{\frac{9}{2}\alpha(z)} + L_4(z)e^{4\alpha(z)}$$
80

DERIVATIVES OF MEROMORPHIC FUNCTIONS ...

$$+ L_{\frac{7}{2}}(z)e^{\frac{7}{2}\alpha(z)} + L_{3}(z)e^{3\alpha(z)} + L_{\frac{5}{2}}(z)e^{\frac{5}{2}\alpha(z)} + L_{2}(z)e^{2\alpha(z)} \equiv 0,$$

where

$$\begin{split} & L_{\frac{11}{2}}(z) = C_2(z)e^{-\frac{3}{2}p_7(z)}, \quad L_5(z) = C_3(z)e^{-p_7(z)}, \\ & L_{\frac{9}{2}}(z) = C_1(z)e^{-\frac{1}{2}p_7(z)} + C_7(z)e^{-\frac{3}{2}p_7(z)}, \quad L_4(z) = C_5(z)e^{-p_7(z)}, \\ & L_{\frac{7}{2}}(z) = C_6(z)e^{-\frac{1}{2}p_7(z)}, \quad L_3(z) = C_4(z) + C_{10}(z)e^{-p_7(z)}, \\ & L_{\frac{5}{2}}(z) = C_9(z)e^{-\frac{1}{2}p_7(z)}, \quad L_2(z) = C_8(z). \end{split}$$

Combining this with (3.20), we obtain that for any $i = 2, \frac{5}{2}, 3, \frac{7}{2}, 4, \frac{9}{2}, 5, \frac{11}{2}$,

$$\rho(L_i(z)) < \deg \,\alpha(z).$$

It then follows from Lemma 2.3 and (3.20) that $L_2(z) = C_8(z) = -Q_7(z)e^{\Delta_c \alpha(z)} \equiv 0$. Thus $Q_7(z) \equiv 0$. Combining this with (3.8) yields

$$\alpha'(z) \equiv \frac{a'(z) - b'(z)}{a(z) - b(z)}.$$

Therefore, using the same method as in the proof of Subcase 2.2, we can get a contradiction.

Subcase 3.2.8. deg $(3\beta(z) - 2\alpha(z)) < \deg \alpha(z)$. Let $3\beta(z) - 2\alpha(z) = p_8(z)$. Then $\alpha(z) = \frac{3}{2}\beta(z) - \frac{1}{2}p_8(z)$. And (3.19) can be rewritten as

$$\begin{split} M_{\frac{11}{2}}(z)e^{\frac{11}{2}\beta(z)} + M_5(z)e^{5\beta(z)} + M_{\frac{9}{2}}(z)e^{\frac{9}{2}\beta(z)} + M_4(z)e^{4\beta(z)} \\ + M_{\frac{7}{2}}(z)e^{\frac{7}{2}\beta(z)} + M_3(z)e^{3\beta(z)} + M_{\frac{5}{2}}(z)e^{\frac{5}{2}\beta(z)} + M_2(z)e^{2\beta(z)} \equiv 0 \end{split}$$

where

$$\begin{split} &M_{\frac{11}{2}}(z) = C_1(z)e^{-\frac{3}{2}p_8(z)}, \quad M_5(z) = C_3(z)e^{-p_8(z)}, \\ &M_{\frac{9}{2}}(z) = C_4(z)e^{-\frac{3}{2}p_8(z)} + C_2(z)e^{-\frac{1}{2}p_8(z)}, \quad M_4(z) = C_6(z)e^{-p_8(z)}, \\ &M_{\frac{7}{2}}(z) = C_5(z)e^{-\frac{1}{2}p_8(z)}, \quad M_3(z) = C_7(z) + C_8(z)e^{-p_8(z)}, \\ &M_{\frac{5}{2}}(z) = C_9(z)e^{-\frac{1}{2}p_8(z)}, \quad M_2(z) = C_{10}(z). \end{split}$$

Combining this with (3.20), we obtain that for any $i = 2, \frac{5}{2}, 3, \frac{7}{2}, 4, \frac{9}{2}, 5, \frac{11}{2}$,

$$\rho(M_i(z)) < \deg \beta(z).$$

It then follows from Lemma 2.3 and (3.20) that $M_2(z) = C_{10}(z) = -Q_8(z)e^{\Delta_c\beta(z)} \equiv 0$. Thus $Q_8(z) \equiv 0$. Combining this with (3.8) yields

$$\beta'(z) \equiv \frac{a'(z) - b'(z)}{a(z) - b(z)}.$$

Therefore, using the same method as in the proof of Subcase 1.2, we can get a contradiction. This completes the proof of Theorem 1.7.

Acknowledgements. The authors would like to thank the referee for his/her thorough comments.

M.-H. WANG, J.-F. CHEN

Список литературы

- S. J. Chen and A. Z. Xu, "Uniqueness of derivatives and shifts of meromorphic functions", Comput. Methods Funct. Theory, 22, 197 – 205 (2022).
- [2] S. J. Chen and A. Z. Xu, "Uniqueness on entire functions and their nth order exact differences with two shared values", Open Math. 18, 211 – 215 (2020).
- [3] Z. X. Chen and H. X. Yi, "On sharing values of meromorphic functions and their differences", Results Math. 63, 557 – 565 (2013).
- [4] Y. M. Chiang and S. J. Feng, "On the Nevanlinna characteristic of $f(z + \eta)$ and difference equations in the complex plane", Ramanujan J. 16, 105 129 (2008).
- [5] N. Cui and Z. X. Chen, "The conjecture on unity of meromorphic functions concerning their differences", J. Difference Equ. Appl. 22, 1452 – 1471 (2016).
- [6] B. M. Deng, C. P. Zeng, D. Liu and M. L. Fang, "Unicity of meromorphic functions concerning their derivatives and differences" [in Chinese], Acta Math. Sinica, Chinese Series 62, 709 – 720 (2019).
- [7] R. G. Halburd and R. J. Korhonen, "Nevanlinna theory for the difference operator", Ann. Acad. Sci. Fenn. Math. 31, 463 – 478 (2006).
- [8] R. G. Halburd and R. J. Korhonen, "Difference analogue of the lemma on the logarithmic derivative with applications to difference equations", J. Math. Anal. Appl. **314**, 477 – 487 (2006).
- [9] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford (1964).
- [10] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and J. Zhang, "Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity", J. Math. Anal. Appl. 355, 352 – 363 (2009).
- [11] X. M. Li, H. X. Yi and C. Y. Kang, "Results on meromorphic functions sharing three values with their difference operators", Bull. Korean Math. Soc. 52, 1401 – 1422 (2015).
- [12] Z. Li, "Meromorphic functions sharing three polynomials with their difference operators", J. Contemp. Math. Anal. 54, 296 – 301 (2019).
- [13] D. Liu, D. G. Yang and M. L. Fang, "Unicity of entire functions concerning shifts and difference operators", Abstr. Appl. Anal. 2014, Article ID 380910 (2014).
- [14] F. Lü, W. R. Lü, "Meromorphic functions sharing three values with their difference operators", Comput. Methods Funct. Theory 17, 395 – 403 (2017).
- [15] X. G. Qi, N. Li and L. Z. Yang, "Uniqueness of meromorphic functions concerning their differences and solutions of difference Painlevé equations", Comput. Methods Funct. Theory 18, 567 – 582 (2018).
- [16] X. G. Qi and L. Z. Yang, "Meromorphic functions that share values with their shifts or their n-th order differences", Anal. Math. 46, 843 – 865 (2020).
- [17] Z. H. Wang, X. G. Qi and L. Z. Yang, "On shared-valued properties of f'(z) = f(z + c)", J. Contemp. Math. Anal. 56, 245 253 (2021).
- [18] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht (2003).
- [19] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin (1993).
- [20] J. Zhang and L. W. Liao, "Entire functions sharing some values with their difference operators", Sci. China Math. 57, 2143 – 2152 (2014).

Поступила 10 декабря 2022

После доработки 05 июня 2023

Принята к публикации 20 июня 2023