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Abstract. Convergence of classical Fourier series (trigonometric, Haar, Walsh, ... systems)
of differentiable functions are trivial problems and they are well known. But general Fourier
series, as it is known, even for the function f(xz) = 1 does not converge. In such a case, if we
want differentiable functions with respect to the general orthonormal system (ONS) (¢n) to have
convergent Fourier series, we must find the special conditions on the functions ¢y, of system (¢n ).
This problem is studied in the present paper. It is established that the resulting conditions are

best possible. Subsystems of general orthonormal systems are considered.
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1. AUXILIARY NOTATIONS AND RESULTS

By V we denote the class of functions with bounded variation on [0, 1] and V'(f)
is the finite variation of function f. Cy is the set of functions with f' € V. A is the

class of absolute continuous functions. A is a Banach space with the norm

1
174 = I fllc + / ()] de,

where C is a class of continuous functions.
Let (¢n) be an ONS on [0, 1], where ¢,, are real-valued functions and f € /o,

then the numbers

Cn(f):/0 f(@)pn(x)de, n=1,2,...,

are the general Fourier coefficients of function f.

General Fourier series is
S Culf)pn(a)
k=1

and its partial sum is

Sn(x, f) = Crlf)er().
k=1
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Let (p=1,2,...)
n+p

npr ch

Lemma 1.1. Let (¢,) be an ONS on [0,1] and f € Cy, then

1 ntp
Byl )= £1) [ 5 auluonts) du
1 n+p Ly
(1.1) - ey | ety v ).

Proof. Integrating by parts, we get

W) = / " fupe(w) du = £(1) / o) du / ) / " on(v) dvdu,

From here we can easily obtain (1.1)).

Suppose that
n+p

np Z @k

and
u NP
Ay / 3 ou(e) dvpi),
then by (1.1]) we get
(1.2) Bz, f) = /anu;vdu—/f , ) du.

The lemma is proved.

Lemma 1.2. Let (¢,,) be an ONS on [0,1]. Then if N = n + p,
N
lim n~ 2N~ ngk ) =0 a.e. on [0,1].

n— oo
k=n

Proof. It is obvious that

N 0o
NN i) < Zk’%wi
k=n
Since

Zk"/ d:c—Zk 2 < oo,

k=n
according to Levy theorem the series

Zk 23 ()

converges a.e. on [0, 1].
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So a.e. on [0, 1],

lim n~ 2N~ Zapk =0.

n—00
k=n

‘We denote
iN

/N App(u, ) du
0

i

/N App(u, ) du
0

(1.3) Dn(z) = max =

1< N).
1<i<N ( SN < )

Lemma 1.3. Let () be an ONS on [0,1] andi=1,2,...,N, then ifn+p= N,

(1.49) / )] < M%zm)
N k=n

N

[N

Proof. By Bessel inequality

2

ni (/Ougok(v)dv) <1

k=n

Using Cauchy and Holder inequalities we get

YR By iy
s%(/;(/mm) du§¢z<x>) _N("fsok )

Definition 1.1. By (W,C,z), x € G, we denote the class of any ONS (v,) such

that for each of them there exists a sequence (e,(x)), where lim,, o €,(z) = 0, and

n+p

> )

<myen(z)

for any f' €V and p.
Lemma 1.4. If p,(u) = cos2mnu, then (vy) € (W,C,x) for any x € [0,1].

Proof. Let f’ € V, then we have
1 1
Cr(f) :/ f(uw)pr(u) du:/ f(u) cos 2mku du
0 0

1
:f(l)/ cos27rkudu——/ [/ (u) sin 27ku du
0

= 27rk/ 1/ (u) sin 27ku du.

zjf) (/01 f'(u) cos 27rkudu>2 < /Ol(f/(u))Q du,
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using the Cauchy inequality we get

n+p n+p

1 2
ZCk(f)gok =5 Z/ f'(u) sin 2ku du sin ]:-kx
k=n k=n
n+p 1, ntp . 9 L
2 sin“ 2mkx \ 2 1
< (/ ' (u cosQﬂ'kudu) ) <Z k2> Smfﬁ'

k=n

Lemma 1.5. If (X,,) is a Haar system, then (X,) € (W,C,x).

Proof. Let n = 2™ and p < 2™ is any natural number. If f’ € V, according to
the definition of Haar system (see [20]),

[Comyk ()| =0(1)272 (1<k<2™)

and (z € [0,1])
2" +p
> Xi(z)| < 2%,
k=2m
Then
2™ +p
Y CulH)X(@)| = O(1)27 F 2% = O(1)27™
k=2m

Ifn+p=2""% we get

gmts m+s—1 2711
> Cilf > D Glf
k=2m r=m k=27

m+s
W32 =ome
Analogously we can proof that

m+p

=0(1)m™*.

Theorem 1.1 (Banach [I]). Let f € Lo be an arbitrary function (f % 0). Then
there exists an ONS (o) such that

limsup |y (z, f)| = +00 a.e. on [0,1],

n—oo

where

Sul@, ) =D Ck(f)en(x).
k=1
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Theorem 1.2 (see [7]). Let F, f € Lo, then

/Olf(u)F(u)du:N]g[; (rw -1 (ut 5)) du/of* Flu) du
ey [

(1.5) +N/1111V F(u) du/o F(u) du.

[ ) - e ot du

2. THE MAIN PROPOSITION

Problems of convergence of orthogonal series are well studied. There should
be noted the results: E. Men’shov [I1I], H. Rademacher [12], W. Orlich [I4], S.
Kachmarcz [§], K. Tandori [I5], A. Olevsky [I3], etc. On the other hand, the
convergence problems of Fourier series of functions from some differentiable class
are less studied: J. R. McLaughlin [10], S. V. Bochkarev [2], B. S. Kashin [9],
L. Gogoladze, V. Tsagareishvili [7], G. Cagareishvili [3]. In the case when the
convergence of the Fourier series of differentiable functions is necessary, certain
conditions must be imposed on the functions of ONS. This is necessary because,
according to Banach Theorem, in the general case the Fourier series does not
converge even for the function f(z) =1, x € [0,1] (see Theorem [L.1]).

In the present paper, we give special conditions which are imposed on functions
of ONS (¢,,) under which the Fourier series of the functions of class Cy will be
convergent a.e. on [0, 1].

The similar Problems are studied in the papers [2, [9} [7, 8], 5] [6], 16}, [1I'7], [18].

3. THE MAIN RESULTS

We denote N =n + p.

Theorem 3.1. Suppose that (¢,) is an ONS on [0,1] and at the point x € G the

series
> Crl)en(@)
k=1
converges, where l(u) =1, u € [0, 1]. If at the point x € G (see (1.3)))
(3.1) lim Dy(z) =0,
n—oo

then the series
> Cr(Hen(x)
k=1

converges at the point x € G for any f € Cy .
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Proof. Substituting F(z) = A, ,(u,z) and f = f' (z € G) in (1.5) we get
(3.2)

1
—l—N/ )du/ App(u,z)du=a+b+c.
~ 0
Since f' € V (see (3.1)), we have
1
<N I (u) = f —
|al Z sup |f'(u)—f <u+N>

P UEA;
Applying (L.4) and f’ € V, we write (see Lemma [1.2] and Lemma [L.3)

(33)  <V()Dxla).
[b] < N — Zmax |f (u) — |/ App(u, )| du

U VEA i,

A )

i

~
/ App(u, ) du
0

NH

(3.4) = 0@

n(u, ) dz| =

+ ’ /:N App(u, ) du )
(3.5) = O(DN(:Z:) + %)
(3.6) 7

n+p 1
(v Satn) <o)
Taking into account f’ € V and ( -, we obtain (see Lemmas and

App(u, ) du

0
-5
1)(‘ / App(u, ) du

0

Thus from ({3.2)), taking into consideration ([3.3)), (3.4) and (3.5, we have
1

We consider the functlon I(u) =1, u € [0,1]. Using the formula (1.1)) and bear in
mind

/O o () du :/0 () () du = Ci(D),

we receive

n+p n-+p
(3.7) S Chlf el Za>% /f

k=n
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Finally, by condition of Theorem 1,

n+p
Jim ’;lck(l)%’k(x) =0.
So, from and there holds (see (3.1))
n+p
lim_ ;Ok(f)sok@c) =0
for any function f € Cy at the point z € G. |

Theorem 3.2. Let (¢,) be an ONS on [0,1] and z € G. If

(3.8) limsup Dy (x) > M > 0,

n—roo

then (p,) ¢ (W,C,x).

Proof. Suppose on the contrary that (¢,,) € (W, C,x). This means that for any
[ €Cy,

n+p
; Cr(f)er(x)| < mypep(x) (nlirr;osn(x) = O).
For this propose, if I(u) = 1,
n+p
S Clpn(@)| < miea(a).
k=n
Also, if in (1.2)) we put f(u) = g(u) = u, we obtain
1 n+p 1
By, p(2,9) :/ Zcpk(u) dupg(x) —/ Ay (u, x) du.
((— 0

Since

/1 () du = /1 1w () du = Ca (1),
from the last equality (\)Ne get ’
(3.9) Bp(t,q) = Bup(a,1) — /0 Ao 2) du
Because of ¢,1 € Cy we have that
[ Brp(2,q)| < mgen(z) and |Byp(,1)] < mien(x).

From here and from (3.9) it obviously follows that

1
/ App(u, ) du
0

We consider the increasing sequence (Z,,) such that

(3.10) < (mg + my)en ().

1
(3.11) lim Zn = +oo, lim Z,e,(z)=0 and lim Z, — =0.
n— oo

n— oo n—oo &

5
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Now we define the sequence of functions (hy) in such a way:

0, u € [0, 5,
(3.12) hv(w) = < 1, ue [#,1],
Nz —iy+1, uwe [t ix]

Substituting f’ = hy we can rewrite (3.2) as

/ h (u npua:dx—NZ/ (hN <u+‘]i/_>>du/0§14np(u,x)du
+N21/: /: (e () — Py (0)) dv Ay (1, )

1 1
(3.13) + N/ hy (w) du/ App(u, ) du=e+ f+g.
1-4 0

Applying (3.12) we write |hy(u)—hn(v)] < 1, u,v € [0,1]. Also, hy(u)—hyx(v) =0
when u,v € [T,%] i=1,...,iy —lyiy+1,...,N.
For this reason, using Lemma [I.2] and Lemma we receive

(3.14) lfI<N— / npux|du<1(nz+pgpk >;O<;ﬁ)

We estimate the following integrals:

in—1
N

1 * , 1

iIN in
2 — + — = Nu — i 1 =
) - (hN(u) hn (u N)) du ﬂ%l( u—iy+1)du N 5N

Taking into consideration these equalities we will show that

iN in—1

1 ~ e
e:N‘(/ A, (umc)du—l—/ A, (u,w)du)‘
2N 0 P o P
1 ¥ F
= 2‘2/0 App(u, x) du — ﬁN_l App(u, ) dul.

Moreover, according to Lemma [I.2] and Lemma [I.3] we conclude that
1
v

(3.15) le] > Dy (xz) — O(1)
Next, by and hy € Cy, we get

(3.16) gl = O(L)en ().
Finally using with (3.14)), (3.15) and (3.16) we can write

1
v

1
(3.17) ‘ /0 hn (u)Anp(u, z) du| > Dy (z) — O(1)e,(xz) — O(1)
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We consider the sequence of linear and bounded on A functionals

1
7Z"/0 fu)App(u, ) du

R,(hn) = Zn/ hn (u)Anp(u, z) du.

According to ., and - =n + p), we have

In our case,

(3.18) hm |R,(hn)| = limsup Z, Dy (x) — O(1) li_}rn Znen(x)
n—00 n—00
- 0(1) lim Z, ! = +o00.
n— oo &n

By BT,
1
llla = HhNuc+/ W ()] e < 2.
0

So, according to the Banach—Steinhaus Theorem (see (3.18))), there exists a function
s € A such that

1
(3.19) lim |R,(s)| = limsup Zn/ s(u)App(u, ) du| = +00.
n—00 n—00 0
Suppose
h(u) :/ s(v) dv.
0
As (see (1.2))

/o H,p(u,z) du = Z Cr(Dpr(x),

k=1
where I(u) =1, v € [0,1] and (see p. 7)

S Cell)pu(e)
k=1

< myen(2),

then (see (3.11))

lim =0.

1

Zn/ Hypp(u,x) du
0

Using (|1.2) when f = h, we get

1
Byp(z,h) = h(1 / (u,x du—/ s(uw)App(u, x) du.
0

From here

Zyn|Brp(x, h)| > - 'h(l)Zn/0 Hpp(u, x) dul.

1
Zn/ s(u)App(u, x) du
0
So, by (3.19), we obtain

(3.20) lim sup Zy|Bpp(@, h)| = +o0.

n—oo
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On the other hand, as it was assumed (¢,,) € (W, C, x), in view of h € Cy we have
|Bnp(z, h)| < mpen(z). From here we get Z,|Bp,(z,h)| < Z,mpe,(z). Thus we
have shown (see (3.11))) that

(3.21) lim Z,|Bnp(z, h)| =my lim Z,e,(xz) =0

n—00 n—oo
holds. Thus we obtain that (3.20]) contradicts to (3.21]), which means that (p,) ¢
(W, C,x). Theorem is completely proved. |

Theorem 3.3. Let (d,,) be a given increasing sequence. Any ONS (¢p) contains

the subsystem (pn, ) such that the series

k=1

converges a.e. on [0,1] for any f € Cy.

Proof. We suppose that () is the complete ONS. Then according to Parseval

S ([ o)

n=1

Hence there exists a sequence of natural numbers (ny) such that uniformly with

equality we have

respect to u € [0, 1],

u k—2
(3.22) ‘/ on,(V)dv| < —, k=1,2,....
0 dy,
Integrating by parts when f € Cy, we obtain
(3.23)

1 1 1 u
Con(f) = / F (W) pne () du = F(1) / o (1) ds — / £(u) / e (0) d du.
According to we conclude that

1 k_—Z
1) / On, (W) du| < —, k=1,2,...,
0 d
1 u k72
2 | [ £ [ en@dvdnl < s (£ k=2
0 0 uel0,1] dg
From here and (3.23)), for any f € Cy we get
k72
ColHl =0, k=12,

dy,
Thus

00 1 S’ k72 1 )
> (1) / wm(zndx—ou);d%( / wnk<x>dx) < too.

As it is known by Levy theorem, a.e. on [0, 1],

[N

de|an(f)g0nk(a?)| < +oo forany feCy. O
k=1
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4. PROBLEMS OF EFFICIENCY

Theorem 4.1. The system @y (u) = cos2mnu on [0,1] satisfies the condition (for
any x € [0,1]) lim Dy(z) = 0.
n—oo

Proof. We have (N =n+ p)

n+p 1 n+p 1
App(u, ) ; / cos 2mkv dv cos2mkx = 5 ; z sin 2rku cos 2mkz.
n =N

By the Holder inequality we get (i = 1,2,..., N)

’/ App(u, ) du

n+1)
/ Z — sin 2mkudu cos 2wkx

o

wtr 1 5 1

Theorem 4.2. Haar system (X,,) on [0, 1] satisfies the condition (see [20])

lim Dy(z) =0.

n—oo

Proof. Definition of the Haar system imply that

. k—1 k
‘/ Xosp(v)dv] <272, when ue[ s 75}
—1
and /X2+k()dv—0 when u%[ ,QES},
o E—1 k
‘// Xos i (v) dvdu| < , when t e [278’%}
kE—1
and // Xos 4 (v)dvdu =0, when tgé[ 2]1}

From here for any ¢ € [0, 1] we get

< 927893 =973,

‘/0 / X s (0) dv duXoe 15 (2)

Hence

‘ / X, (0) dv duX o (z)

m= 2T+1

(v) dvdu Xos i (x

)| < Zn: =0(1)272.

, putting n instead of 2" + 1 and n + p = N instead of

0

Consequently, when t = ﬁ

‘/ 7lz+p/X Ydvdu Xp,(z)| =

m=n
64

2™ we obtain

o)

1
7



(1]
2]

(3]

(4]
[5]

[6]
[7]
(8]
(9]

(10]
(11]

(12]
(13]

[14]
[15]

[16]

(17]
(18]
(19]

[20]

CONVERGENCE OF GENERAL FOURIER SERIES ...

CIHUCOK JINTEPATYPHI

S. Banach, “Sur la divergence des séries orthogonales” [in French]|, Studia Math. 9, 139 — 155
(1940).

S. V. Bochkarev, “Absolute convergence of Fourier series in complete orthogonal systems” [in
Russian|, Uspehi Mat. Nauk 27, no. 2(164), 53 — 76 (1972); translation in Russian Math.
Surveys 27, no. 2, 55 — 81 (1972).

G. Cagareishvili, “General Fourier coefficients and problems of summability almost
everywhere”, Ann. Polon. Math. 126, no. 2, 113 — 128 (2021).

N. J. Fine, “On the Walsh functions”, Trans. Amer. Math. Soc. 65, 372 — 414 (1949).

L. Gogoladze, V. Tsagareishvili, “Some classes of functions and Fourier coefficients with
respect to general orthonormal systems” [in Russian|; translated from Tr. Mat. Inst. Steklova
280 (2013), Ortogonal’nye Ryady, Teoriya Priblizhenil i Smezhnye Voprosy, 162-174 ISBN:
5-7846-0125-3; 978-5-7846-0125-4 Proc. Steklov Inst. Math. 280, no. 1, 156 — 168 (2013).

L. Gogoladze, V. Tsagareishvili, “Summability of general orthonormal Fourier series”, Studia
Sci. Math. Hungar. 52, no. 4, 511 — 536 (2015).

L. Gogoladze and V. Tsagareishvili, “Differentiable functions and general orthonormal
systems”, Mosc. Math. J. 19, no. 4, 695 — 707 (2019).

S. Kaczmarz, “Uber die Konvergenz der Reihen von Orthogonalfunktionen” [in German],
Math. Z. 23, no. 1, 263 — 270 (1925).

B. S. Kashin, “On Weyl’s multipliers for almost everywhere convergence of orthogonal series”,
Anal. Math. 2, no. 4, 249 — 266 (1976).

J. R. McLaughlin, “Integrated orthonormal series”, Pacific J. Math. 42, 469 — 475 (1972).
D. E. Menchoff, “Sur les séries de fonctions orthogonales. I: La convergence”, Fundam. Math.
4,82~ 105 (1923).

H. Rademacher, “Einige Sétze liber Reihen von allgemeinen Orthogonalfunktionen” [in
German|, Math. Ann. 87, no. 1-2, 112 — 138 (1922).

A. M. Olevskii, “Orthogonal series in terms of complete systems” [in Russian], Mat. Sb. (N.S.),
58 (100), 707 — 748 (1962).

W. Orlicz, “Zur Theorie der Orthogonalreihen”, Bulletin Acad. Polonaise (A), 81 — 115 (1927).
K. Tandori, “Uber die orthogonalen Funktionen. I’ [in German], Acta Sci. Math. (Szeged),
18, 57 — 130 (1957).

V. Sh. Tsagareishvili, “Absolute convergence of Fourier series of functions of the class Lip 1
and of functions of bounded variation” [in Russian|, translated from Izv. Ross. Akad. Nauk
Ser. Mat. 76, no. 2, 215 — 224 (2012), Izv. Math. 76, no. 2, 419 — 429 (2012).

V. Tsagareishvili, “Smooth functions and general Fourier coefficients”, J. Contemp. Math.
Anal., 57, no. 2, 102 — 111 (2022).

V. Tsagareishvili, “Some particular properties of general orthonormal systems”, Period. Math.
Hungar. 81, no. 1, 149 — 157 (2020).

V. Sh. Tsagareishvili, “General orthonormal systems and absolute convergence” [in Russian],
Izv. Ross. Akad. Nauk Ser. Mat. 84, no. 4, 208 — 220 (2020).

P. L. UL’janov, “On Haar series” [in Russian|, Mat. Sb. (N.S.), 63 (105), 356 — 391 (1964).

Tlocrynuna 26 nexabpst 2022
Ilocsie mopaborku 21 mions 2023

IIpunsara ¥ nydmmkarmm 10 moas 2023

65



	1. Auxiliary notations and results
	2. The main proposition
	3. The main results
	4. Problems of efficiency
	Список литературы

