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Abstract. In this paper, we prove that for a transcendental entire function f of finite order
such that λ(f − a) < ρ(f), where a is an entire function and satisfies ρ(a) < ρ(f), n ∈ N, if ∆n

c f

and f share the entire function b satisfying ρ(b) < ρ(f) CM, where c ∈ C satisfies ∆n
c f ̸≡ 0, then

f(z) = a(z)+decz , where d, c are two non-zero constants. In particular, if a = b, then a reduces to
a constant. This result improves and generalizes the recent results of Chen and Chen [3], Liao and
Zhang [10] and Lü et al. [11] in a large scale. Also we exhibit some relevant examples to fortify
our results.
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1. Introduction and results

In this paper, a meromorphic function f always means it is meromorphic in

the whole complex plane C. We assume that the reader is familiar with standard

notation and main results of Nevanlinna Theory (see, e.g., [7, 12]). By S(r, f) we

denote any quantity that satisfies the condition S(r, f) = o(T (r, f)) as r → ∞
possibly outside of an exceptional set of finite logarithmic measure. A meromorphic

function a is said to be a small function of f if T (r, a) = S(r, f). Moreover,

we use notations ρ(f), µ(f) and λ(f) for the order, the lower order and the

exponent of convergence of zeros of a meromorphic function f respectively. As usual,

the abbreviation CM means “counting multiplicities”, while IM means “ignoring

multiplicities”.

We now introduce some notations. Let c ∈ C \ {0}. Then the forward difference

∆n
c f for each integer n ∈ N is defined in the standard way by

∆1
cf(z) = ∆cf(z) = f(z + c)− f(z)

∆n
c f(z) = ∆c

(
∆n−1

c f(z)
)
= ∆n−1

c f(z + c)−∆n−1
c f(z), n ≥ 2.

Moreover

∆n
c f(z) =

n∑
j=0

(−1)n−jCj
nf(z + jc),
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where Cj
n is a combinatorial number.

In 1996, Brück [2] discussed the possible relation between f and f ′ when an entire

function f and it’s derivative f ′ share only one finite value CM. In this direction

an interesting problem still open is the following conjecture proposed by Brück [2].

Conjecture A. Let f be a non-constant entire function such that

lim sup
r→∞

log log T (r, f)

log r
̸∈ N ∪ {∞}.

If f and f ′ share one finite value a CM, then f ′ − a = c(f − a), where c ∈ C \ {0}.

The conjecture for the special cases (1) a = 0 and (2) N
(
r, 1

f ′

)
= S(r, f)

had been confirmed by Brück [2]. Though the conjecture is not settled in its full

generality, it gives rise to a long course of research on the uniqueness of entire and

meromorphic functions sharing a single value with its derivatives.

Meromorphic solutions of complex difference equations, and the value distribution

and uniqueness of complex differences have become an area of current interest and

the study is based on the Nevanlinna value distribution of difference operators

established by Halburd and Korhonen [6] and by Chiang and Feng [5] respectively.

Recently, many authors (see [3, 4, 10, 11]) have started to consider the sharing

values problems of meromorphic functions with their difference operators or shifts.

Also it is well known that ∆cf can be regarded as the difference counterpart of f ′.

Now, we recall the following result due to Chen [4], which is difference analogue of

the Brück conjecture.

Theorem A. [4] Let f be a transcendental entire function of finite order which

has a finite Borel exceptional value a and let c(∈ C) such that ∆cf ̸≡ 0. If ∆cf(z)

and f(z) share b(b ̸= a) CM then,
∆cf(z)− b

f(z)− b
= A,

where A = b
b−a is a non-zero constant.

In 2014, Cheng and Cheng [3] further improved Theorem A with the idea of

sharing small function and obtained the following result.

Theorem B. [3] Let f be a transcendental entire function of finite order and a be

an entire function such that ρ(a) < 1 and λ(f − a) < ρ(f). Let n ∈ N and c ∈ C
such that ∆n

c f ̸≡ 0 and b be an entire function such that b ̸≡ a and ρ(b) < 1. If

∆n
c f and f share b CM, then

f(z) = a(z) + decz,

where d, c are two non-zero constants.
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In 2016, Liao and Zhang [10] improved Theorem B from the case of ρ(b) < 1 to

the general case of small function such that ρ(b) < ρ(f) and obtained the following

result.

Theorem C. [10] Let f be a transcendental entire function of finite order and a

be a small function of f such that ρ(a) < 1. Let n ∈ N such that ∆nf ̸≡ 0 and b be

an entire function such that b ̸≡ a and ρ(b) < ρ(f). If ∆nf and f share b CM, then
∆nf − b

f − b
=

b−∆na

b− a
.

Furthermore f is of the form f(z) = a(z) + ceβz, where c and β are two non-zero

constants such that b−∆na
b−a = (eβ − 1)n.

In 2019, Lü et al. [11] asked the following questions.

Question A: Can the condition ρ(b) < 1 be weakened in Theorem C.

Question B: Does there exist a joint theorem involve of both cases a ≡ b and

a ̸≡ b ?

In the same paper, Lü et al. [11] gave affirmative answers of Questions A and B

by proving the following result.

Theorem D. [11] Let f be a transcendental entire function of finite order and a be

an entire function such that λ(f − a) < ρ(f), ρ(a) < 1 and ρ(a) ̸= ρ(f). Let n ∈ N
such that ∆nf ̸≡ 0 and b be an entire function such that ρ(b) < max{1, ρ(f)}. If

∆nf and f share b CM, then

f(z) = a(z) + ceβz,

where c and β are two non-zero constants. In particular, if a ≡ b, then a reduces to

a constant.

In the same paper, Lü et al. [11] exhibited the following example to show that

the condition ρ(a) ̸= ρ(f) is necessary in Theorem D.

Example 1.1. Let f be a transcendental entire function with 0 < ρ(f) < 1, a(z) =

f(z)− z and b(z) = 3f(z)− f(z + 1). Clearly λ(f − a) = 0 < ρ(f), ρ(b) < 1 and
∆f − b

f − b
= 2.

Therefore f and ∆f share b CM, but f does not satisfies the conclusion of Theorem

D.

In the paper, we prove the following main theorem, which extends Theorem D

from the case of λ(f − a) < ρ(f), ρ(a) < 1 and ρ(a) ̸= ρ(f) to the general case of

entire function such that λ(f − a) < ρ(f), ρ(a) < max{1, ρ(f)} and ρ(a) ̸= ρ(f).
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Theorem 1.1. Let f be a transcendental entire function of finite order and a be an

entire function such that λ(f − a) < ρ(f), ρ(a) < max{1, ρ(f)} and ρ(a) ̸= ρ(f).

Let n ∈ N and c ∈ C such that ∆n
c f ̸≡ 0 and b be an entire function such that

ρ(b) < max{1, ρ(f)}. If ∆n
c f and f share b CM, then one of the following cases

holds

(1) a = b ∈ C and f(z) = a+ decz, where c and d are two non-zero constants,

(2) a ̸≡ b and f(z) = a(z) + decz, where c and d are two non-zero constants.

Immediately we have the following corollaries.

Corollary 1.1. Let f be a transcendental entire function such ρ(f) ≥ 1 and a be

an entire function such that λ(f − a) < ρ(f) and ρ(a) < ρ(f). Let n ∈ N and c ∈ C
such that ∆n

c f ̸≡ 0 and b be an entire function such that ρ(b) < ρ(f). If ∆n
c f and

f share b CM, then one of the following cases holds

(1) a = b ∈ C and f(z) = a+ decz, where c and d are two non-zero constants,

(2) a ̸≡ b and f(z) = a(z) + decz, where c and d are two non-zero constants.

Corollary 1.2. Let f be a transcendental entire function of finite order and a be

an entire function such that λ(f−a) < ρ(f), ρ(a) < max{1, ρ(f)} and ρ(a) ̸= ρ(f).

Let n ∈ N and c ∈ C such that ∆n
c f ̸≡ 0. If ∆n

c f and f share a CM, then a reduces

to a constant and f(z) = a+ decz, where c and d are two non-zero constants.

The Corollary 1.2 shows that if a nonzero polynomial a satisfies λ(f −a) < ρ(f),

then a is not shared CM by ∆n
c f and f . For example if we take f(z) = ez + z and

a(z) = z, then for any c ̸= 2kπi, k ∈ Z, we have ∆cf(z) = (ec − 1)ez + c. Hence a

is not shared CM by ∆cf and f .

This example shows existence of functions which satisfy the conditions of Theorem

1.1.

Example 1.2. Let f(z) = ez and c = log 2. Let a = 0 and b ∈ C \ {0}. Clearly

λ(f − a) = 0 < ρ(f). Note that

∆n
c f(z) =

n∑
j=0

(−1)jCj
nf(z + (n− j)c) = ez

n∑
j=0

(−1)jCj
ne

(n−j)c

=
(
enc − C1

ne
(n−1)c + . . .+ (−1)n

)
ez = (ec − 1)

n
ez = ez.

Therefore ∆n
c f ≡ f and so f and ∆n

c f share b ∈ C CM.

Following examples show that the condition “λ(f − a) < ρ(f)” in Theorem 1.1

is sharp.
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Example 1.3. Let f(z) = Aez log(c+1) − 1−c
c , where c ∈ R \ {0}, c > −1 and A is

an arbitrary constant. Let a ∈ C \ {0} such that a ̸= − 1−c
c and 1−c

c + a = A. It is

easy to verify that λ(f − a) = ρ(f) and (∆1f(z)− 1) = c(f(z)− 1). Therefore ∆1f

and f share 1 CM, but f does not satisfy any case of Theorem 1.1.

Example 1.4. Let f(z) = ez + 3, a = 4 and c = πi. Clearly λ(f − 4) = ρ(f) = 1.

Note that ∆cf(z) = −2ez and ∆cf(z) − 2 = −2(f(z) − 2). Therefore ∆cf and f

share 2 CM, but f does not satisfy any case of Theorem 1.1.

It is easy to see that the conditions “ρ(a) < max{1, ρ(f)} and ρ(a) ̸= ρ(f)” in

Theorem 1.1 is sharp.

Example 1.5. Let f(z) = ez, a(z) = ez − 1 and c = log 2. Note that ρ(a) = ρ(f)

and ∆cf(z) = ez. Clearly λ(f − a) = 0 < ρ(f) and f and ∆cf share b(∈ C) CM,

but but f does not satisfy any case of Theorem 1.1.

It is easy to see that the condition “ρ(b) < max{1, ρ(f)}” in Theorem 1.1 is

sharp.

Example 1.6. Let f(z) = zez, a = 0, b(z) = (z + c)ez and c = log 2. Note that

ρ(b) = ρ(f) and ∆cf(z) = zez + 2cez. Clearly λ(f) = 0 < ρ(f) and f and ∆cf

share b CM, but f does not satisfy any case of Theorem 1.1.

Following example shows that the condition “λ(f − a) < ρ(f)” in Corollary 1.2

is sharp.

Example 1.7. Let f(z) = (exp z−1) exp
(

log(1+τ)
c z

)
, where log denotes the principal

branch of the logarithm and c = 2πi such that log(1 + τ) ̸= c. Let a = 0. Note that

∆cf(z) = (exp z − 1) exp

(
log(1 + τ)

c
(z + c)

)
− (exp z − 1) exp

(
log(1 + τ)

c
z

)
= (exp z − 1) exp

(
log(1 + τ)

c
z

)
(exp(log(1 + τ))− 1)

= τ(exp z − 1) exp

(
log(1 + τ)

c
z

)
= τf(z).

Clearly f and ∆cf share 0 CM. On the other hand, we see that ρ(f) ≤ 1 and

λ(f) = λ(exp z − 1) = 1. Since λ(f) ≤ ρ(f), it follows that λ(f) = ρ(f). Also it is

clear that f does not satisfy any case of Corollary 1.2.

Following examples show that the condition “ρ(f) < +∞” in Theorem 1.1 and

Corollary 1.2 is necessary.
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Example 1.8. Let f(z) = ez
(
es(z) − 1

)
, where s(z) is a periodic function with

period c = log 2 and a(z) = −ez. Clearly ρ(f) = +∞. Note that ∆cf = f and so f

and ∆cf share b(∈ C) CM. On the other hand, we see that λ(f − a) = 0 < ρ(f),

but f does not satisfy any case of Theorem 1.1.

Example 1.9. Let f(z) = ezes(z), where s(z) is a periodic function with period

c = log 2. Clearly ρ(f) = +∞. Note that ∆cf = f and so f and ∆cf share 0 CM.

On the other hand, we see that λ(f) = 0 < ρ(f), but f does not satisfy any case of

Corollary 1.2.

Following example assert that Theorem 1.1 does not valid when f is a transcendental

meromorphic function.

Example 1.10. Let g be a periodic entire function with period 1 such that λ(g) <

ρ(g) = 1 and g(z) and sin 2πz have no common zeros. Let a = 0 and

f(z) =
g(z)

sin 2πz
ez log 2.

Clearly ∆1f and f share 1 CM, but f does not satisfy any case of Theorem 1.1.

2. Auxiliary lemmas

Lemma 2.1. [[12], Theorem 1.18] Let f and g be two non-constant meromorphic

functions in the complex plane such that ρ(f) < µ(g). Then T (r, f) = o(T (r, g) (r →
∞).

Lemma 2.2. [[12], Theorem 1.44] Let g be a non-constant polynomial and f = eg.

Then ρ(f) = µ(f) = deg(g).

Lemma 2.3. ([8], Lemma 1.3.1.) Let P (z) =
∑n

i=1 aiz
i where an ̸= 0. Then ∀

ε > 0, there exists r0 > 0 such that ∀ r = |z| > r0 the inequalities (1 − ε)|an|rn ≤
|P (z)| ≤ (1 + ε)|an|rn hold.

Lemma 2.4. [12] Suppose that f1, f2, . . . , fn (n ≥ 2) are meromorphic functions

and g1, g2, . . . , gn are entire functions satisfying the following conditions

(i)
n∑

j=1

fje
gj = 0

(ii) gi − gj are non-constants for 1 ≤ i < j ≤ n;

(iii) T (r, fj) = o (T (r, egh−gk)) (r → ∞, r ̸∈ E) for 1 ≤ j ≤ n, 1 ≤ h < k ≤ n.

Then fj ≡ 0 for j = 1, 2, . . . , n.
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Lemma 2.5. [5] Let f be a meromorphic function of finite order ρ and let c1, c2 ∈
C such that c1 ̸= c2. Then for any ε > 0, we have

m

(
r,
f(z + c1)

f(z + c2)

)
= O(rρ−1+ε).

Lemma 2.6. [9] Let f be a transcendental meromorphic solution of finite order ρ

of a difference equation of the form

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, f), Q(z, f) are difference polynomials such that the total degree

deg (U(z, f)) = n in f(z) and its shifts and deg (Q(z, f)) ≤ n. Moreover, we assume

that U(z, f) contains just one term of maximal total degree in f(z) and its shifts.

Then for each ε > 0,

m(r, P (z, f)) = O(rρ−1+ε) + S(r, f)

possible outside of an exceptional set of finite logarithmic measure.

Remark 2.1. From the proof of Lemma 2.6 in [9], we can see that if the coefficients

of U(z, f), P (z, f), Q(z, f), namely aλ(z) satisfy m(r, aλ) = S(r, f), then the same

conclusion still holds.

Lemma 2.7. [5] Let f be a meromorphic function with a finite order ρ, η ∈ C\{0}.
Let ε > 0 be given. Then there exists a sub set E ⊂ (1,∞) with finite logarithmic

measure such that for all z satisfying |z| = r ̸∈ E ∪ [0, 1], we have

exp
(
−rρ−1+ε

)
≤

∣∣∣∣f(z + c)

f(z)

∣∣∣∣ ≤ exp
(
rρ−1+ε

)
.

Lemma 2.8. [1] Let g be a transcendental function of order less than 1 and h be

a positive constant. Then there exists an ε set E such that
g′(z + η)

g(z + η)
→ 0,

g(z + η)

g(z)
→ 1 as z → ∞ in C \ E

uniformly in η for |η| ≤ h Further, the set E may be chosen so that for large |z| ̸∈ E,

the function g has no zeroes or poles in |z − ζ| ≤ h.

Lemma 2.9. Let f be a transcendental entire function of finite order such that

ρ(f) > 1 and a be an entire function such that λ(f − a) < ρ(f) and ρ(a) < ρ(f).

Let n ∈ N and c ∈ C such that ∆n
c f ̸≡ 0 and b be an entire function such that

ρ(b) < ρ(f). Suppose that f is a solution of the difference equation

∆n
c f − b = (f − b)eQ,

where Q is a polynomial. Then deg(Q) = ρ(f)− 1.

Proof. Proof of the lemma follows directly from the proof of Corollary 2.2. [11].
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3. Proof of the theorem

Proof of Theorem 1.1. By the given conditions, we have λ(f − a) < ρ(f). Then

there exist an entire function H( ̸≡ 0) and a polynomial P such that

f = a+HeP ,(3.1)

where λ(H) = ρ(H) < ρ(f − a) and deg(P ) = ρ(f − a).

First we suppose ρ(f) < 1. Since ρ(a) < max{1, ρ(f)} and ρ(a) ̸= ρ(f), it follows

that ρ(a) < 1 and so ρ(f − a) = max{ρ(a), ρ(f)} < 1. Consequently

λ(f − a) < ρ(f) ≤ max{ρ(a), ρ(f)} = ρ(f − a).

Note that 0 and ∞ are the Borel exceptional values of f−a. Then f−a is a function

of regular growth and so ρ(f − a) ∈ N. Therefore we arrive at a contradiction.

Next we suppose ρ(f) ≥ 1. In this case, the given conditions ρ(a) < max{1, ρ(f)},
ρ(a) ̸= ρ(f) and ρ(b) < max{1, ρ(f)} reduce to ρ(a) < ρ(f) and ρ(b) < ρ(f).

Since ρ(a) < ρ(f), it follows that ρ(H) < ρ(f) and deg(P ) = ρ(f). Let

P (z) = asz
s + as−1z

s−1 + · · ·+ a0,(3.2)

where as(̸= 0), as−1, as−2, . . . , a0 ∈ C and s ∈ N. Therefore ρ(f) = deg(P ) = s.

Also from (3.1), we deduce that

∆n
c f = ∆n

c a+Hne
P ,(3.3)

where

Hn(z) =

n∑
j=0

cjH(z + jc)eP (z+jc)−P (z), where cj = (−1)n−jCj
n.(3.4)

Since ρ(H) < ρ(f), we have ρ(H(z + ic)) < ρ(f) for i = 0, 1, . . . , n. Note that

deg (P (z + ic)− P (z)) ≤ s−1 = ρ(f)−1. Then from (3.4), we deduce that ρ(Hn) <

ρ(f). Also we see that ρ(∆n
c a) ≤ ρ(a).

Since f and ∆n
c f share b CM, then there exists a polynomial function Q such

that

∆n
c f − b = (f − b)eQ.(3.5)

Then from (3.3) and (3.5) we have

(∆n
c a− b)− (a− b)eQ = (HeQ −Hn)e

P .(3.6)

Again from (3.5), we deduce that deg(Q) = ρ(eQ) ≤ ρ(f).

Now we divide the following two cases.

Case 1. Suppose ρ(f) < 2. Since deg(P ) = ρ(f), it follows that deg(P ) < 2 and

so deg(P ) = 1. Consequently ρ(f) = 1. Therefore by the given conditions, we see

that λ(f − a) < 1, ρ(a) < 1, ρ(a) ̸= 1 and ρ(b) < 1.
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Now we divide the following two sub-cases.

Sub-case 1.1. Suppose deg(Q) = 0. Let eQ = d. Then from (3.6), we have

(∆n
c a− b)− d(a− b) = (dH −Hn)e

P .(3.7)

Now from Lemma 2.2, we deduce that ρ ((∆n
c a− b)− d(a− b)) < ρ(f) = deg(P ) =

ρ
(
eP

)
= µ

(
eP

)
and ρ (dH −Hn) < ρ(f) = ρ

(
eP

)
= µ

(
eP

)
. Then from Lemma

2.1, we conclude that T (r, (∆n
c a− b)− d(a− b)) = S

(
r, eP

)
and T (r, dH −Hn) =

S
(
r, eP

)
. Now from Lemma 2.4 and (3.7), we deduce that

∆n
c a− b ≡ d(a− b) and dH ≡ Hn.(3.8)

If a ≡ b, then from (3.8), we deduce that ∆n
c a ≡ a.

Now if a is a transcendental entire function with order less than 1, then by

Lemma 2.8, we get

1 =
∆n

c a(z)

a(z)
=

n∑
j=0

(−1)n−jCj
n

a(z + jc)

a(z)
→

n∑
j=0

(−1)n−jCj
n = (1− 1)n = 0

as z → ∞ possibly outside a ε set E, which is impossible.

If a is a non-constant polynomial, then deg(∆n
c a) < deg(a) and so

deg(a) = deg(∆n
c a− a) = 0,

which is also impossible. Hence a is a constant and then a = ∆n
c a = 0. Therefore

if a ≡ b, then a = b = 0. Now following Sub-case 1 in the proof of Theorem 4.1 in

[11], one can easily conclude that

f(z) = a(z) + ceβz,

where c and β are two non-zero constants. In particular, if a ≡ b, then a = b = 0.

Sub-case 1.2. Suppose deg(Q) = 1. In this case, from Sub-case 2 in the proof

of Theorem 4.1 in [11], one can easily conclude that a = b ∈ C \ {0} and

f(z) = a+ ceβz,

where c and β are two non-zero constants.

Case 2. Suppose ρ(f) ≥ 2.

Then from Lemma 2.9, we deduce that deg(Q) = ρ(f) − 1. Since ρ(f) ≥ 2, it

follows that deg(Q) ≥ 1. Now from Lemma 2.5, we have

m

(
r,
H(z + jc)

H(z)

)
= O

(
rρ(H)−1+ε

)
,(3.9)
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where ε > 0 is arbitrary. Since ρ(H) < ρ(eP ), we choose ε > 0 such that ρ(H) −
1 + 2ε < ρ(eP )− 1. Let

bn−j(z) = cj
H(z + jc)

H(z)
ePj(z),(3.10)

for j = 0, 1, 2, . . . , n and

Fn(h) =

n∑
j=0

bn−jh
j .(3.11)

We claim that Hn −HeQ ≡ 0. If not, suppose Hn −HeQ ̸≡ 0. Then we see that

the order of the left side of (3.6) is less than ρ(f), but the order of the right side

of (3.6) is equal to ρ(f). This is a contradiction. Hence Hn −HeQ ≡ 0. Then from

(3.4), (3.10) and (3.11), we have

Fn(h) =

n∑
j=0

bn−jh
j = eQ.(3.12)

Let

Q(z) = ds−1z
s−1 + ds−2z

s−2 + · · ·+ d0.(3.13)

Now from (3.4) and (3.12) , we have
n∑

j=1

cj
H(z + jc)

H(z)
eRj(z) + (−1)n − eQ(z) = 0,(3.14)

where Rj(z) = P (z + jc) − P (z) (j = 1, . . . , n). Then from (3.2), we may assume

that

Rj(z) = jsascz
s−1 + Ps−2,j(z),(3.15)

where deg(Ps−2,j) ≤ s− 2. Clearly deg(Rj) = s− 1 for j = 1, 2, . . . , n.

Now we divide the following two sub-cases.

Sub-case 2.1. Suppose n = 1. Then from (3.14), we have

c1
H(z + c)

H(z)
eR1(z) − 1 ≡ eQ(z).(3.16)

Clearly (3.16) shows that H(z+c)
H(z) is entire. Then from (3.9), we deduce that

T

(
r,
H(z + c)

H(z)

)
= m

(
r,
H(z + c)

H(z)

)
= O

(
rρ(H)−1+ε

)
and so

ρ

(
H(z + c)

H(z)

)
= ρ(H)− 1 < ρ(f)− 1 = s− 1 = ρ(eR1).

Therefore it is easy to conclude that 0 is a Borel exceptional value of the entire

function c1
H(z+c)
H(z) eR1(z). Consequently 1 is not a Borel exceptional of c1

H(z+c)
H(z) eR1(z)

and so c1
H(z+c)
H(z) eR1(z) − 1 must have infinitely many zeros. Therefore we arrive at

a contradiction from (3.16).
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Sub-case 2.2. Suppose n ≥ 2. Then from (3.13) and (3.15), we see that

Rj(z)−Q(z) = (jsasc− ds−1)z
s−1 + . . . ,

where j = 1, 2, . . . , n.

Now we divide following two sub-cases:

Sub-case 2.2.1. Suppose there exists j0(1 ≤ j0 ≤ n) such that j0sasc = ds−1.

Therefore deg(Rj0 −Q) ≤ s− 2. In this case from (3.14), we have ∑
1≤j≤n
j ̸=j0

cj
H(z+cj)
H(z) eP (z+jc)−P (z+c) +Bj0e

P (z+j0c)−P (z+c)

 eR1(z) =

= (−1)n+1,(3.17)

where

Bj0(z) = cj0
H(z + j0c)

H(z)
− eQ(z)−Rj0 (z).(3.18)

Let Q1(z) = eR1(z). Note that

Q1(z + (j − 1)c) . . . Q1(z + c) = e

(
j∑

i=2
P (z+ic)−P (z+(i−1)c)

)
= eP (z+jc)−P (z+c)

for j = 2, 3, . . . , n.

Then (3.17) can be written as

U(z,Q1(z))Q1(z) = (−1)n+1,(3.19)

where

U(z,Q1(z)) =
∑

1≤j≤n
j ̸=j0

cj
H(z + jc)

H(z)
Q1(z + (j − 1)c)Q1(z + (j − 2)c) · · ·Q1(z + c)

+Bj0(z)Q1(z + (j0 − 1)c)Q1(z + (j0 − 2)c) · · ·Q1(z + c)

if j0 ≥ 2 and

U(z,Q1(z)) =
∑

2≤j≤n

cj
H(z + jc)

H(z)
Q1(z + (j − 1)c)Q1(z + (j − 2)c) · · ·Q1(z + c)

+Bj0(z)

if j0 = 1.

From (3.19), it is clear that U(z,Q1) ̸≡ 0 and deg(U(z,Q1)) = n − 1 ≥ 1. Now

we want to prove that if aλ is a coefficient of U(z,Q1), then m(r, aλ) = S(r,Q1).

Note that from Lemma 2.2, we have

µ(eR1) = ρ(eR1) = deg(R1) = s− 1

and

ρ(eQ−Rj0 ) = deg(Q−Rj0) ≤ s− 2 < s− 1 = µ(eR1).
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Then by Lemma 2.1, we deduce that

T (r, eQ−Rj0 ) = S(r, eR1) = S(r,Q1).(3.20)

Also it is easy to prove from (3.9) that

m

(
r,
H(z + jc)

H(z)

)
= S(r, eR1) = S(r,Q1) (j = 1, 2, . . . , n).(3.21)

Now from (3.18), (3.20) and (3.21), we see that

m(r,Bj0(z)) ≤ m

(
r,
H(z + j0c)

H(z)

)
+m

(
r, eQ(z)−Rj0

(z)
)
≤ S(r,Q1).

Then in view of Remark 2.1 and using Lemma 2.6, we conclude that

m(r,Q1) = S(r,Q1).

Therefore T (r,Q1) = m(r,Q1) = S(r,Q1), which is a contradiction.

Sub-case 2.2.2. Suppose jsasc ̸= ds−1 for 1 ≤ j ≤ n. In this case (3.14) can be

rewrite as

eQ(z) = eds−1z
s−1

eP̃s−2(z) =

n∑
j=0

cj
H(z + jc)

H(z)
eRj(z),(3.22)

where

P̃s−2(z) = Q(z)− ds−1z
s−1 = ds−2z

s−2 + ds−3z
s−3 + · · ·+ d0.(3.23)

Again from (3.15) and (3.22), we have

eQ(z) = eds−1z
s−1

eP̃s−2(z) =

n∑
j=1

cj
H(z + jc)

H(z)
ejsascz

s−1

ePs−2,j(z) + (−1)n.(3.24)

Note that

ns|asc| > (n− 1)s|cas| > · · · > s|asc|

and either |ds−1| ∈ {js|asc| : j = 1, 2, . . . , n} or |ds−1| ̸∈ {js|asc| : j = 1, 2, . . . , n}.
Therefore if we compare |ds−1| with ns|asc|, (n − 1)s|asc|, · · · , s|asc|, then it is

enough to compare |ds−1| with ns|asc|. Without loss of generality, we suppose that

ns|asc| ≤ |ds−1|.
Let arg ds−1 = θ1 and arg(asc) = θ2. Take θ0 such that cos((s− 1)θ0 + θ1) = 1.

Then using Lemma 2.7, we see that for any given ε (0 < ε < s−ρ(H)), there exists

a set E ⊂ (1,∞) of finite logarithmic measure such that for all z = reiθ0 satisfying

|z| = r ̸∈ [0, 1] ∪ E we have

exp
(
−rρ(H)−1+ε

)
≤

∣∣∣∣H(z + jc)

H(z)

∣∣∣∣ ≤ exp
(
rρ(H)−1+ε

)
(j = 1, 2, . . . , n).(3.25)
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Note that ∣∣exp (ds−1z
s−1

)∣∣(3.26)

=
∣∣exp (|ds−1|rs−1 (cos((s− 1)θ0 + θ1)) + i sin((s− 1)θ0 + θ1))

)∣∣
= exp

(
|ds−1|rs−1

)
.

Similarly we can show that∣∣exp (jsasczs−1
)∣∣ = exp

(
js|asc|rs−1 cos((s− 1)θ0 + θ2)

)
, j = 1, 2, . . . , n.(3.27)

Using Lemma 2.3 (taking ε = 1
2 ), we deduce from (3.23) that

∣∣∣P̃s−2(z)
∣∣∣ ≥ |ds−2|

2 rs−2

and so ∣∣∣exp(P̃s−2(z)
)∣∣∣ ≥ exp

(
|ds−2|

2
rs−2

)
.(3.28)

Again using Lemma 2.3 (taking ε = 1
2 ), we deduce that |Ps−2,j(z)| = O(rs−2) and

so

|exp (Ps−2,j(z))| = exp
(
O
(
rs−2

))
j = 1, 2, . . . , n.(3.29)

Now from (3.25), (3.27) and (3.29), we get∣∣∣∣H(z + jc)

H(z)
ejsascz

s−1

ePs−2,j(z)

∣∣∣∣(3.30)

≤ exp
(
js|asc|rs−1 cos((s− 1)θ0 + θ2)) + rρ(H)−1+ε +O

(
rs−2

))
≤ exp

(
ns|asc|rs−1 cos((s− 1)θ0 + θ2)) + rρ(H)−1+ε +O

(
rs−2

))
for j = 1, 2, . . . , n.

Then from (3.24), (3.26), (3.28) and (3.30), we conclude that

exp
(
|ds−1|rs−1

)
=

∣∣exp(ds−1z
s−1)

∣∣ = ∣∣∣∣ exp(Q(z))

exp(P̃s−2(z))

∣∣∣∣
≤

∣∣∣∣∣ n∑
j=1

cj
H(z+jc)
H(z) ejsascz

s−1

ePs−2,j(z) + (−1)n

∣∣∣∣∣
| exp(P̃s−2(z))|

(3.31)

≤
(n+ 1)n! exp

(
ns|asc|rs−1 cos((s− 1)θ0 + θ2)) + rρ(H)−1+ε +O

(
rs−2

))
exp

(
|ds−2|

2 rs−2
) .

Since ρ(H)−1+ε < s−1 and (n+1)n! = exp(log(n+1)n!) = o(rs−1), from (3.31),

we deduce that

exp
(
|ds−1|rs−1

)
≤ exp

(
ns|asc| cos((s− 1)θ0 + θ2)r

s−1 + o(rs−1)
)
.(3.32)

By assumption, we have ds−1 ̸= nsasc and ns|asc| ≤ |ds−1|.
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First we suppose ns|asc| = |ds−1|. In that case cos((s − 1)θ0 + θ2) ̸= 1 and so

cos((s− 1)θ0 + θ2) < 1. Therefore

ns|asc| cos((s− 1)θ0 + θ2) < ns|asc| = |ds−1|.

Next we suppose ns|asc| < |ds−1|. Then obviously

ns|asc| cos((s− 1)θ0 + θ2) ≤ ns|asc| < |ds−1|.

Then in either case we have

ns|asc| cos((s− 1)θ0 + θ2) < |ds−1|.

Therefore there exists ε1 > 0 such that

ns|asc| cos((s− 1)θ0 + θ2) + 2ε1 < |ds−1|

and so from (3.32), we have

exp
(
|ds−1|rs−1

)
≤ exp

(
(|ds−1| − ε1) r

s−1
)
,

which is a contradiction. This completes the proof. □
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