ԱՐՑԱՆԻ ՊԵՏԱԿԱՆ ՅԱՄԱԼՍԱՐԱՆԻ ԳԻՏԱԿԱՆ ՏԵՂԵԿԱԳԻՐ УЧЕНЫЕ ЗАПИСКИ АРЦАХСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

Բնական գիտություններ

1, 1999

Естественные наук

УДК 512-57

Математи

АБРАМЯН Л. Р., МОВСИСЯН Ю. М.

ТЕРНАРНЫЕ СВЕРХТОЖДЕСТВА АССОЦИАТИВНОСТИ В ОБРАТИМЫХ АЛГЕБРАХ

Ввеление

Классификация винарных сверхтождеств ассоциативности в винарных обратимых алгебрах (т. е. в алгебрах с винарными квазигрупповым операциями) дана в работе [1]. Такие сверхтождества оказались 3-х видов:

$$X(x, Y(y,z)) = Y(X(x,y),z);$$
(1)

$$X(x, Y(y,z)) = X(Y(x,y)z); (2)$$

$$X(x,X(y,z)) = Y(Y(x,y),z);$$
(3)

Причем сверхтождества (1), (2), (3) неэквивалентны, точнее и сверхтождества (3) вытекает сверхтождество (2), а из сверхтождества (2 вытекает сверхтождество (1). Кроме того здесь легко получается и характе ризация тех винарных обратимых алгебр, в которых выполняется одно и этих сверхтождеств. В монографии (2) (см. также [3]), эти результать усиливаются в двух направлениях: для q -алгебр и для q-алгебр.

В настоящей равоте получена классификация тернарных сверхтож деств ассоциативности в тернарных обратимых алгебрах, т. е классификаци сверхтождеств определенных по равенству тернарной ассоциативности

$$((x_1, x_2, x_3), x_4, x_5) = (x_1, (x_2, x_3, x_4), x_5) = (x_1, x_2, (x_3, x_4, x_5))$$

в таких алгебрах $Q(\Sigma)$, где Q(A) является тернарной квазигруппой для любой операции $A \in \Sigma$. В отличие от бинарного случая, тернарные сверх тожлества ассоциативности разбиваются на два класса эквивалетности. Двя тернарные сверхтождества называются эквивалетными, если они выполняются в одних и тех же обратимых тернарных алгебрах.

§1 Предварительные понятия и результаты

В настоящем параграфе приводятся (вез доказательства) ряд понятий и результатов из работ [1]-[7].

Условимся, наперед, обозначать последовательность $x_n, x_{n+1},...x_m$ через x_n^m . Символ x_n^m имеет смысл, если $n \le m$. Если n > m, то под x_n^m будем понимать пустую последовательность.

Напомним понятия п-квазигруппы, п-полугруппы и п-группы.

Множество Q с одной n-арной операцией A называется n-группондом и обозначается Q(A) .

О п р е д е л е н и е. n-Группоид Q(A) называется n - полугруппой, если в Q выполняется тождество

$$(x_1^{i-1}(x_i^{i+n-1})x_{i+n}^{-2n-1}) = (x_1^{i-1}(x_j^{j+n-1})x_{j+n}^{-2n-1})$$
 для любых $i,j,i \neq j$ и $1 \leq i \leq n, 1 \leq j \leq n$.

О п р е д е л е н и е. n-Группоид Q(A) называется n-квазигруппой или n-арной квазигруппой, если в равенстве $A(x_1^n) = x_{n+1}$ всякие n элементы из x_1^{n+1} однозначно определяют n+1-й. Иными словами, Q(A) называется n-квазигруппой, если уравнение $A(a_1^{i-1},x,a_{n+1}^n) = b$ однозначно разрешимо для любых a_1^n , b и для любого i=1,2...,n. При n=3 получаем 3-квазигруппу или терпарную квазигруппу.

О пределение. Если n-квазигруппа Q одновременно является и n-полугруппой, то она называется n-группой.

При n=2 получаем обычные (бинарные) полугрупны и группы.

О пределение п-квазигруппа Q (B) называется изотопом п-квазигруппы Q (A), существует последовательность $T=(\alpha_1^{n+1})$ подстановок множества Q такая, что

$$B(x_1^n) = a^{-1}_{n+1} A(\{a_i x_i\}_1^n)$$
 (*)

для всех $x_1^n \in Q^n$. Обозначение: $B=A^T$.

Последовательность T, а также переход от A к B, определяемый равенством (*), назовем изотопией. Подстановка α_i называется і-той компонентой изотопии $T=(\alpha_1^{n+1})$.

О п р е д е л е н и е. Алгебра $Q(\Sigma)$ с тернарными операциями называется тернарной обратимой алгеброй, если Q (A)-тернарная квазигруппа для любой операции $A \in \Sigma$.

Прежде чем перейти к следующим результатам условимся обозначать $N_m = \{1, 2, ..., m\}$.

1. Если четыре 2-квазигруппы $Q(\mathbf{A}_i), i \in \mathbf{N}_4$ связаны ассоциативным законом

$$A_{1}[A_{2}(x,y),z] = A_{3}[x,A_{4}(y,z)]$$
(1)

то все $Q(\mathbf{A}_i), i \in \mathbf{N}_4$ изотопны одной и той же группе Q(A) .

2. Если 3-квазигруппы $Q(\mathbf{A}_i), i \in \mathbb{N}_6$ связаны тернарным тождеством ассоциативности

 $A_{1}[A_{2}(x,y,z),u,v] = A_{3}[x,A_{4}(y,z,u),v] = A_{5}[x,y,A_{6}(z,u,v)]$ (2)

- а) все $Q(\mathbf{A}_i), i \in \mathbb{N}_6$ изотопны одной и той же 3-группе Q(A), овладающей единицей;
- ь) существует винарная группа Q(B) такая, что A(x,y,z)=B[B(x,y),z].

Пусть Ω множество всех бинарных квазигрупповых операций, определенных на множестве Q. Система $Q(\Sigma)$, где $\Sigma \subseteq \Omega$, называется славо ассоциативной в целом.

1. слева (кратко LA -системой), если имеет место условие:

$$(\forall A_1, A_2 \in \Sigma)(\exists A_3, A_4 \in \Omega)(\forall x, y, z \in Q)$$
$$(A_1[A_2(x, y), z] = A_3[x, A_4(y, z)]); \tag{1}$$

2. справа (кратко RA -системой), если имеет место условие:

$$(\forall \mathbf{A}_3, \mathbf{A}_4 \in \Sigma)(\exists \mathbf{A}_1, \mathbf{A}_2 \in \Omega)(\forall x, y, z \in Q)$$
$$(A_1[A_2(x, y), z] = A_3[x, A_4(y, z)]); \tag{12}$$

Если в (1_1) и (1_2) заменим условия $(\exists A_3, A_4 \in \Omega)$ и $(\exists A_1, A_2 \in \Omega)$ условиями $(\exists A_3, A_4 \in \Sigma)$ и $(\exists A_1, A_2 \in \Sigma)$, то $Q(\Sigma)$ вудет называться ассоциативной, соответственно, слева (LA-система) и справа (RA-система). Если $Q(\Sigma)$ ассоциативна и слева и справа, то $Q(\Sigma)$ называется ассоциативной в целом или A-системой.

- 3. Все операции LA -системы (а также RA -, LA-, RA-, A-системы) изотопны одной и той же груште и следовательно изотопны между собой.
- 4. Если \overline{LA} система (или \overline{RA} -, LA-, RA-, A- система) содержит лупу Q(L), то эта лупа доджна быть группой.
- 5. Если операция A не изотопна группе, то она не может выть включена ни в какую \overline{LA} -систему (или \overline{RA} -, LA-, RA-, A- систему).
- 6. Пусть n = |Q|. Тогда $Q(\Omega)$ является LA-системой (или RA-, А-системой) только при $n \le 3$.
- 7. Если п-лупа Q(L) изотопна п-группе Q(A) с единицей, то Q(L) изоморфна Q(A), т. е. сама является п-группой.
- 8. Пусть $Q(\mathbf{A})$ n-полугруппа, т.е. n-группоид, удовлетворяющий равенствам

$$A[A(Q_{1}...,Q_{i},Q_{i+1},...,Q_{n})Q_{n+1}...,Q_{2n-1}] = -A[Q_{1},...,Q_{i},A(Q_{1+1},...,Q_{1+n}),...Q_{2n-1}]$$
(3)

для всех $i \in \{1,2,...,n-1\}$. Если Q(A) овладает единицей е, то

$$A(x_1, x_2, ..., x_n) = B[B(...(x_1 x_2), x_3)...), x_n]$$
(4₁)

FIRE B(x,y) = A(x,y,e,...,e) (42)

для любых $x, y \in Q$. (Q (B) является бинарной полугруппой).

О п р е д е л е н и е. Пусть Ω - множество всех тернарных квазигрупповых операций, определенных на множестве Q. Систему $Q(\Sigma)$, где $\Sigma \subseteq \Omega$ назовем

1. слабо 1-ассоциативной в целом (кратко $\overline{1A}$ - системой), если имеет место следующее условие ($\forall \exists (\forall)$ тождество):

$$(\forall A_1, A_2 \in \Sigma) (\exists A_3, A_4, A_5, A_6 \in \Omega)$$

$$(\forall x, y, z, u, v \in Q)$$

$$((2))$$

2. славо 2-ассоциативной в целом (кратко 2А -системой), если имеет место следующее условие:

$$(\forall A_3, A_4 \in \Sigma)(\exists A_1, A_2, A_5, A_6 \in \Omega)$$

$$(\forall x, y, z, u, v \in Q) \qquad ((2))$$

3. славо 3-ассоциативной в целом (кратко 3А -системой) если имеет место следующее условие:

$$(\forall A_5, A_6 \in \Sigma)(\exists A_1, A_2, A_3, A_4 \in \Sigma)$$

$$(\forall x, y, z, u, v \in Q) \qquad ((2))$$

O п р е д е л е н и е. Пусть Ω - множество всех тернарных квазигрупповых операдий, определенных на Q . Систему $Q(\Sigma)$, где $\Sigma \subseteq \Omega$ назовем

1. 1-ассоциативной в целом (кратко 1А-системой), если имеет место следующее условие:

$$(\forall A_1, A_2 \in \Sigma) (\exists A_3, A_4, A_5, A_6 \in \Sigma)$$

$$(\forall x, y, z, u, v \in Q)$$

$$((2))$$

2. 2-ассоциативной в целом (кратко 2А-системой, если имеет место следующее условие:

$$(\forall \mathbf{A}_3, \mathbf{A}_4 \in \Sigma) (\exists \mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_5, \mathbf{A}_6 \in \Sigma)$$

$$(\overline{\mathbf{5}}_2)$$

$$(\forall x, y, z, u, v \in Q)$$

$$((2))$$

3-ассоциативной в целом (кратко 3А-системой), если имеет место следующее условие:

$$(\forall A_5, A_6 \in \Sigma)(\exists A_1, A_2, A_3, A_4 \in \Sigma)$$

$$(\forall x, y, z, u, v \in Q)$$

$$((2))$$

1А-, 2А-, 3А- системы вудем еще называть іА-системами, $i \in N_3$.

О п р е д е л е н и е. $Q(\Sigma)$ назовем ассоциативной в целом системо тернарных квазигрупп (А-системой), если $Q(\Sigma)$ является іА-системой дл всех $i\in N_3$.

О п р е д е л е н и е. Подстановка α множества Q называется квази автоморфизмом (или голоморфизмом) группы Q(.), если для все $a,b\in Q$ справелливо равенство $\alpha(a\cdot b)=\alpha a\cdot (\alpha e)^{-1}\alpha b$, где е – единий группы Q(.).

Свойство 1. Автоморфизмы являются квазиавтоморфизмом тогли и только тогда, когда $\alpha e = e$.

С в о й с т в о 2. Пусть α_0 -автоморфизм. В этом случае определенна по формуле $\alpha a = \alpha_0 a \cdot k$ определяется подстановка, где k фиксированный элемент из Q, будет квазиавтоморфизм.

С в о й с т в о 3. Пусть α - любой квазнавтоморфизм группы Q (.). В этом случае существует автоморфизм α_0 и β_0 группы Q (.) и таки элементы $k,t\in Q$, что $ax=a_0x\cdot k$, $ax=t\cdot \beta_0x$ для любого $x\in Q$.

С в о й с т в о 4. Если α квазиавтоморфизм группы Q (.), то подстановка α' и α'' , определяемые формулой $a'x=ax\cdot k$ $a''x=t\cdot \alpha x$, где k,t фиксированные элементы Q, являются квазиавтоморфизмами группы Q (.).

С в о й с т в о 5. Если а квазиавтоморфизм группы Q (.) с единицей, то подстановки $\alpha_1 x = \alpha x \cdot (\alpha e)^{-1}$ и $\alpha_2 x = (\alpha e)^{-1} \cdot \alpha e$ являются автоморфизмами группы Q (.).

С в о \tilde{u} с т в о 6. Множество всех квазиавтоморфизмов (голоморфизмов) группы Q (.) составляют группу $Hol\ Q$ относительно умножения полстановок.

Свойство 7. Любая автотопная подстановка α группы Q (.), есть квазнавтоморфизм.

C в о й с т в о 8. Пусть α - автотопная подстановка группы Q (.), т. е. для α существуют такие $\beta, \gamma \in S_Q$, что $\alpha(x \cdot y) = \beta x \cdot \gamma y$. В этом случае β, γ являются квазнавтоморфизмами группы Q (.).

С в о й с т в о 9. Пусть $\alpha,\beta,\gamma,\delta,\varphi,\psi\in S_Q$, а Q (.)- группа. Если верно равенство $\beta[\alpha(x\cdot y)\cdot z]=\gamma\!x\cdot\!\delta(\varphi\!x\cdot\!\psi\!z)$ для любых $x,y,z\in Q$, то $\alpha,\beta,\gamma,\delta,\varphi,\psi$ являются квазнавтоморфизмами группы Q (.).

T е о р е м а 1. Если в тернарной обратимой алгебре $Q(\Sigma)$ выполняется сверхтождество

X[X(x,y,z),u,v] = X[x,X(y,z,u),v] = Y[x,y,Y(z,u,v)], тогда на множестве Q можно так определить бинарную группу Q (0), что для любого $A_i \in \Sigma$ и для любых $x,y,z \in Q$

$$A_i(x,y,z) = \alpha_i^{-1}(\beta_i x \circ \gamma_i y \circ \delta_i z), \text{ fig. } \alpha_i,\beta_i,\gamma_i,\delta_i \in S_O.$$

Т е о р е м а 2. Если в тернарной обратимой алгебре $Q(\Sigma)$ выполняется сверхтождество

X[X(x,y,z),u,v] = Y[x,Y(y,z,u),v] = X[x,y,X(z,u,v)],

тогда на множестве Q можно так определить бинарную группу Q (0), что для любого $A \in \Sigma$ и для любых $x,y,z \in Q$

$$A_i(x,y,z) = a_i^{-1}(\beta_i x \circ \gamma_i y \circ \delta_i z),$$
 где $a_i,\beta_i,\gamma_i,\delta_i \in S_O$.

Т е о р е м а 3. Если в тернарной обратимой алгебре $Q(\Sigma)$ выполняется сверхтождество

Y[Y(x,y,z),u,v] = X[x,X(y,z,u),v] = X[x,y,X(z,u,v)]

тогда на множестве Q можно так определить винарную группу Q (o), что для любого $A_i \in \Sigma$ и для любых $x,y,z \in Q$

$$A_i(x,y,z) = \alpha_i^{-1}(\beta_i x \circ \gamma_i y \circ \delta_i z)$$
, гле $\alpha_i,\beta_i,\gamma_i,\delta_i \in S_Q$

Т е о р е м а 4. Если в тернарной обратимой алгебре $Q(\Sigma)$ выполняется сверхтождество

X[X(x,y,z),u,v] = Y[x,Y(y,z,u),v] = Z[x,y,Z(z,u,v)]

тогда на множестве Q можно так определить бинарную группу Q (o), что для любого $A_i \in \Sigma$ и для любых $x,y,z \in Q$

$$A_i(x,y,z) = \alpha_i^{-1}(\beta_i x \circ \gamma_i y \circ \delta_i z)$$
, гле $\alpha_i,\beta_i,\gamma_i,\delta_i \in S_O$.

§ 2 Характеризация тернарных сверхтождеств ассоциативности в обратимых алгебрах и характеризация обратимых алгебр с тернарными сверхтождествами ассоциативности

Обобщая лемму о сингулярных операциях [3] можно доказать, что аналогичный результат имеет место и в случае 3-х местных операций, ? (доказательство этого случая аналогично доказательству случая n=2). Следовательно в нетривиальных сверхтождествах определенных по равенству

$$((x,y,z),u,v) = (x,(y,z,u),v) = (x,y,(z,u,v))$$

каждый символ операции должен повторяться не менее 2 раз (в обоих частях каждого равенства). Получим следующие сверхтождества:

1.
$$X[Y(x,y,z),u,v] = X[x,Y(y,z,u),v] = X[x,y,Y(z,u,v)]$$

2.
$$Y/X(x,y,z),u,v$$
] = $X[x,Y(y,z,u),v]$ = $X[x,y,Y(z,u,v)]$

3.
$$X[Y(x,y,z),u,v] = Y[x,X(y,z,u),v] = X[x,y,Y(z,u,v)]$$

4.
$$Y[X(x,y, z),u,v] = Y[x,X(y,z,u),v] = X[x,y,Y(z,u,v)]$$

5.
$$X[Y(x,y, z),u,v] = X[x,Y(y,z,u),v] = Y[x,y,X(z,u,v)]$$

6.
$$Y[X(x,y,z),u,v] = X[x,Y(y,z,u)v] = Y[x,y,X(z,u,v)]$$

7. $X[Y(x,y,z),u,v] = Y[x,X(y,z,u),v] = Y[x,y,X(z,u,v)]$

8.
$$Y[X(x,y,z),u,v] = Y[x,X(y,z,u),v] = Y[x,y,X(z,u,v)]$$

9.
$$X[X(x,y,z),u,v] = X[x,X(y,z,u)v] = Y[x,y,Y(z,u,v)]$$

10.
$$X[X(x,y,z),u,v] = Y[x,Y(y,z,u),v] = X[x,y,X(z,u,v)]$$

11.
$$Y[Y(x,y,z),u,v] = X[x,X(y,z,u),v] = X[x,y,X(z,u,v)]$$

12.
$$X[X(x,y,z),u,v] = Y[x,Y(y,z,u),v] = Z[x,y,Z(z,u,v)]$$

Очевилно, что сверхтождества (1) и (8), (2) и (7), (3) и (6), (4) и (5) эквивалентны в классе всех тернарных алгебр, поскольку они различаются обозначениями функциональных переменных. Сверхтождества (1)-(12) в классе всех тернарных обратимых алгебр в смысле выполнимости делятся на классы эквивалентности. Основная цель работы является определение этих классов эквивалентностей, при этом 2 вышеуказанные сверхтождества называются эквивалентными, если в каждой тернарной обратимой алгебре из выполнимости одного из них следует также выполнимость другого сверхтождества. В основной теореме необходимо рассмотреть только те алгебры $Q(\Sigma)$ для которых мощность множества ее операций больше единицы, т.е. $|\Sigma| > 1$. Такие алгебры назовем нетривиальными.

Л е м м а 1. В тернарной обратимой алгевре $Q(\Sigma)$ выполняется сверхтождество

$$X[Y(x,y,z),u,v] = X[x,Y(y,z,u),v] = X[x,y,Y(z,u,v)]$$
 (1)

тогда и только тогда, когда каждая операция $A_i \in \Sigma$ определяется по правилу:

$$A_{i}(x,y,z) = xoao\beta yobot_{i}oz; t_{i} \in Z[Q(o)],$$

$$\beta(aob) = t^{-1}o(boa),$$

$$\beta(t_{i}) = tot_{i},$$

$$\beta^{2}z = \beta a^{-1}obozob^{-1}o\beta a,$$

где Q (o)-бинарная группа, $\beta \in Aut[Q(o)]$, а $a,b,t \in Q$, $t_i \in \mathbb{Z}[Q(o)]$.

 ${\cal A}$ о казательство. Необхолимость. Согласно пункту (a) теоремы 4

 $A_i(x, y, z) = \alpha_i xoa_i o \beta_i yo \gamma_i zob_i$

где α_i , β_i , γ_i автоморфизмы винарной группы Q (o). В этом случае сверхтождество (1) будет иметь следующий вид:

$$\alpha_{i}(\alpha_{j}xo\beta_{j}yo\gamma_{j}zob_{j})o\alpha_{i}o\beta_{i}uo\gamma_{i}vob_{i} =$$

$$= \alpha_{i}xoa_{i}o\beta_{i}(\alpha_{j}yoa_{j}o\beta_{j}zo\gamma_{j}uob_{j})o\gamma_{i}v$$

$$ob_{i} = \alpha_{i}xo\alpha_{i}o\beta_{i}yo\gamma_{i}(\alpha_{j}zoa_{j}o\beta_{j}uo\gamma_{j}vob_{j})ob_{i}$$

Левую часть тернарного сверхтождества ассоциативности обозначим через I, среднюю часть через II и правую часть через III. Рассмотрим

равенство I=II, получим $lpha_ilpha_jx=lpha_ix$, следовательно $lpha_i=arepsilon$. Подставив в I=III $lpha_i=arepsilon$ получим

$$xoa_{j}o\beta_{i}yo\gamma_{i}zob_{j}oa_{i}o\beta_{i}uo\gamma_{i}vob_{i} = = xoa_{i}o\beta_{i}yo\gamma_{i}zo\gamma_{i}a_{j}o\gamma_{i}\beta_{j}uo\gamma_{i}\gamma_{j}vo\gamma_{i}b_{j}ob_{i}.$$

$$(2)$$

Принимая і= і, получим

xοαοβyογzοbοαοβuογνοb = xοαοβyογzογαογβuογγνογbob,bοαοβuογν = γ(αοβuογνοb).

Принимая $u = \beta^{-1}u, v = \gamma^{-1}v$ получим $boao\beta uo\gamma v = \gamma(ao\beta uo\gamma vob)$

Возьмем $u=a^{-1}$, получим $bov=\gamma(vob)$. Принимая v=1, получим $\gamma b=b$.

Отсюда $\gamma_i v = b_i o v o b_i^{-1}$. Подставляя это значение в (2) имеем $a_j o \beta_j v o b_j o z o b_j^{-1} o b_j o a o \beta_i u o b_i o v o b_i^{-1} o b_i =$

 $= a_i \circ \beta_i y \circ b_i \circ z \circ b_i^{-1} \circ b_i \circ a_j \circ b_i^{-1} \circ b_i \circ \beta_i u \circ b_i^{-1} \circ b_i \circ b_j \circ v \circ b_j^{-1} \circ b_i^{-1} \circ b_i \circ b_j \circ b_i^{-1} \circ b_i$ $(a_j \circ \beta_j y \circ b_j) \circ z \circ (a_j \circ \beta_i u \circ b_i) = (a_i \circ \beta_i y \circ b_i) \circ z \circ (a_j \circ \beta_j u b_j).$

Фиксируя индекс ј получим

 $(ao\beta yob)^{-1}o(a,o\beta,yob,)oz = zo(a,o\beta,ub,)o(ao\beta uob)^{-1};$ поэтому $(ao\beta yob)^{-1}o(a,o\beta,yob,)=t,\in \mathbb{Z}[(Q)]$ н

 $a_i \circ \beta_i y \circ b_i = a \circ \beta y \circ b \circ t_i$, следовательно $\beta_i y = a_i^{-1} \circ a \circ \beta_i y \circ b \circ t_i \circ b_i^{-1}$.

Подставляя в $A_i(x,y,z)$ значения β_i , α_i , γ_i получим

 $A_i(x, y, z) = xoa_ioa_i^{-1}oao\beta yobot_iob_i^{-1}ob_iozob_i^{-1}ob_i = xoao\beta yobot_ioz, t_i \in \mathbb{Z}[Q(o)].$

Подставляя выражение $A_i(x,y,z)$ в I=II получим

 $xoao\beta yobot_i ozoao\beta uobot_i ov = oao\beta yo\beta ao\beta^2 zo\beta bo\beta t_i o\beta uobot_i ov.$ (3)

Отеюда $\beta^2 z = \beta a^{-1} obot_i ozoao \beta t_i^{-1} o \beta b^{-1}$

 \mathbb{C} другой стороны $\beta^2 z = \beta a^{-1} obot_j ozoao \beta t_j o \beta b^{-1}$

Так как $\beta^2 z$ постоянная, т. е. не зависит от индекса i, то

 $\beta a^{-1}obot_{j}ozoao\beta t_{j}^{-1}o\beta b^{-1} = \beta a^{-1}obot_{i}ozoao\beta t_{j}^{-1}o\beta b^{-1};$

отсюда $t_j o \beta t_j^{-1} = t_i o \beta t_i^{-1}$, следовательно $\beta t_i^{-1} = t_i^{-1} o t o \beta t^{-1}$.

Заменим $toeta t^{-1}$ на t^{-1} , получим $eta t^{-1}=t^{-1}ot^{-1}$, следовательно $eta t_i=tot_i$ отсюда

 $\beta^{2}z = \beta a^{-1}obot_{i}ozoaot_{i}^{-1}ot^{-1}o\beta b^{-1} = \beta a^{-1}obozoaot^{-1}o\beta b^{-1},$ $\beta^{2}z = \beta a^{-1}obozob^{-1}o\beta a$

Подставим полученное значение в (3) выводим $bot_1ozoa = \beta ao\beta a^{-1}obozob^{-1}o\beta ao\beta botot_1$,

 $a = b^{-1} \circ \beta(aob)$ от, следовательно $\beta(aob) = t^{-1} \circ (boa)$.

Достаточность доказывается путем непосредственной проверки.

Л е м м а 2. В тернарной обратимой алгебре $Q(\Sigma)$ выполняетс сверхтождество

$$Y[X(x,y,z),u,v] = X[x,Y(y,z,u),v] = X[x,y,Y(z,u,v)]$$
 (2)

тогда и только тогда, когда каждая операция $A_i \in \Sigma$ определяется по правилу

$$A_{i}(x, y, z) = xoc_{i}o\beta yoboz, \quad \beta(cob) = boc$$

$$\beta c_{i} = t_{i}o\beta c, \quad t_{i} \in \mathbb{Z}[Q(o)], \quad \beta t_{i} = t_{i}$$

$$\beta^{2}z = \beta c^{-1}obozob^{-1}o\beta c,$$

где Q(o) - винарная группа, $\beta \in Aut[Q(o)]$, а $c, b, c_i \in Z[Q(o)]$.

Л е м м а 3. В терпарной обратимой алгебре выполняется сверхтож дество

$$X[Y(x,y,z),u,v] = Y[x,X(y,z,u),v] = X[x,y,Y(z,u,v)]$$
 (2)

тогда и только тогда, когда каждая операция $A_i \in \Sigma$ определяется по правилу

$$A_{t}(x,y,z) = xoao\beta yobot_{t}oz, \quad t_{t} \in \mathbb{Z}[Q(o)],$$

$$\beta(aob) = t^{-1}o(boa), \quad t \in \mathbb{Z}[Q(o)],$$

$$\beta t_{t} = tot_{t},$$

$$\beta^2 z = \beta a^{-1} obozob^{-1} o \beta a,$$

где Q (o) - Биларная группа, $\beta \in Aut[Q(o)]$, $a,b \in Q$.

Л е м м а 4. В тернарной обратимой алгебре $Q(\Sigma)$ выполняется сверхтождество тогда и только тогда, когда каждая операция $A_i \in \Sigma$ опредсляется по правилу

$$Y[X(x,y,z),u,v] = Y[xX(y,z,u),v] = X[x,y,Y(z,u,v)]$$

$$A_{i}(x,y,z) = xoao\beta yoc_{i}oz \quad c_{i} \in \cot_{i}^{-1},$$

$$\beta(aoc) = coa,$$
(4)

$$\beta c_1 = t_1^{-1} o \beta c, \ t_1 \in \mathbb{Z}[Q(o)],$$

 $\beta^2 z = \beta coa^{-1} o zoao \beta c^{-1},$

гле Q (o) - винарная группа $\beta \in Aut[Q(o)]$ а $a,c,c_i \in Q$.

Л е м м а 5. В тернарной обратимой алгебре $Q(\Sigma)$ выполняется сверхтождество

X[X(x,y,z),u,v] = X[x,X(y,z,u),v] = Y[x,y,Y(z,u,v)] (9) тогда и только тогда, когда каждая операция $A_i \in \Sigma$ определяется по

правилу $A_{i}(x,y,z) = xoaot_{i}o\omega yoz_{i},$ $\omega^{2}y = a^{-1}oyoa_{i}, \quad t^{2} = t_{i},$

 $\omega(aot_i) = aot_i, \quad t_i, \ t \in \mathbb{Z}[Q(o)],$ где Q(o) винарная группа, $a \in Q$, $\omega \in Aut[Q(o)]$.

Л е м м а 6. В тернарной обратимой алгебре $Q(\Sigma)$ выполняется сверхтождество

$$X[X(x,y,z),u,v] = Y[x,Y(y,z,u),v] = X[x,y,X(z,u,v)]$$
 (10)

тогда и только тогда, когда каждая операция $A_i \in \Sigma$ определяется по правилу

$$A_{i}(x, y, z) = xo\varphi yoaot_{i}oz, \quad \varphi^{2}z = aozoa^{-1},$$

$$t_i^2 = t$$
, $\varphi(aot_i) = aot_i$ $t, t_i \in \mathbb{Z}[Q(o)]$,

где Q (o) - бинариая группа $a \in Q$, а $\varphi \in AutZ[Q(o)]$.

Л е м м а 7. В тернарной обратимой алгебре $Q(\Sigma)$ выполняется сверхтождество

$$Y[Y(x,y,z),u,v] = X[x,X(y,z,u),v] = X[x,y,X(z,u,v)]$$
 (11)

тогда и только тогда, когда каждая операция $A_i \in \Sigma$ определяется по правилу

$$A_t(x, y, z) = xoaot_t o \omega yoz, \quad \omega^2 z = a^{-1}ozoa,$$

 $t_t^2 = t, \quad \omega(aot_t) = aot, \quad t_t \in \mathbb{Z}[O(o)]$

где Q(o) бинарная группа $\omega \in Aut[Q(o)], \ a \in Q, \ t_i \in Z[Q(o)].$

Л е м м а 8. В терпарной обратимой алгебре $Q(\Sigma)$ выполняется сверхтождество

$$X[X(x,y,z),u,v] = Y[x,Y(y,z,u),v] = Z[x,y,Z(z,u,v)]$$
 (12)

тогда и только тогда, когда каждая операция $A_i \in \Sigma$ определяется по правилу

$$A_i(x, y, z) = xo \varphi yoaot_i oz, \varphi^2 z = aotoa^{-1},$$

$$t_i^2 = t$$
, $\varphi(aot_i) = aot_i t_i \in \mathbb{Z}[Q(o)]$

где Q (o) винарная группа, $\varphi \in Aut[Q(o)], \ a \in Q$.

После сравнения лемм 1-8 получается, что относительно класса нетривнальных обратимых алгебр множество сверхтождеств 1-12 делится на 2 класса эквивалентности, так, что в первый класс входят сверхтождества 1-8, а во второй 9-12. Таким образом, получается следующий результат.

Теорем а. В классе истривиальных тернарных обратимых алгебр, каждое истривиальное тернарное сверхтождество ассоциативности эквивалентно одному из следующих 2-х сверхтождеств:

$$X[Y(x,y,z),u,v] = X[x,Y(y,z,u),v] = X[x,y,Y(z,u,v)]$$
 (1)

$$X[X(x,y,z),u,v] = X[x,X(y,z,u),v] = Y[x,y,Y(z,u,v)]$$
 (9) причем из сверхтождества (9) вытекает сверхтождество (1).

Кафедра математики

ЛИТЕРАТУРА

- 1. Белоусов В. Д. Системы квазигрупп с обобщенными тожде УМН, 1965, т. 20, с. 75-146.
- 2. Мовсисян Ю. М. Введение в теорию алгевр со сверхтожде Изд-во ЕГУ, Ереван, 1986.
 - Мовсисян Ю. М. Сверхтождества в алгебрах и многообј УМН, 1998, т. 53, с. 61-114.
 - 4. Белоусов В. Д. n-Арные квазигруппы, Изд-во "Штиинца", нев, 1971.
 - 5. Ушан Я. Ассоциативные в целом системы тернарных квазі Mathematica Balkanica, 1, 1971.
- Ушан Я. Ассоциативные в целом системы п-арцых квазигруп lications de l'institut mathematique, Nouvelle serle, tome 19(33), 1975, ; 165.
- 7. Жарков Д. Одна заметка об ассоциативных в целом систе квазигрупп на $Q=\{1, 2, 3, 4\}$ Publications de 1 institut mathem Nouvelle serle, tome 21 (35), 1977, pp. 207-211.

L. О. ЦЕСИЗИВИТЬ

ՏԵՐՆԱՐ ԶՈՒԳՈՐԴԱԿԱՆ ԳԵՐՆՈՒՅՆՈՒԹՅՈՒՆՆԵՐ ՅԱԿԱՂԱՐՁԵԼԻ ՅԱՆՐԱՅԱՇԻՎՆԵՐՈՒՄ

Ամփոփում

Յոդվածը նվիրված է տերնար զուգորդական գերնույնություննել սակարգմանը հակադարձելի հանրահաշիվներում։ Այս գերնույնությու համարժեք են հետևյալ գերնույնություններից որևէ մեկին՝

$$X[Y(x,y,z),u,v] = X[x,Y(y,z,u),v] = X[x,y,Y(z,u,v)]$$

 $X[X(x,y,z),u,v] = X[x,X(y,z,u),v] = Y[x,y,Y(z,u,v)]$:

L. R. ABRAMIAN

TERNAR ASSOCIATIVE HIPERIDENTITIES IN THE CONVERSABLE ALGEBRAS.

Summary

The work is devoted to classification of ternary associative hipe tities in the conversable algebras. That hiperidentities are equivalent to the following hiperidentities

$$X[Y(x,y,z),u,v] = X[x,Y(y,z,u),v] = X[x,y,Y(z,u,v)]$$

 $X[X(x,y,z),u,v] = X[x,X(y,z,u),v] = Y[x,y,Y(z,u,v)].$