ISSN 0002-306X. Proc. of the RA NAS and NPUA Ser. of tech. sc. 2023. V. LXXVI, N3

UDC 621.382 MICROELECTRONICS
DOI: 10.53297/0002306X-2023.v76.3-343

M.T. GRIGORYAN

INVESTIGATING THE PERFORMANCE INDICES OF YOLO MODELS
IMPLEMENTED ON A DPU: A COMPARATIVE ANALYSIS

A comprehensive analysis of the performance indices achieved by implementing
various “You Only Look Once” dataset (YOLO) models on a dedicated Deep Learning
Processing Unit (DPU). YOLO models are renowned for their real-time object detection
capabilities, making them a good choice for a range of applications including autonomous
vehicles, surveillance systems, and robotics. In this study, the YOLO models are deployed
onto a specialized hardware accelerator, specifically a DPU, to assess their inference speed,
accuracy, and power efficiency. By conducting an in-depth comparative evaluation of
multiple YOLO variants, including YOLOv3, YOLOv4, YOLOvS, YOLOV6 insights into
how each model interacts with the DPU architecture are revealed. The experiments involve
benchmarking these models across diverse datasets and varying hardware configurations.
The results not only highlight the advantages and limitations of employing DPUs for
YOLO-based applications but also help in choosing the most suitable model-DPU
combination based on specific performance requirements. This study contributes to the
optimization of real-time object detection systems and assists practitioners in making
informed decisions regarding the model and hardware selection.

Keywords: FPGA, DPU, object detectio, YOLO.

Introduction. In recent years, deep learning models have made remarkable
advancements in computer vision tasks, particularly in real-time object detection.
The YOLO architecture's ability to simultaneously predict object classes and
bounding box coordinates in a single pass allows implementation of applications
such as autonomous driving, surveillance, and interactive robotics.

As the demand for real-time processing in various domains continues to
grow, the importance of optimizing the performance of YOLO models becomes
paramount. Hardware acceleration has emerged to meet these demands, with DPUs
offering dedicated resources for efficient neural network inference. DPUs are
designed to accelerate the execution of deep learning workloads, reducing latency,
and increasing throughput, making them an attractive option for deploying YOLO
models in resource-constrained environments.

By conducting thorough experiments involving these models and varying
DPU configurations, the work shows how the synergy between YOLO architectures

343

such as YOLOv3 [1], YOLOv4 [2], YOLOV5 [3], YOLOv6 [4] and DPUs influences overall
system performance. As the fields of computer vision and deep learning converge,
this study contributes to the ongoing efforts in optimizing real-time object detection
systems, ultimately pushing the boundaries of what is achievable in terms of speed,
accuracy, and efficiency.

Background. Real-time object detection requires low-latency processing to
keep up with the high frame rates of video streams or live camera feeds. Achieving
real-time performance is challenging due to the need for fast and accurate object
localization and classification, often within tight time constraints. Efficient hardware
architectures and algorithm optimizations are crucial to meet the demands of real-
time applications.

Several research articles have explored these challenges and proposed solutions
to enhance the object detection performance. For instance, “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks” by Ren, et al [5]
introduces the Faster R-CNN architecture that combines region proposal networks
and CNNs for accurate and efficient object detection. “SSD: Single Shot MultiBox
Detector” by Liu, et al [6] presents a single-shot detection method that achieves
real-time performance by using multi-scale feature maps. “YOLO: Real-Time
Object Detection” by Redmon, et al [7] introduces the YOLO framework, which
achieves real-time object detection by dividing the image into a grid and predicting
the bounding boxes and the class probabilities directly.

In the following sections, we will discuss the proposed design and FPGA
implementation, aimed at addressing these challenges and provide an efficient
hardware acceleration solution for object detection.

Approach. Dataset training and evaluation is first done on the GPU device.
Then the float model is preprocessed and quantized by Xilinx Vitis Al tool.
Quantization is a technique used to reduce the memory footprint and computational
requirements of CNNs by presenting and performing computations with lower
precision data types. In a standard CNN, weights and activations are typically
presented as 32-bit floating-point numbers (FP32), which consume significant
memory and require higher computational resources. Quantization aims to replace
these higher precision representations with lower precision data types, such as
fixed-point or integer values, which have fewer bits.

To capture activation statistics and improve the accuracy of quantized
models, the Vitis Al quantizer needs to run several iterations of inference to
calibrate the activations. A calibration image dataset input is therefore required.
Generally, the quantizer works well with 100-1000 calibration images. This is
because there is no need for back propagation, the un-labeled dataset is sufficient.

344

After calibration, the quantized model is transformed into a DPU deployable model
which follows the data format of a DPU. This model can then be compiled by the
Vitis Al compiler and deployed to the DPU.

The overall flow is illustrated in Fig.1.

GPU FPGA

Training
Dataset

Training the VO model Result evaluation

Test
Dataset
Float model freeze &

aluati Model inference
evaluation

Validation
Dataset
DPU Deployment

Calibration

Float Model

Dataset
Preprocess

Quantize Weight &
Vitis Al Calibrate Activation

Fig.1. The DPU deployment flow

Generating DPU Model

100
L

Results. This section presents the results of our experiments on testing
YOLOvV3, YOLOv4, YOLOvVS, and YOLOv6 object detection models on the
ZCU104 FPGA platform. The evaluation is conducted in terms of accuracy, frames
per second (FPS), and power consumption.

The accuracy of the object detection models was assessed by using standard
benchmark datasets, including COCO. The models were evaluated on a range of
object classes and sizes to measure their ability to detect objects accurately. Object
detection models are typically evaluated and checked for their performance using
various metrics and methods. One of the common ways to check is the mAP. It is
calculated using the following formula (1):

mAP = %Z?’zlAPi, (1)

where N is the number of the classes, AP; the average precision of the class i.
Average precision is calculated based on formula (2):

AP = Y¥=""1[Recalls(k) — Recalls(k + 1)] * Precisions (k). 2)

Precision and recall are described in formulas (3) and (4).

345

The precision is calculated as the ratio between the number of positive samples
correctly classified to the total number of samples classified as positive. The
formula for the precision is as follows:

Truepositive

Precision = 3)

Truepositivet TrUenegative

The recall is calculated as the ratio between the number of Positive samples
correctly classified as positive to the total number of positive samples:

L. Trueypsiti
Precision = postt e

“)

Truepoesitivet FalSenegative

Table 1 shows the evaluation of several objects. The metrics used for

evaluation include the mean average precision (mAP).

Table 1
The object detection mean accuracy
yolov3 yolov4 yolov5 yolov6
Mean Accuracy 0.755967731 | 0.766655457 | 0.719760493 | 0.768194773
Person 0.917891229 | 0.896341966 | 0.818452187 | 0.878627467
Car 0.752605661 | 0.77842973 0.713794419 | 0.745153376
Bicycle 0.774284912 | 0.77842973 0.713794419 | 0.745153376
Dog 0.865213667 | 0.876938071 | 0.779942692 | 0.866484686
Chair 0.684339229 | 0.697351131 | 0.64940328 0.696721576

Table 1 presents the accuracy results for YOLOv3, YOLOv4, YOLOVS, and
YOLOV6 on the COCO dataset. The mAP values indicate the overall detection
performance of each model.

The real-time processing capability of the FPGA-based models is crucial for
applications such as autonomous vehicles and surveillance systems. The FPS rate is
achieved for each model during the inference on the ZCU104 FPGA. It is
calculated based on the number of processed images divided by the process time in
seconds. The results are shown in Table 2.

Table 2
The frame per second rate results
yolov3 yolov4 yolov5 yolov6
FPS 28.9241 21.6409 18.972 25.668

These results highlight the models' varying computational demands and their
ability to process the frames at high speeds.
Efficiency in power consumption is a key factor in embedded systems,

particularly in resource-constrained environments. The power consumption of the
346

FPGA-based object detection models was measured using power monitoring tools.
The DPU architecture was synthesized and implemented on the ZCU104 FPGA
using the Xilinx Vivado tool. The synthesized and implemented designs are shown
in Fig.2 and Fig.3.

- MAK PO LPD | L4 8
b eers o = 8 K0 CX
D - — g 0 RETR
o |(H———

UltraSCALE* | S— e il ——_—

WIRRO) WAL A0 —

Fig. 3. Implemented DPU design

347

The resource utilization for the DPU architecture implementation on the
ZCU104 board is as follows: LUT —28%, FF — 24%, BRAM — 83%, DSP — 34%.

Table 3 provides an overview of the power consumption for YOLOV3,
YOLOv4, YOLOVS, and YOLOv6 on the ZCU104 FPGA. The power consumption
was measured using the Xilinx Power Estimator (UG440) [8].

Table 3

Power consumption results (W)

yolov3 yolov4 yolov5 yolov6
Power 13.812 15.282 14.625 13.326

Conclusion. In this study, a comprehensive analysis of the YOLO object
recognition models is conducted, focusing on their potential benefits when
implemented on Field-Programmable Gate Arrays (FPGAs). The performance in
terms of real-time processing, latency reduction, energy efficiency, customizability,
and resource utilization were evaluated for each model.

The results demonstrate several notable advantages of implementing YOLO
models on FPGAs. Firstly, FPGA acceleration allowed to achieve real-time
processing capabilities with a minimum of 19 fps for yolov5 and 29 fps for yolov3.
The mean accuracy of the YOLO models consistently shows promising results,
with yolov6 showing an average mean accuracy of approximately 0.7682.

Another benefit is low power consumption of FPGA-based YOLO
implementations, with a worst case of 15.282w for yolov4 model. This factor
makes them particularly attractive for resource-constrained environments and
battery-powered devices, aligning well with the growing demand for energy-efficient
computing.

REFERENCES

1. Joseph Redmon, Ali Farhadi. YOLOv3: An Incremental Improvement. — ArXiv,
2018.

2. Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao. YOLOv4: Optimal
Speed and Accuracy of Object Detection. - ArXiv, 2020.

3. Glenn Jocher. Ultralytics/yolov5. - Zenodo, 2020.

4. YOLOvV6: A Single-Stage Object Detection Framework for Industrial Applications/
Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan
Ke, Qingyuan Li, Meng Cheng, Weiqiang Nie, Yiduo Li, Bo Zhang, Yufei Liang,
Linyuan Zhou, Xiaoming Xu, Xiangxiang Chu, Xiaoming Wei, Xiaolin Wei. —
ArXiv, 2022.

348

5. Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. — ArXiv, 2015.

6. SSD: Single Shot MultiBox Detector /Wei Liu, Dragomir Anguelov, Dumitru
Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg.—
ArXiv, 2015.

7. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi. You Only Look
Once: Unified, Real-Time Object Detection. — ArXiv, 2015.

8. https://docs.xilinx.com/r/en-US/ug440-xilinx-power-estimator

National Polytechnic University of Armenia. The material is received 20.10.2023.

U.S. arrenrsuu

DPU-b 40U PrUYULUSYUOC YOLO UNMELUEE UTIWUSULLh
2UONRULErP NPUNRULUURCNRU. ZUUGUUSUYUL 46 T.NRONRESNRL

Ukphuwyugyt) E junwupnqujuinipjui gniguithputph hwdwwwpthwl Jhpnidnipe-
i, npp dknp E phipgt) «You Only Look Once» nyjuutinh puquyp (YOLO) wnwppkp Unnliy-
ubph thpypuudp’ oquiugnpstyny hwdwygunuuprut unp nuumguut dywldwh wwpp (DPU):
YOLO unpkjutipp hwynh ki hpkug ppujut dudwbwuynud opjkljnttpnh hwjnbwpbpdwt
htwpwynpnipiniutpny, husp tpubg nupdund £ jwy puwnpnipnit dh owpp dpwugpkph
nhwypnud, tkpunjuy htiptwdup dkpbuwbbpp, huljnnnipyut hwdwlwupgbpp b onpnwnwoh-
umipinitp: Unyb niuntduwuhpnipjut ke YOLO dnphjubpp mbnunpynud Gu dwutiwmgh-
wwglws uwppuihl wpuqugnigsh, dwuludnpuybu’ DPU-h Ypuw, npp junupdmd k ppu
wpluwwnwiiph wpwgnipniip, dogpumpiniup b Eubpghugh vyundwt wpgniuEnmpniip
guwhwwnbinmt hwdwp: Yuwnwpbing YOLO dnpkh puquuphy wwuppkpuwlutph hwdbdw-
nwlut qghwhunnd’ gnyg upynud, ph hsybu b mpupwinip dngl) infewgynid DPU
Supunupuybnnipjut htwn: Unpbjubpp tkpuend Ea YOLOvV3, YOLOv4, YOLOVS, YOLOV6:
®npdtpp tkpunnud i wyu dnpbjubph swthnpnohsutiph ntunidbwuhpnudp tmwppbp nyuyg-
utiph hwjwpwéniubpnid b wwppkp vwppuyhtt juquudbtpnud: Upyniuputpp ny dhuyh
nungénid Eu YOLO ungpkjutiph hhupny twhiwmgstph DPU-ukph ypw Yhpundwt wnwybjni-
pLutkpt n vwhdwbwwlnubpp, wy twb tywunmd bo phnpbn weub] hwpdup
unnk]-DPU hwdwlgnipiniup, mfju] wwhweubpp hwoyh wntbnyg: Niunidbwuppnipniup
tywunmy E hpujut dadwbwulnmd opkljnutkph huyntwpbpdwt hwdwlwpgbph jwjuny-
Uwbp b ogimu twiugsnnibphtt Unpbjh b vwppunnpiwb pinpmpput phuypmu’ pupa-
nugubny nkntjugdusdnipniup npnonudubp Juyugbint hwpgnid:

Unwhgpuyhlr punkp. FPGA, DPU, opjkljnutph huyjintwpkpnid, YOLO:

349

M.T. 'PUT'OPSAH

HCCJIEJJOBAHUE IMTOKA3ATEJIEN ITIPOU3BOJIUTEJIBLHOCTH
MO/IEJIEHA YOLO, PEAJIN3OBAHHBIX HA DPU: CPABHUTEJIbHBIN
AHAJIN3

[pencraBneH BCECTOPOHHMWIT aHANM3 MOKa3aTeNei MPOM3BOJUTENBHOCTU PAa3INYHBIX
MOJIeNieid, CO3IaHHBIX Ha OCHOBe Habopa AaHHbIX “You Only Look Once” (YOLO) u pea-
JU30BaHHBIX Ha mporeccope rirydokoro ooydenust (DPU). Moaemn YOLO n3BecTHBI CBOUMH
BO3MOKHOCTSIMH OOHApy>KeHHUsI OOBEKTOB B PEalbHOM BPEMEHH, UTO MO3BOJISAET MX MCIONB30-
BAaTh JUIA TIEJIOTO Ps/Ia TPUIIOKEHIH, BKIIFOYas aBTOHOMHBIE TPAaHCIIOPTHBIC CPEICTBA, CHCTEMBI
HaOMOAeHNS U poOOTOTeXHUKY. B necnenoBanun moxemn YOLO pa3BepThIBalOTCS Ha CIie-
[UATM3UPOBAHHOM aIllIapaTHOM YCKopHTele, B yactTHocTd DPU, 1iist OlleHKH CKOPOCTH, TOY-
HOCTH U SHEProdPPeKTHBHOCTU WX padoThl. ITyTeM mpoBeleHUs CpaBHUTEIHHON OLICHKU
Heckobkux BapuantoB YOLO, Bkmouass YOLOv3, YOLOv4, YOLOVS, YOLOV6, nokasaHo,
KaK Kakjasi MOJIelb B3aUMOJEHUCTBYET ¢ apxuTekTypoil DPU. DkciepuMeHThl BKIIOYAIOT
CpaBHEHHUE STHX MOJeNell C pa3MuHbIMH HaOOpaMu AaHHBIX U Pa3IMYHBIMH KOHQHIY-
panusaMu o0opynoBaHus. Pe3ynbTaTsl He TOJIBKO MOAYEPKUBAIOT IPEUMYIIECTBA U OTPaHH-
yeHus1 ucrnonbzoBanust DPU st pumoskennit Ha ocHoBe YOLO, HO Tarxke TIOMOTar0T BBIOpATh
Haubostee moaxoaAmyo komOnHanuo Morenb-DPU Ha 0CHOBE KOHKPETHBIX TpeOOBaHUI K
TIPOU3BOAUTENHHOCTH. VccaemoBanre CiocoOCTBYET ONTUMU3AINN CUCTEM OOHApYKEHHUS
00BEKTOB B PealbHOM BPEMEHH W ITOMOTAET CHeNUaTCcTaM-IIPaKTHKaM MIPUHAMATh 0O0CHO-
BaHHBIC PEIICHUS OTHOCUTEIHHO BBIOOPA MOJICITH 1 000PYIOBaHUS.

Knroueswie cnosa: FPGA, DPU, oGHapyxeHue oobexToB, YOLO.

350

