УДК 546.33.621.162.46

Химия

Р. Х. АДАМЯН, М. Г. АРУТЮНЯН, С. К. ГРИГОРЯН, Г. Г. БАБАЯН¹, В. С. МИРЗОЯН²

НОВЫЕ ТВЕРДЫЕ ФАЗЫ В СИСТЕМЕ Na₃AlF₆-KMgF₃

Методом термографического, рентгенофазового, кристаллооптического анализов и измерением удельной электропроводности расплавов, нами впервые была исследована бинарная система Na₃AlF₆-KMgF₁, являющаяся частью трехкомпонентной системы Na₃AlF₆-KMgF₂-KCaF₂. Показано, что в бинарной системе Na₃AlF₆ - KMgF₃ образуется конгруентно плавящееся соединение Na₃AlF₆ - KMgF₂, которое между исходными компонентами образует твердые растворы.

Несмотря на большое количество работ, посвященных изучению фторидных материалов, их свойства еще недостаточно хорошо исследованы, а возможности технического использования далско не исчерпаны. Особенно важно исследование многокомпонентных систем, т.к. получение новых материалов с заранее заданными свойствами является основной проблемой химии неорганических веществ.

В связи с этим, большой научный и практический интерес представляет изучение природы взаимодействия между Na₃AlF₆ и KMgF₃, которое дает теоретические предпосылки для выявления новых материалов, обладающих специфическими свойствами.

Целью настоящей работы является систематическое исследование системы Na₃AlF₆-KMgF₃ методами физико-химического анализа с построением диаграмм плавкости.

Впервые нами с применением термографического, ренттенофазового, кристаллооптического анализов и определением удельной электропроводности была исследована бинарная система Na₃AlF₆-KMgF₃.

ДТА образцов проводился на пирометре Н. С. Курнакова "ФРУ-64" с использованием платино-платинородиевой термопары, точность определения температуры составляла $\pm 5^{\circ}$ С, навеска составляла $2 \pm 0,01$ г.

Рентгеновские съемки исследованных образцов проводились в камере монохроматоре Гинье де Вольфа. В качестве внутренного стандарта использовался германий полупроводниковой чистоты. Все полученные рентгенограммы промерялись на юмпораторе "ИЗА-2". Рентгеноструктурные измерения проводились проф. Труновым В. К. (г. Москва

¹ ЕГУ ² АрГУ "ИРЕА").

Кристаллооптические исследования проводились иммерсионным методом на оптическом микроскопе "МИН-8".

Для определения электропроводности расплавов использовалась платиновая ячейка с платиновыми электродами. Измерения проводились с помощью моста переменного тока P-58, на частоте 10000 герц.

Синтез Na₃AlF₆ и KMgF₃ осуществлялся плавлением простых фторидов марки "хч" в платиновых тиглях при температурах 20-30^OC, превышающих температуры плавления синтезируемого соединения (1,2).

Из за летучести простых фторидов их количество в исходной шихте несколько отличались от стехиометрически необходимых. Количество простых фторидов необходимые для синтеза каждого гексафторида, были определены предварительно опытным путем. Ввиду чрезвычайной гигроскопичности простых фторидов, а также синтезированных двойных фторидов, все операции осуществлялись в сухой изолированной камере.

Диаграмма плавкости бинарной системы Na₃AlF₆-KMgF₃ была построена на основе исследования 22 образцов содержащих от 100 % Na₃AlF₆ до 100 % KMgF₃. В некоторых случаях запись павторялась для подтверждения воспроизводимости полученных данных. На основании термограммы были определены температуры фазовых превращений в системе Na₃AlF₆-KMgF₆. Для подтверждения данных термического анализа были проведены рентгенофазовые и кристаллооптические исследования твердых фаз. Для этой цели образцы приготовились методом твердофазного синтеза. В агатовой ступке хорошо растертые образцы находящиеся в боксе высипались в платиновые тигли и выдерживались в сосудах из оптического кварца при 650°С в вакууме 10³ мм. рт. ст. в течение 10-15 часов, затем закаливались в четыреххлористом углеродс. На основании этих анализов была построена диаграмма плавкости бинарной системы Na₃AlF₆-KMgF₁ (рис.1). Вид ликвидуса был подтвержден измерением удсльной электропроводности расплавов. Температуры и составы отвечающие нонвариантным точкам, приведены в таблице 1, а в таблице 2 приведены условные обозначения и составы фаз по данным рентгенофазового и кристаллооптического анализов.

Табл. І

мол%	С	тип превращения	фазовые превращения
100	1000	конгруснтное	ж≓Na _t AlF₀
		плавление	
	563	полиморфный переход	α_2 -Na ₃ AJF ₆ - α_2 -Na ₃ AJF ₆
77,5	755	эвтектика	ж ← Na ₃ AlF ₆ (r μ)+Na ₃ AlF ₆ . KMgF ₃ (r μ)
	550	полиморфный переход	α_2 -Na, AlF ₆ (2p)- α_2 -Na, AlF ₆ (2p)
50	950	конгруснтное плавление	ж ← Na,AlF ₆ . KMgF,
30	745	эвтектика	$\mathfrak{m} \rightleftharpoons \mathrm{Na}_{3}\mathrm{AlF}_{6}$, $\mathrm{KMgF}_{\mathfrak{g}(\mathfrak{r},\mathfrak{p})} + \mathrm{KMgF}_{\mathfrak{g}(\mathfrak{r},\mathfrak{p})}$
00	1070	конгруентное плавление	ж≓ KMgF ₁ (τ.p.)

Нонвариантные равновесия в системе Na₃AlF₆-KMgF₃

Tabs.

Состав и условные обозначения твердых фаз в системе Na₃AlF₆-KMgF₃

мол%	фазы (условные обозначения приведены в скобках)	
100-90	$Na_3AIF_{6^{(1,p)}}$ -(α_2)	
100-90	$Na_3AlF_{6^{11}P}(\alpha_2)$	
90-67,5	Na ₃ AlF _{6⁽¹⁾} +Na ₃ AlF ₆ , KMgF _{3⁽¹⁾} -(α_2 + β_2)	
90-67,5	Na ₃ AlF ₆ (r_p) + Na ₃ AlF ₆ . KMgF ₃ (r_p) - (α'_2 + β_2)	
67,5-47	Na ₃ AlF ₆ . KMgF _{3(*2)} -(β_2)	
47-14	Na ₃ AlF ₆ . KMgF _{3^(1p)} + KMgF _{3^{(1p)-}} ($\beta_2 + \gamma_2$)	
14-0	$KMgF_{J^{(r,p)}}(\gamma_2)$	

На диаграмме плавкости системы Na₃AlF₆-KMgF₃ имеется 7 поле кристаллизации твердых растворов на исходных компонентах и вновь об разовавщиеся соединения.

Методом рентгенофазового анализа исследованы исходные компоненты и вновобразовавщиеся соединения. Указанное конгруентно плавя щееся соединение кристаллизуется в кубической сингонии с параметро элементарной ячейки а = 8,046 ± 0,009 А^О (табл. 3).

Табл

Результаты	индицирования	линий	рентгенограммы	образца
$Na_3AIF_6:KMgF_3=1:1$				

I	d ₉ , A ⁰	hKl	$d_{\rm Bhive,s} A^0$
10	4,6454	111	4,65
5	4,0286	200	4,02

32

1	2	3	4
100	2,84412	220	2,845
40	2,3225	222	2,32
50	2,0124	420	2,011
5	1,6379	422	1,642
5	1,4204	440	1,422

Линии рентгенограммы используемые нами в системе $KMgF_3$ индицируются в кубической сингонии с параметром $a=3,983A^{O}$ (3), а Na_3AlF_6 моноклинной сингонии $a=7,769A^{O}$, $b=5,593A^{O}$ и $c=5,404A^{O}$ (4).

Кафедра неорганической химии

ЛИТЕРАТУРА

Дергунов Е. П., ДАН СССР, 60, 7, 1185, 1948.
Де Врис Роу, Jamer. chem. Soc. 1953, 75, 10, 2479-2484.
ASTM card 3-0627
ASTM card 18-1033

Ռ.Խ. ԱԴԱՄՅԱՆ, Մ. Գ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Ս. Կ. ԳՐԻԳՈՐՅԱՆ, Հ. Գ. ԲԱԲԱՅՄՆ, Վ. Ս. ՍԻՐՋՈՅԱՆ

Na₃AlF₆ - KMgF₃ ՀԱՄԱԿԱՐԳՈՒՄ ՆՈՐ ՊԻՆԴ ՖԱԶԵՐԻ ՈՒՄՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ

Ամփոփում

Թերմոգրաֆիական, ռենտգենոֆազ, բյուրեղաօպտիկ և հալույթների տեսակարար էլեկտրահաորդականության որոշման եղանակներով ուսումնասիրվել է Na₃AlF₆-KMgF₃ երկկոմպոնենտ համակարգը։ Յույց է տրված, որ նշված համակարգում առաջանում է կոնգրուենտ հալվող Na₃AlF₆-KMgF₃ միացությունը, որը ելային կոմպոնենտների հետ առաջացնում է պինդ լուծույթներ երկու էվտեկտիկայով։

R. KH. ADAMYAN, M. G. HAROUTUNYAN, S. K. GRIGORIAN, H. G. BABAYAN, V. S. MIRZOYAN

NEM SOLID PHASES IN Na₃AIF₆ - KMgF₃ SYSTEM

Summary

At the first time Na3ALF6-KMgF3 binary system has been studied which is a part of Na3ALF6-KMgF3-KCaF3 ternary system, using methods of thermogravimetric, roentgeno-phase, and crystal-optic analysis and measuring specific electroconductivity of melts.

It has been shown that Na3ALF6.KMgF3 congruent melting compound is forming in this system, which form solid solutions with initial components.