УДК 546.33.621.162.32.41

Р. Х. АДАМЯН, М. Г. АРУТЮНЯН, С. К. ГРИГОРЯН, Г. Г. БАБАЯН', С. З. САГЯН²

ДИАГРАММА ПЛАВКОСТИ СИСТЕМЫ Na₃AlF₆ - KCaF₃

Методами термографического, рентгенофазового, кристаллооптического анализов и измерснием удельной электропроводности расплавов нами впервые была исследована бинарная система Na₃AlF₆- KCaF₃, являющаяся частью трехкомпонентной системы Na₃AlF₆- KMgF₃ к KCaF₃. Показано, что в данной системе образуются два конгруентно плавящихся соединения состава Na₃AlF₆. KCaF₃ и Na₃AlF₆. KCaF₃.

Целью данной работы является систематическое исследование системы Na₃AlF₆ - КCaF₃ методами физико-химического анализа с построением диаграммы плавкости.

Нами сперва были синтезированы исходные компоненты.

Для синтеза двойных фторидов, служащих исходными компонентами исследуемых нами систем (Na₃AlF₆ и KCaF₃) были использованы фториды щелочных, щелочноземельных металлов и фторид алюминия марки "хч". Ввиду чрезвычайной гигроскопичности простых фторидов, а также синтезированных двойных фторидов, все операции с ними осуществлялись в сухой изолированной камере.

Синтез Na₃AlF₆ и KCaF₃ осуществлялся плавлением фторидов в платиновых тиглях при температурах на 20-30^oC превышающих температуры плавления этих соединений. (1,2).

Индивидуальность синтезированных соединений было доказано методами физико-химического анализа.

Бинарная система Na₃AlF₆ - КСаF₃ была изучена нами впервые.

Диаграмма плавкости двойной системы Na₃AlF₆ - KCaF₃ была построена на основе исследования 30 образцов содержащих от 100 % Na₃AlF₆ до 100 % KCaF₃. В некоторых случаях запись повторяли для подтверждения воспроизводимости полученных данных. На основании термограмм были определены температуры фазовых превращений в системе Na₃AlF₆ -KCaF₃. Для подтверждения данных термического анализа были проведены рентгенофазовые и кристаллооптические исследования твердых фаз. Для этой цели образцы приготовились методом твердофазного синтеза. Хорошо растертые в агатовой ступке образцы находящиеся в боксе выси-

ЕГУ

² АрГУ

Химия

10

пались в платиновые тигли и выдерживались в сосудах из оптического кварца при 650⁰C, в вакууме 10⁻³ мм. рт. ст. в течение 10-15 часов, затем закаливались в четыреххлористом углероде. На основании этих анализов была построена диаграмма плавкости бинарной системы Na₃AlF₆ - KCaF₃ (рис.1).

Данные ликвидуса были подтверждены измерением удельной электропроводности расплавов.

Температуры и составы, отвечающие нонвариантным точкам, приведены в табл. 1, а в табл. 2 приведены условные обозначения и составы фаз по данным рентгенофазового и кристаллооптического анализов.

Табл. 1

я Фазовые превращения	Тип превращени	t ^o C	Na₃AlF ₆ мол%	
ж≃α₁-Na,AJF	конгруентное плавление	1000	100	
$\alpha_1 = Na_3AlF_6 \neq \alpha_1 \cdot Na_3AlF_6$	полиморфный переход	563		
$\mathbf{m} = \alpha_1 - \mathbf{N} \mathbf{a}_3 \mathbf{A} \mathbf{I} \mathbf{F}_{6} (\mathbf{n}, \mathbf{p}_2) + \mathbf{N} \mathbf{a}_3 \mathbf{A} \mathbf{I} \mathbf{F}_{6} \cdot \mathbf{K} \mathbf{C} \mathbf{a} \mathbf{F}_{3} (\mathbf{n}, \mathbf{p}_2)$	эвтектика полиморфный	850 660	56,5	
α_1 -Na ₃ Al $F_{6^{(r,p,1)}} \rightleftharpoons \alpha_1$ -Na ₃ Al $F_{6^{(r,p)}}$	переход конгруентное	870	50	
ж≓Na₃AlF₀ - KCaF	плавление			
د≓ Na,AlF₀ · KCaFı(۲۹)+2Na,AlF₀ · 3KCaFı(۲۹)	эвтектика	860	45	
	конгтруентное	880	40 880	
ж≓2Na,AlF₀ 3KCaF	плавление			
x ≈ 2Na ₃ AlF ₆ · 3KCaF ₆ (TP)+3KCaF ₃ (TP)	эвтектика	870	35	
	конгруентное	1068	0	
KCaF	плавление			

Нонвариантные равновесия с системе Na₂AlF₄-KCaF₂

27

Na ₃ AlF ₆ мол %	фазы (условные обозначения приведены в скобках)
100-85	Na ₃ AlF ₆ ($\tau_{p,1}$ - (α_1)
100-85	$Na_3AlF_{6^{(r,p,r)}} - \alpha_1$
85-53	$Na_3AlF_{6^{(T,p_1)}} + Na_3AlF_{6} \cdot KCaF_{3^{(T,p_1)}} - (\alpha_1' + \beta_1)$
53-47	$Na_{1}A_{1}F_{6} \cdot KCaF_{3^{(T,p,l)}} - (\beta_{1})$
47-42	$Na_{3}AlF_{6} + KCaF_{3}(r_{P}) + 2Na_{3}AlF_{6} + KCaF_{3}, KCaF + KCaF_{3}(r_{P}) - (\beta_{1} + \gamma_{1})$
42-38	$2Na_3AlF_6 + 3Na_3AlF_{6^{(\tau,p)}} - (\gamma_1)$
38-14	$2\mathbf{N}a_{3}\mathbf{A}\mathbf{I}\mathbf{F}_{6}\cdot\mathbf{3N}\mathbf{a}_{3}\mathbf{A}\mathbf{I}\mathbf{F}_{6^{(\tau,p,1)}}+\mathbf{K}\mathbf{C}\mathbf{a}\mathbf{F}_{3^{(\tau,p,1)}}-(\gamma_{1}+\Delta)$
14-0	$KCaF_{3^{(r,p,r)}}$ - (Δ)

Состав и условные обозначения твердых фаз в системе $Na_{3}AlF_{6}$ - $KCaF_{3}$

На диаграмме плавкости системы Na₃AlF₆-КСаF₆ видны II поле кристаллизации твердых растворов, которые образованы на основе исходных компонентов и вновь образовавщихся соединений.

Методом рентгенофазового анализа исследованы исходные компоненты, а также образцы этой системы содержащие Na₃AlF₆ и KCaF₃ в отношении 1:1, и 2:3, то есть образцы вновь образовавших соединений.

Указанные конгруэнтно плавящиеся соединения кристаллизуются в кубической сингонии с параметром элементарной ячейки 8,085±0,004А⁰ и 8,109±0,008 А⁰ соответственно (табл. 3,4).

Табл.3

I	dэ, A ^o	hKl	d _{Bыс} A ^o
20	4,6818	111	4,67
5	4,1006	200	4,05
100	2,8648	220	2,862
70	2,3388	222	2,337
80	2,0205	400	2,024
5	1,8582	331	1,857
20	1,6528	422	1,6524
5	1,5581	333	1,5579
5	1,4300	440	1,4310
10	1,2798	620	1,2799

Результаты индицирования линий рентгенограммы образца 1:1

Табл. 4

Na ₃ AlF ₆ : KCaF ₃ =2:3						
	1	də.A ⁰	hKl	d _{Выс} · АО		
	10	4,6942	111	4,68		
	100	3,0782	126	3,075		
	20	2,2396	222	2,341		
	40	2,0280	400	2,027		
	10	1,6554	422	1,655		
	5	1,4334	440	1,4335		

Рузультаты индицирования линий рентгенограммы образца Na.AIE.: КСаЕ.=2:3

Линии рентгенограммы используемые нами в системе КСаF₃ индицируются в орторомбической сингонии с параметром $a=6,209 \text{ A}^{\circ}$, $b=8,757 \text{ A}^{\circ}$, $c=6,164 \text{ A}^{\circ}$, (3) a Na₃AlF₆ моноклинной сингонии $a=7,769 \text{ A}^{\circ}$, $b=5,593 \text{ A}^{\circ}$, $c=5,404 \text{ A}^{\circ}$ (4).

Кафедра неорганической химии

ЛИТЕРАТУРА

1. Дергунов Е. П. ДАН СССР 60, 7, 1185, 1948.

2. Краузе И. Э. ДАН ССР, 31, 91, 1942.

3. ASTM-Card-21-1341

4. ASTM-Card-3-0627

Ռ. Խ. ԱԴԱՍՅԱՆ, Մ. Գ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Ս. Կ. ԳՐԻԳՈՐՅԱՆ, Գ. Գ. ԲԱԲԱՑԱՆ, Ս. Ջ. ՍԱՂՅԱՆ

Na3AlF6-KCaF3 ՀԱՄԱԿԱՐԳԻ ՀԱԼՈՒՅԹԱՅԻՆ ԴԻԱԳՐԱՄԱՆ

Ամփոփում

Թերմոգրաֆիական, ռենտգենո.ֆազ, բյուրեղաօպտիկ և հալույթների տեսակարար էլեկտրահաղորդականության որոշման եղանակներով ուսումնասիրվել է Na₃AlF₆ -KCaF₃ երկկոմպոնենտ համակարգի հալույթային դիագրաման։ Յույց է տրված, որ նշված համակարգում առաջանում են կոնգրուենտ հալվող երկու նոր միացություններ Na₃AlF₆.KCaF₃ և 2Na₃AlF₆. 3KCaF₃։ Առաջացած միացությունները բյուրեղանում են խորանարդային սինգոնիայով։

R. KH. ADAMYAN, M. G. HAROUTUNYAN, S. K. GRIGORIAN, H. G. BABAYAN, S. Z. SAGYAN

MELTING DIAGRAM OF Na3AlF6-KCaF3 SYSTEM

Summary

At the first time Na3ALF6-KCaF3 binary system has been studied which is a part of Na3ALF6-KMgF3-KCaF3 temary system, using methods of thermogravimetric, roentgeno-phase, and crustal-optic analysis and measuring specific electroconductivity of melts.

It has been shown that two Na3ALF6.KCaF3 Na3ALF6-3KCaF3 congruent melting compounds are forming in this system.