Известия НАН Армении, Физика, т.58, №4, с.619–625 (2023) УДК 535.015 DOI:10.54503/0002-3035-2023-58.4-619

ИЕРАРХИЧЕСКАЯ АНТИОТРАЖАЮЩАЯ ПОВЕРХНОСТЬ КРЕМНИЕВЫХ ПОДЛОЖЕК ДЛЯ ТАНДЕМНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ

Г.Е. АЙВАЗЯН

Национальный политехнический университет Армении, Ереван, Армения

e-mail: agagarm@gmail.com

(Поступила в редакцию 27 октября 2023 г.)

Исследованы структурные и оптические свойства тандемных структур кремний/перовскит с иерархической антиотражающей поверхностью на границе раздела. Поверхность состояла из микроразмерных пирамид и наноразмерных коротких игл, образованных соответственно методами химического и реактивного ионного травления кремниевых подложек. Показано, что пленка перовскита без пор и пустот с высокой степенью конформности покрывает иерархическую поверхность. Изготовленные образцы характеризуются низким коэффициентом отражения в широком диапазоне длин волн излучения.

1. Введение

Черный кремний (b-Si) представляет собой поверхностную разновидность кристаллического кремния и состоит из массива плотноупакованных наноразмерных иголок. Этот материал обладает многими привлекательными свойствами, включая низкую отражательную способность, высокое поглощение, значительную реакционную способность и гидрофобность [1–3]. Уникальными свойствами обусловлено широкое применение b-Si в различных областях, включая КМОП интегральные схемы, фотодетекторы и газовые сенсоры [4–7]. В последнее время b-Si активно исследуется в качестве антиотражающих слоев для однопереходных [8, 9] и межслоев для тандемных [10–12] солнечных элементов.

По антиотражающим свойствам b-Si значительно превосходит стандартную поверхностную текстуру в виде микроразмерных пирамид, образованных анизотропным химическим травлением [13, 14]. В частности, в широкополосном диапазоне длин волн (300–1000 нм) наноразмерные иглы с большим аспектным отношением (> 8) обеспечивают коэффициент отражения менее 2%, а микроразмерные пирамиды более 7%. Такое антиотражающее поведение связано с разными механизмами взаимодействия света с микро- и наноразмерными поверхностями [15–17]. В случае микроразмерных пирамид, когда их высота (5–10 мкм) превышает длину волны падающих световых лучей, происходят многократные отражения от соседних пирамид, приводящие к захвату световых лучей. В случае наноразмерных игл взаимодействие происходит в субволновом диапазоне и основным механизмом становится градиентное изменение

показателя преломления по толщине слоя b-Si от оптически менее плотной среды к среде с большей плотностью. Гораздо более эффективный второй механизм приводит к значительному снижению отражательной способности подобно многослойным тонким пленкам с меняющейся эффективной диэлектрической проницаемостью [18, 19].

С другой стороны, требованию большого аспектного отношения игл слоев b-Si сопутствуют определенные недостатки, такие как плохая механическая прочность (длинные иглы, как минимум, часто ломаются), сложность конформного осаждения пленок и высокая концентрация поверхностного легирования, которые препятствуют практическому применению b-Si в солнечных элементах. Иерархические антиотражающие поверхности кремниевых подложек, состоящие из микроразмерных пирамид и наноразмерных коротких игл, сочетают в себе преимущества обеих технологий. Подход «текстура на текстуре» успешно опробован для однопереходных солнечных элементов [20–23], но еще не использовался в тандемных элементах.

В настоящей работе представлены экспериментальные результаты исследования структурных и оптических свойств тандемных структур кремний/перовскит с иерархической антиотражающей поверхностью на границе раздела.

2. Экспериментальная часть

На рис.1 схематически представлен процесс изготовления иерархической антиотражающей поверхности кремниевых подложек для тандемных солнечных элементов.

Рис.1. Схема процесса изготовления иерархической поверхности.

Использовались подложки монокристаллического кремния с ориентацией (100) и толщиной 400 мкм. Для создания пирамидальной текстуры подложки обрабатывались в растворе гидроксида калия КОН (2%) при температуре 50°С в течение 8 мин. Слой b-Si формировался на поверхности пирамидальной текстуры методом реактивного ионного травления в газовой смеси SF₆/O₂ со скоростью потока 75/40 см³/мин. Для возбуждения высокочастотной плазмы использовался генератор с частотой 13.56 МГц. Продолжительность травления составляла 10 мин. Нанесение перовскитных пленок со смешанными галогенами (CH₃NH₃PbI_{3-x}Cl_x) на иерархическую поверхность осуществлялось методом совместного вакуумного напыления. В качестве прекурсоров использовали неорганический йодид свинца (PbI₂) и органический хлорид метиламмония (CH₃NH₃Cl). Температуры испарителя для указанных прекурсоров составляли 180 и 340°С, соответственно. Отметим, что оценочное значение ширины запрещенной зоны перовскитных пленок составляло ~1.6 эВ [11].

Структурные свойства полученных образцов были исследованы с помощью сканирующего электронного микроскопа (SEM) JEOL JSM-6700F при напряжении 5 кВ. Измерение полной (одновременно диффузного и зеркального) отражательной способности поверхностей образцов проводилось на спектрофотометре UV-3101PC с интегрирующей сферой в диапазоне длин волн $\lambda = 300-1200$ нм. Структурно-фазовая диагностика перовскитных пленок проводилась на рентгеновском дифрактометре Empyrean фирмы Panalytical с возбуждающим Со K_{α} -излучением (1.54178 Å).

3. Результаты и их обсуждение

На рис.2 представлены типичные SEM микрофотографии (поперечное сечение и вид сверху) пирамидальной текстуры, слоя b-Si и иерархической поверхности кремниевых подложек.

Рис.2. SEM микрофотографии (верхный ряд – поперечное сечение, нижный ряд – вид сверху) пирамидальной текстуры (a, d), слоя b-Si (b, e) и иерархической поверхности (c, f) кремниевых подложек.

Видно, что микротекстурированная поверхность кремниевых подложек представляет собой множество хаотично расположенных пирамид с шириной основания от 1 до 6 мкм и высотой до 10 мкм (рис.2a, d). Боковые грани пирамид параллельны кристаллографическим плоскостям (111) под углом к основанию 54.7°. Формирование такого микрорельефа объясняется сильной зависимостью скорости травления Si от ориентации кристаллографических плоскостей. Самая низкая скорость травления наблюдается на плоскости (111), так как плотность упаковки атомов здесь самая высокая. Слой b-Si состоит из четко выраженных тонких иголок, имеющих достаточно четкую границу раздела с кремниевой подложкой (рис.2b, е). Иглы расположены неупорядоченно с небольшими зазорами между ними (менее 100 нм). Их средняя высота составляет 550 нм, диаметр основания находится в диапазоне от 70 до 120 нм. Следует отметить, что аспектное отношение ~5 является наиболее оптимальным для однопереходных солнечных элементов [8, 9]. Визуально на SEM микрофотографиях иерархической поверхности слой b-Si проявляется в виде тонкой светлой полоски на микропирамидах (рис.2с, f). Заметно, что слой b-Si сформирован равномерно с резкой границей раздела с микротекстурой.

На рис.3 представлены типичные SEM микрофотографии тандемных структур кремний/перовскит с иерархической поверхностью кремниевой подложки. Видно, что пленка перовскита без видимых пор и пустот с высокой степенью конформности заполняет межигольное пространство слоя b-Si. Отметим, что конформность и однородность перовскита имеют особое значение для обеспечения эффективности тандемных солнечных элементов. В противном случае между электронным и дырочным транспортными слоями в дефектных участках пленки будут образовываться короткие замыкания, что, в свою очередь, приведет к появлению токов утечки. Кроме того, однородная морфология пленки перовскита способствует увеличению количества поглощаемых фотонов и, следовательно, более эффективной генерации заряда.

Рис.3. SEM микрофотографии тандемных структур кремний/перовскит с иерархической поверхностью кремниевой подложки: (а) – вид сверху пленки перовскита; (b) – поперечное сечение структуры; (с) – поперечное сечение пленки перовскита.

Рентгеновские дифрактограммы пленок перовскита на плоской и иерархической поверхностях кремниевых подложек показаны на рис.4. Пленка перовскита на обеих поверхностях дает схожие рентгенограммы. Это означает, что антиотражающая поверхность не влияет на структурно-фазовое качество перовскита. Наблюдаемые сильные дифракционные пики при 14.12, 28.50 и 31.94° отвечают плоскостям кристалла перовскита (110), (220) и (310), соответственно, и указывают на тетрагональную кристаллическую структуру синтезированных пленок. Также отсутствуют дополнительные пики, принадлежащие прекурсорам перовскита, что свидетельствует о высоком уровне фазовой чистоты.

На рис.5 представлены спектры полного оптического отражения тандемных

Рис.4. Рентгеновская дифрактограмма перовскита на плоской и иерархической поверхностях кремниевых подложек.

структур с пирамидальной текстурой, межслоем b-Si и иерархической поверхностью кремниевых подложек.

Как видно из рис.5, для исследованных образцов со слоем b-Si и иерархической поверхностью спектры отражения количественно и качественно отличаются от спектра отражения образцов с пирамидальной текстурой. Для первых образцов коэффициент отражения значительно уменьшается во всем рассматриваемом диапазоне длин волн, причем в ближней УФ области уменьшение полного отражения намного больше. Последнее связано с эффективным поглощением света в перовските за счет относительно широкой запрещенной зоны этого материала. При увеличении длины волны в видимой области спектра наблюдается более ранний подъем коэффициента отражения.

Рис.5. Спектры отражения тандемных структур с пирамидальной текстурой (1), межслоем b-Si (2) и иерархической поверхностью (3) кремниевых подложек. На вставке схематически показаны механизмы взаимодействия света с антиотражающими поверхностями.

Важен тот факт, что иерархическая поверхность кремниевых подложек способствует существенному снижению отражения тандемных структур. В этом случае крайне низкое отражение связано с совместным действием двух механизмов взаимодействия света с поверхностью, а именно, захватом световых лучей от микроразмерных пирамид и градиентное увеличение показателя преломления по толщине слоя b-Si. Механизмы взаимодействия света ("Light trapping" и "Gradient index") с различными антиотражающими поверхностями схематически проиллюстрированы на вставке к рис. 5. Отметим также, что если в случае однопереходных солнечных элементов показатель преломления изменяется от воздуха ($n_{air} = 1$) к кремниевой подложке ($n_{Si} = 3.8$), то для тандемных структур увеличение показателя преломления начинается от сравнительно плотной оптически среды, а именно перовскита ($n_{pvk}=2.3$) [11, 17]. Именно поэтому вклад слоя b-Si на общее антиотражающее поведение иерархической поверхности на границе раздела тандемных структур заметно ниже, чем в случае однопереходных структур [20–22].

Таким образом, полученные результаты свидетельствуют, что иерархическая поверхность кремниевых подложек в тандемных структурах не влияет на структурно-фазовое качество пленки перовскита и снижает оптические потери, обусловленные отражением на границе раздела кремний/перовскит. Однако следует отметить, что двухэтапное формирование антиотражающей поверхности (химическое и реактивное ионное травления) усложняет технологический процесс. Следовательно, существует компромисс в отношении антиотражающих свойств и эффективности технологии изготовления тандемных солнечных элементов.

4. Заключение

Изготовлены тандемные кремний/перовскит структуры с иерархической антиотражающей поверхностью на границе раздела, состоящей из микроразмерных пирамид и наноразмерных коротких игл слоя b-Si. Изучены их структурные и оптические свойства. Показано, что иерархическая поверхность на кремниевых подложках не препятствует формированию качественного по структуре и фазовому составу слоя перовскита и способствует значительному снижению оптических потерь на отражение. Полученные результаты свидетельствуют о технологической возможности и перспективности применения иерархических антиотражающих поверхностей в тандемных солнечных элементах.

Исследование выполнено при финансовой поддержке Комитета по высшему образованию и науке РА в рамках научного проекта № 21AG-2B011.

ЛИТЕРАТУРА

- M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. Sprafke, J. Ziegler, M. Zilk, R. Wehrspoh. Adv. Opt. Mater., 3, 147 (2015).
- S. Jurečka, M. Králik, E. Pinčík, K. Imamuram, T. Matsumoto, H. Kobayashi. Proc. SPIE, 10976, 1097601 (2018).
- 3. Y.A. Peschenyuk, A.A. Semenov, E.Y. Gatapova. Exp. Fluids, 64, 1 (2023).
- J. Soueiti, R. Sarieddine, H. Kadiri, A. Alhussein, G. Lerondel, R. Habchi. Nanoscale, 15, 4738 (2023).
- 5. X. Liu, B. Radfar, K. Chen, O.E. Setälä, T.P. Pasanen, M. Yli-Koski, H. Savin, V. Vähänissi. IEEE Trans. Semicond. Manuf., 35, 504 (2022).
- G. Ayvazyan, L. Hakhoyan, K. Ayvazyan, A. Semchenko. Phys. Status Solidi RRL, 17, 2300058 (2023).
- 7. G. Ayvazyan, L. Hakhoyan, K. Ayvazyan, A. Aghabekyan. Phys. Status Solidi A., 220, 2200793 (2023).
- R.S. Davidsen, H. Li, A. To, X. Wang, A. Han, J. An, J. Colwell, C. Chan, A. Wenham, M.S. Schmidt, A. Boisen, O. Hansen, S. Wenham, A. Barnett. Sol. Energy Mat. Sol. Cells, 144, 740 (2016).
- 9. J.Y.-H. Chai, B.T. Wong, S. Juodkazis. Mater. Today Energy, 18, 100539 (2020).
- G.Y. Ayvazyan, D.L. Kovalenko, M.S. Lebedev, L.A. Matevosyan, A.V. Semchenko. J. Contemp. Phys. (Armenian Acad. Sci.), 57, 274 (2022).
- 11. G. Ayvazyan, L. Hakhoyan, H. Dashtoyan, L. Matevosyan. J. Contemp. Phys. (Armenian Acad. Sci.), 58, 85 (2023).
- 12. Z. Ying, Z. Yang, J. Zheng, H. Wei, L. Chen, C. Xiao, J. Sun, C. Shou, G. Qin, J. Sheng, Y. Zeng, B. Yan, X. Yang, J. Ye. Joule, 6, 2644 (2022).
- J. Chen, X. Li, R. Jia, Y. Tang, D. Zhang, C. Guo, H. Zhu, Z. Gao. Sol. Energy Mat. Sol. Cells, 254, 112250 (2023).

- P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, M. Lemiti. Sol. Energy Mater. Sol. Cells, 90, 2319 (2006).
- 15. A. Deinega, I. Valuev, B. Potapkin, Y. Lozovik. JOSA A, 28, 770 (2011).
- 16. S. Saive. Prog. Photovolt., 29, 1125 (2021).
- 17. G. Ayvazyan, F. Gasparyan, V. Gasparian. Optical Mater., 140, 113879 (2023).
- 18. H. Sayed, Z.S. Matar, M. Al-Dossari, A.F. Amin, A.H. Aly. Crystals, 12, 57 (2022).
- 19. A.A. Elsayed, Y.M. Sabry, F. Marty, T. Bourouina, D. Khalil. Optics Express, 26, 13443 (2018).
- J. Xu, C. Chen, C. Liu, J. Chen, Z. Liu, X. Yuan, H. Li. Sol. Energy Mater. Sol. Cells, 233, 111409 (2021).
- 21. R. Putraa, J-Y. Lia, C-Y. Chena. Appl. Surf. Sci., 478, 725 (2019).
- 22. J. Wang, C. Gao, X. Wang, Y. Wang, Z. Cheng, H. Liu, W. Shen. Energy Techn., 9, 2000778 (2021).
- R. Khandelwa, U. Plachetka, B. Min, C. Moormann, H. Kurz. Microel. Eng., 111, 220 (2013).

ՍԻԼԻՑԻՈՒՄԱՅԻՆ ՀԱՐԹԱԿՆԵՐԻ ՀԻԵՐԱՐԽԻԱԿԱՆ ՀԱԿԱԱՆԴՐԱԴԱՐՁՆՈՂ ՄԱԿԵՐԵՎՈՒՑԹ ՏԱՆԴԵՄԱՅԻՆ ԱՐԵՎԱՅԻՆ ԷԼԵՄԵՆՏՆԵՐԻ ՀԱՄԱՐ

Գ.Ե. ԱՅՎԱՉՅԱՆ

Հետազոտվել են սահմանագծում հիերարխիական հակաանդրադարձնող մակերևույթով սիլիցիում/պերովսկիտ տանդեմային կառուցվածքների կառուցվածքային և օպտիկական հատկությունները։ Մակերևույթը կազմված էր սիլիցիումային հարթակների համապատասխանաբար քիմիական և ռեակտիվ իոնային խածատման մեթոդներով ձևավորված միկրոչափային բուրգերից և նանոչափային կարձ ասեղիկներից։ Յույց է տրվել, որ պերովսկիտե թաղանթը առանց ծակոտիների և դատարկությունների, բարձր աստիձանի համաձևությամբ ծածկում է հիերարխիական մակերևույթը։ Պատրաստված նմուշները բնութագրվում են ձառագայթման ալիքի երկարությունների լայն տիրույթում անդրադարձման ցածր գործակցով։

HIERARCHICAL ANTIREFLECTIVE SURFACE OF SILICON SUBSTRATES FOR TANDEM SOLAR CELLS

G.Y. AYVAZYAN

The structural and optical properties of tandem silicon/perovskite structures with a hierarchical antireflective surface at the interface have been studied. The surface consisted of micro-sized pyramids and nano-sized short needles, formed respectively by chemical and reactive ion etching of silicon substrates. It is shown that a perovskite film without pores and voids covers a hierarchical surface with high conformity. The manufactured samples are characterized by low reflectance over a wide range of radiation wavelengths.