Известия НАН Армении, Физика, т.58, №4, с.576–584 (2023) УДК 515; 543.2 DOI:10.54503/0002-3035-2023-58.4-576

ФОРМИРОВАНИЕ ПОЛОС ЛЮМИНЕСЦЕНЦИИ ИОНОВ Се³⁺ В КРИСТАЛЛАХ YAG:Се

Т.И. БУТАЕВА^{*}, К.Л. ОВАНЕСЯН, А.В. ЕГАНЯН

Институт физических исследований НАН Армении, Аштарак, Армения

*e-mail: tbutaeva@gmail.com

(Поступила в редакцию 15 сентября 2023 г.)

Рассмотрены спектральные особенности и структурные факторы, влияющие на формирование полос люминесценции Ce³⁺ ионов в кристаллах YAG:Ce. Определены энергетические уровни 4*f* оболочки ионов Ce³⁺, занимающих как додекаэдрические, так и октаэдрические узлы кристаллической решетки. Показано участие ионов Ce³⁺ и ионов Ce³⁺ в структуре полосы люминесценции и определена многоцентровая структура ионов Ce³⁺ в 4*f* \leftrightarrow 5*d* переходах активатора.

1. Введение

При необходимости использования быстродействующих сцинтилляторов при высоких температурах, либо при исследовании агрессивных сред, перспективны лёгкие кислородсодержащие кристаллы, в частности YAG:Се. Механическая и химическая стойкость, высокий световыход (20000–24000 ф/МэВ) и короткое время высвечивания (70 нс) [1–3] этих кристаллов позволяет использовать их в качестве сцинтилляторов во многих областях и, в частности, для регистрации гамма и рентгеновского излучения.

Сцинтилляция кристаллов YAG:Се определяется структурой энергетических уровней ионов Ce³⁺, обеспечивающей видимое излучение кристалла на интерконфигурационном $4f^05d^1 \rightarrow 4f^15d^0$ переходе активатора. 5d состояние иона Ce³⁺, в кубическом кристаллическом поле YAG:Се, расщепляется на пять уровней, обусловленных дуплетом ${}^5D_{3/2}$ и триплетом ${}^5D_{5/2}$. В настоящее время, к переходам с участием нижних возбуждённых уровней состояния 5d отнесены полосы поглощения на 459, 340, ~220 и ~205 нм [4–6]. В работе [6] предполагается, что пятый уровень иона Ce³⁺ находится в зоне проводимости кристалла.

Идеальная структура кристалла граната YAG:Се подразумевает частичное замещение додекаэдрических ионов Y³⁺ ионами Ce³⁺, а октаэдрические и тетраэдрические узлы заняты ионами AI³⁺. Однако, реальная структура кристалла далека от совершенства, что связано с особенностями методов их выращивания и чистотой исходной шихты. И, чем сложнее состав кристалла, тем более разнообразны способы замещения ионами тех или иных узлов кристаллической решетки, что напрямую отражается на спектральном поведении активатора. Так, например, в процессе выращивания кристаллов YAG:Се происходит существенное увеличение количества дефектов Y_{AI}, связанных с неэквивалентными замещениями, которые приводят к увеличению параметра элементарной ячейки и вероятности вхождения ионов Ce³⁺ в кристалл. В кристаллах LuAG:Ce, основываясь на результатах ЭПР и спектрально-люминесцентного анализа [7–9] и в кристаллах YAG:Ce [10] были идентифицированы центры Ce³⁺ и Ce³⁺_{Al} и, искажённые ближайшим дефектом (*d*), центры Ce³⁺_{Al}–*d*. Наличие коротковолнового дуплета в области ~217–238 нм и длинноволнового триплета в области ~260–320 нм этих центров показало, что энергетическое положение полос возбуждения соответствует октаэдрическому окружению активатора.

Влияние у-облучения на кристаллы YAG:Се (0.1 и 0.2 ат%) [10], выращенные методом Бриджмена, показало, что в у-наведённых спектрах кристаллов наблюдается почти в 10 раз более интенсивное поглощение центров Ce^{4+}_{Al} на 300 нм, чем в не активированном кристалле. В выращенном кристалле с низким содержанием ионов Се (0.1 ат%), весьма заметная доля от реальной концентрации активатора стабилизируется в состоянии Ce^{4+} , увеличивая количество дырочных ловушек в ближайшем окружении отмеченного иона. При этом часть этих ловушек (3-6 at%) стабилизируется вблизи октаэдрических Ce⁴⁺_{Al} узлов кристалла. В кристалле YAG:Се (0.2 at%) лишь 0.75 % ионов Се, т.е. 0.0015 at% находится в состоянии Ce⁴⁺, однако, при этом фиксировалось вдвое большее количество Ce^{4+}_{Al} дефектов. Повышенное содержание Ce^{4+}_{Al} в выращенных кристаллах YAG:Ce (0.2 ат%) стабилизирует большее количество зарядовых ловушек вблизи этих дефектов и приводит к упорядочению ближайшего окружения додекаэдрического узла иона Ce³⁺. В работе [12], с использованием EXAFSспектроскопии, было показано, что собственные и примесные точечные дефекты в кристаллах YAG будут, прежде всего, адаптироваться за счет образования антицентров, а не вакансий или междоузлий в решетке.

Цель данного исследования – определение спектральных особенностей полосы люминесценции ионов Ce³⁺ в кристаллах YAG:Ce, обусловленной межконфигурационными переходами активатора $4f^{1}5d^{0} \rightarrow 4f^{0}5d^{1}$.

2. Используемые материалы и методы исследования

Монокристаллы YAG:Се были выращены методом вертикальной направленной кристаллизации (метод Бриджмена) [13] в молибденовых контейнерах диаметром 14 мм в инертно-восстановительной среде (Ar/H₂ 10 об%) со скоростью 1-1.5 мм/час на затравки, ориентированные вдоль кристаллографической оси <100>. Выращивание кристаллов проводилось из стехиометрических расплавов с ионами высокочистых оксидов Y₂O₃, CeO₂ (99.99%) и кристаллического Al₂O₃ (99.95%).

Абсорбционно-люминесцентные исследования проводились с использованием спектрофотометров SPECORD M40 (54000–11000 см⁻¹), SPECORD M80 (2000–400 см⁻¹) и спектрометра ДФС-24 (360–800 nm). Люминесценция возбуждалась галогенными лампами ("PHILIPS", 100 Вт) с использованием оптических фильтров. Возбуждающее излучение фокусировалось собирающей линзой на плоской поверхности кристалла, перпендикулярной направлению регистрации полученного излучения, которое, посредством кварцевого световода, подавалось на входную щель спектрометра.

3. Экспериментальные результаты и обсуждение

Полосы люминесценции Ce³⁺ ионов в кристаллах со структурой граната, в первую очередь обусловлены энергетическим положением и структурой 4*f* уровней основного ${}^{2}F_{5/2}$ и возбужденного ${}^{2}F_{7/2}$ состояний, а также уровней оболочки 5*d*. В этой связи были подробно рассмотрены как внутриконфигурационные (4*f* \rightarrow 4*f*), так и межконфигурационные переходы (4*f* ${}^{1}5d^{0}\leftrightarrow$ 4*f* ${}^{0}5d^{1}$), которые позволили определить особенности формирования полос люминесценции в том или ином кристалле.

3.1. Внутриконфигурационные переходы $(4f \rightarrow 4f)$.

Часть полос поглощения кристалла YAG:Се (0.66 ат%) находится на краю валентной зоны, которая заметно сдвинута в сторону высоких энергий, по сравнению с неактивированным кристаллом YAG (рис.1). Интенсивность внутриконфигурационных $4f \rightarrow 4f ({}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2})$ полос поглощения на ~2.7 порядка меньше, чем интенсивность поглощения полос межконфигурационных $4f \rightarrow 5d$ переходов. Рассматриваемые переходы относятся к запрещённым переходам и наблюдаются, в основном, в результате вынужденных электродипольных переходов [14], связанных с нецентросимметричными взаимодействиями примесного иона с кристаллическим окружением. Полуширина наиболее интенсивной полосы поглощения составляет ~29 см⁻¹. Непосредственно перед основным спектром ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ перехода иона Ce³⁺ в кристалле YAG:Се также присутствует слабоинтенсивный и узкий дополнительный спектр, который ассоциируется с поглощением октаэдрических ионов Ce³⁺_{Al}. Повышение концентрации Ce³⁺ ионов увеличивает количества как додекаэдрических узлов, где ион Се³⁺ замещает ион Y^{3+} , так и октаэдрических, где ион Ce³⁺ замещает ион Al³⁺, что способствует увеличению параметра элементарной ячейки кристалла (табл.1).

Табл. 1. Координационные числа и ионные радиусы [15] элементов кристалла YAG:Се, концентрация ионов Ce^{3+} и параметр элементарной ячейки (a_0) YAG:Се

Ион	К. ч.	Радиус, Å	К. ч.	Радиус, Å	Кристалл		
Ce ³⁺	6	1.01	8	1.14	Castan	Концентрация	a Å
Ce^{4+}	6	0.80	8	0.97	Cocraв	ионов Се ³⁺ , ат%	a_0, A
Y ³⁺	6	0.9	8	1.019	VACICa	0.11	12.005
A1 ³⁺	6	0.53			I AU:Ce	0.66	12.012

Для подтверждения наличия в кристалле октаэдрических ионов Ce^{3+} было проведено сравнительное рассмотрение спектров кристаллов YAG:Ce (0.66 at%) и GdScAG:Ce (2.5 at% в расплаве), нормированных на величины первых, наиболее интенсивных полос (рис.2).

Как следует из спектров, представленных на рис.2, полосы поглощения ионов Ce³⁺, занимающих додекаэдрические позиции рассматриваемых кристаллов, смещены друг относительно друга в зависимости от энергии связи иона Ce³⁺ в додекаэдрическом узле. По сравнению с кристаллом YAG:Ce, полосы поглощения ионов Ce³⁺ в кристалле GdScAG:Ce смещены в низкоэнергетическую область из-за сравнительно большего объёма отмеченного узла. В высокоэнергетической области наблюдаются спектры поглощения, которые могут быть отнесены к

Рис.1. Спектры поглощения кристаллов: I –YAG:Ce (0.66 ат%) и 2 – YAG в области $4f \rightarrow 4f$ переходов ионов Ce³⁺. Положение полос октаэдрических ионов Ce³⁺ отмечено стрелкой в области 2.3–2.5 мкм. Двумя стрелками отмечено поглощение додекаэдрического узла.

спектрам ионов Ce³⁺, занимающих октаэдрические позиции (рис.2b, область спектров 1, 2 и 3). Максимальная интенсивность этих полос для центров 1 составляет $\approx 21\%$ от интенсивности нормированных на единицу основных полос поглощения. Неожиданным оказалось полное совпадение спектрального распределения октаэдрических центров 1 в обоих кристаллах (рис.2b). Подобное совпадение означает, что в кристаллах GdScAG:Ce обнаруживается такая же доля ионов Ce³⁺, занимающих октаэдрические позиции, как и в YAG:Ce и предполагает полное отсутствие в их ближайшем окружении как ионов Gd³⁺, так и Sc³⁺.

На основе анализа представленных на рис.2 спектров поглощения и данных по относительному распределению уровней состояния ${}^{2}F_{7/2}$ ионов Ce³⁺ в кристалле YAG:Ce, полученных при 13 К [11], определены схемы энергетических уровней ${}^{2}F_{5/2/}$ и ${}^{2}F_{7/2}$ и идентифицированы переходы между ними при 300 К (табл.2) в кристалле YAG:Ce (0.66 ат%).

Рис.2. (а) Нормированные спектры поглощения кристаллов l – YAG:Ce (0.66 ат.%) и 2 – GdScAG:Ce (2.5 ат% в расплаве) в области переходов ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ ионов Ce³⁺. (b) Фрагмент спектров, где отмечены области полос поглощения ионов Ce³⁺, занимающих октаэдрические позиции в кристаллах YAG:Ce (1) и в GdScAG:Ce (1–3).

Основное состояние ² <i>F</i> _{5/2}	№ уровня	<i>Е</i> , см ⁻¹	Переходы ионов Се ³⁺ в кристалле YAG:Се						
	1	0	Додекаэдрический узел иона Ce ³⁺						
	2	250	${}^2F_{5/2} \rightarrow {}^2F_{\overline{7/2}}$	$\mathrm{c}\mathrm{M}^{-1}$	${}^2F_{5/2} \rightarrow {}^2F_{7/2}$	cm^{-1}	${}^2F_{5/2} \rightarrow {}^2F_{7/2}$	см-1	
	3	296							
Состоя- ние ${}^{2}F_{7/2}$	4	2094	$1 \rightarrow 4$	2094	$2 \rightarrow 4$	1844	$3 \rightarrow 4$	1798	
	5	2250	$1 \rightarrow 5$	2250	$2 \rightarrow 5$	2000	$3 \rightarrow 5$	1954	
	6	2375	$1 \rightarrow 6$	2375	$2 \rightarrow 6$	2125	$3 \rightarrow 6$	2079	
	7	3848	$1 \rightarrow 7$	3848	$2 \rightarrow 7$	3597	$3 \rightarrow 7$	3552	
Основное	1	0	Октаэдрический узел иона Ce ³⁺						
состояние ${}^{2}F_{5/2}$	2	75	${}^2F_{5/2} \rightarrow {}^2F_{7/2}$	$c M^{-1}$	${}^2F_{5/2} \rightarrow {}^2F_{7/2}$	$c M^{-1}$	${}^2F_{5/2} \rightarrow {}^2F_{7/2}$	см ⁻¹	
	3	93							
Состоя- ние ² F _{7/2}	4	4021	$1 \rightarrow 4$	4021	$2 \rightarrow 4$	3946	$3 \rightarrow 4$	3928	
	5	4047	$1 \rightarrow 5$	4047	$2 \rightarrow 5$	3971	$3 \rightarrow 5$	3954	
	6	4075	$1 \rightarrow 6$	4075	$2 \rightarrow 6$	4000	$3 \rightarrow 6$	3902	
	7	4202	$1 \rightarrow 7$	4202	$2 \rightarrow 7$	4127	$3 \rightarrow 7$	4109	

Табл.2. Уровни энергии состояний ${}^{2}F_{5/2}$ и ${}^{2}F_{7/2}$ ионов Се³⁺ и переходы между ними в кристаллах YAG:Се

3.2. Межконфигурационные переходы $(4f^15d^0 \rightarrow 4f^05d^1)$

Следующая группа уровней, принимающая участие в процессах люминесценции ионов Ce³⁺ принадлежит уровням 5*d* конфигурации и находится в области высокоэнергетического края прозрачности кристаллов (выше 52729 см⁻¹). Основная часть спектра поглощения межконфигурационного перехода ${}^{2}F_{5/2} \rightarrow {}^{2}D_{3/2}$ ионов Ce³⁺ в кристаллах YAG:Се с различным содержанием активатора наблюдается в области 54000-12000 см⁻¹ (рис.3а). С увеличением концентрации активатора интенсивность разрешенных полос на 22285 см⁻¹ и 28798 см⁻¹ возрастает. Полуширины полос поглощения при различных концентрациях активатора составляют ~1700 и ~1800 см⁻¹, соответственно. Для отмеченных полос не наблюдалось сколь- либо существенного спектрального сдвига при изменении концентрации активатора. Однако рассмотрение последовательных разностных спектров поглощения отмеченных кристаллов (рис.3b) позволило выявить структуру уровней основного состояния ${}^{2}F_{5/2}$ внутри полосы на 22350 см⁻¹ (табл.3). Расстояния между пиками 1 и 2, а также между 1 и 3 соответствуют расстояниям между уровнями состояния ${}^{2}F_{5/2}$ (табл.2). Наличие двух смещённых друг относительно друга групп (1, 2 и 3), т. е двух смещённых центров иона Се³⁺ объясняется разницей параметров элементарных ячеек кристалла с концентрацией Ce³⁺ 0.073 ат% (12.006 Å) и кристаллов с концентрацией 0.15 и 0.21 ат%) (12.007 Å).

Табл.3. Уровни энергии и
онов Се³⁺ в кристаллах YAG:Се, участвующие в переходах
 $4f^{1}5d^{0}{\rightarrow}4f^{0}5d^{1}$

YAG:Ce							
Переход	Полоса	Энергия уровня, см ⁻¹	Переход	Полоса	Энергия уровня, см ⁻¹		
	1	≈ 22285		3	≈ 44060		
$F_{5/2} \rightarrow {}^2D_{3/2}$	2	≈ 29986	${}^2F_{5/2} \rightarrow {}^2D_{5/2}$	4	≈ 45889		
				5	≈ 48380		

Рис.3. (а) Спектры поглощения ($F_{5/2} \rightarrow^2 D_{3/2}$) кристаллов YAG:Се с различным содержанием активатора: l = 0.073 ат%, 2 = 0.15 ат%, 3 = 0.21 ат%. (b) Разностные спектры полос поглощения отмеченных кристаллов.

3.3. Люминесценция ионов Ce³⁺ в кристаллах YAG:Ce

Возбуждение спектров люминесценции ионов Ce³⁺ в кристаллах граната связано с необходимостью использования кристаллических образцов сравнительно крупного размера, спектр поглощения которых может быть чрезмерно интенсивным. На рис.4a приведены спектры поглощения и люминесценции $(4f^{1}5d^{0}\leftrightarrow 4f^{0}5d^{1})$ кристаллов YAG:Ce с концентрацией активатора 0.11 и 0.66 ат% с толщиной пластинок 0.195 см.

Рис.4. (а) Спектры поглощения кристаллов: 1 - YAG:Ce (0,11 at%) и 2 - YAG:Ce (0,66 at%) толщиной 0.195 см⁻¹; и увеличенные в 8 раз полосы люминесценции ионов Ce³⁺, возбужденных галогенной лампой. Область излучения отмечена пунктирной линией. (b) Структура полосы поглощения на ≈ 29986 см⁻¹ кристалла YAG:Ce (0.66 at%).

При одинаковых размерах образцов и условий возбуждения люминесценции для кристаллов с большей концентрацией активатора наблюдается увеличение интенсивности излучения ионов Ce³⁺ почти вдвое и сдвиг максимума излучения в низкоэнергетическую область. Кроме того, на вершине, единственной полностью видимой полосы поглощения на ≈ 29986 см⁻¹ (рис.4a,b), в кристалле

YAG:Се (0.66 ат%) наблюдается структура полос, которая свидетельствует о наличии, как минимум, трех различных Ce³⁺-центров, отмеченных стрелками на рис.4b. Расстояния между пиками внутри каждого из центров 1, 2 и 3 соответствуют величинам расщепления основного состояния ${}^{2}F_{5/2}$ (табл.2). Повышение концентрации активатора и объёма кристалла увеличивает долю смещённых уровней активатора из-за наличия различных дефектов и изменения параметра ячейки. Многоцентровая структура полос переходов ${}^{2}F_{5/2} \rightarrow {}^{2}D_{3/2,5/2}$ ионов Ce³⁺ (рис.3b и рис.4) не позволяет зафиксировать точное значение пика полос поглощения (в пределах 500 см⁻¹ и более).

Максимум полосы люминесценции кристалла YAG:Се (0.11 at%) представляет собой неравномерное плато (рис.5), образованное структурой нижнего возбужденного уровня состояния ${}^{2}D_{3/2}$. Как следует из рис.3b, низкоэнергетический уровень состояния ${}^{2}D_{3/2}$, в процессе возбуждения приобретает повторяющуюся структуру основного состояния ${}^{2}F_{5/2}$, где превалируют два центра, разных по интенсивности поглощения. Однако в спектрах поглощения кристалла YAG:Се (0.66 ат%) идентифицируются три центра (рис.4b) и, соответственно, максимум излучения также образуется тремя (1, 2, 3) различными центрами (рис.5b и табл.4). Более того, те же самые максимумы излучения наблюдаются в объёмном кристалле YAG:Се (0.11 ат%) (рис.5).

В исследуемых кристаллах ширина уровней ${}^{2}D_{3/2}$ формируется совокупностью уровней ионов Ce³⁺, занимающих несколько отличающихся додекаэдрических узлов. Высооэнергетическое крыло полос люминесценции формируется переходами с полосы ~22285 см⁻¹ (5*d*) (табл.3) на уровни 5, 6 и 7 состояния ${}^{2}F_{7/2}$ оболочки 4*f* додекаэдрических узлов ионов Ce³⁺ (табл.2). Низкоэнергетическое крыло полосы излучения в YAG:Ce (0.11 ат% и 0.66 ат%) (*d* = 0.19 см) частично

Рис.5. (а) Полосы люминесценции ионов Ce³⁺ в кристаллах YAG:Ce: $1 - Ce 0.11 at\% (d = 0.19 cm), 2 - Ce 0.11 at\% (d = 0.90 cm), 3 - Ce 0.66 at% (d = 0.07 cm). Вертикальными линиями отмечена часть идентифицированных переходов, принимающих участие в формировании полос люминесценции. (1) – первый уровень состояния <math>^{2}D_{3/2}$ (табл.3), 4, 5, 6, 7 – уровни $^{2}F_{7/2}$ додекаэдрических или октаэдрических ({}) узлов ионов Ce³⁺ (табл.2). (b) Нормированные полосы люминесценции кристаллов, где стрелками отмечены максимумы пиков излучения 3-х различных центров ионов Ce³⁺ (табл.4).

формируется переходами с той же 5*d* полосы, но на уровни ${}^{2}F_{7/2}$ (4*f*) октаэдрических узлов {} ионов Ce³⁺ (табл.2 и рис.5). Ниже ~18000 см⁻¹, в кристалле YAG:Ce (0.11 ат%) (*d* = 0.90 см), в спектре люминесценции усиливаются интенсивности добавочных центров ионов Ce³⁺ из-за увеличения объема кристалла (рис.5). Значительное сужение полосы люминесценции этого кристалла в высокоэнергетической области обусловлено реабсорбцией излучения заметно уширенной полосы поглощения на ~22285 см⁻¹.

4. Заключение

Интенсивность и форма полос люминесценции ионов Ce³⁺ в кристаллах YAG:Се зависят от концентрации активатора, объема исследуемого образца и внутренних дефектов в структуре кристалла. Высокоэнергетическое крыло полосы люминесценции формируется ионами Ce³⁺ додекаэдрических узлов кристалла, а низкоэнергетическое – ионами октаэдрических узлов Ce_{AL}.

В кристаллах YAG:Се (0.11 и 0.66 ат%) были обнаружены три различных центра ионов Ce³⁺. Причиной образования многоцентровости кристаллов является величина коэффициента распределения иона активатора в растущем кристалле, который может быть либо больше, либо меньше единицы в зависимости от относительного размера активатора. Коэффициент распределения иона Ce³⁺ в YAG равен 0.1, что приводит к последовательному обогащению расплава ионами Ce³⁺ в процессе роста. Соответственно, увеличение концентрации ионов Ce³⁺ в растущем кристалле увеличивает и параметр элементарной ячейки. Этот эффект наглядно виден в высококонцентрированном кристалле (рис.4b), где градиент концентрации активатора приводит к смещению и уширению уровней энергии $4f^15d^0 \leftrightarrow 4f^05d^1$ переходов. Уровни состояний 4f, энергия которых на порядок или на два порядка меньше, существенно не изменяются по сравнению с межконфигурационными переходами.

Наличие октаэдрических узлов активатора (Ce_{AL}) несколько расширяет область максимума излучения в кристалле с концентрацией 0.11 ат%, но при этом, изменяя свою валентность (Ce³⁺_{Al} \leftrightarrow Ce⁴⁺_{Al}), образует буферную зону вблизи активатора, отвлекая на себя часть электронных дырочных ловушек [10]. Увеличение в 6 раз содержания ионов Ce³⁺ в кристалле YAG:Ce (0.66 ат%) проявляет максимум излучения и способствует более резкому увеличению интенсивности излучения. Соответственно уменьшается ширина полос излучения 3023 см⁻¹ для кристалла YAG:Ce (0.66 ат%).

Многоцентровая структура полос поглощения и люминесценции ионов Ce³⁺ на переходах $4f \leftrightarrow 5d$ приводит к значительному разбросу экспериментальных данных [11] по определению энергии (или длины волны) как полос поглощения, так и люминесценции. Максимальная интенсивность того или иного центра будет определять максимальное положение полос поглощения и люминесценции ионов Ce³⁺, а количество центров – ширину этих полос, что, в свою очередь, зависит от концентрации активатора и метода выращивания кристалла. Причиной многоцентровости могут быть также и различные дефекты в кристаллах: октаэдрические Ce³⁺ вблизи додекаэдрического иона Ce³⁺, различные вакансии вблизи активатора и т.д.

Работа выполнена при поддержке Государственного Комитета по науке РА (Республики Армении) (проект 21AG–1C030).

ЛИТЕРАТУРА

- 1. J. Ueda, S. Tanabe. Optical Materials: X, 1, 100018 (2019).
- 2. M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski, S.O. Flyckt. IEEE Trans. Nucl. Sci., 44, 1052 (1997).
- 3. J.A. Mares, M. Nikl, A. Beitlerova, C.D'Ambrosio, F. de Notaristefani, K. Blazek, P. Maly, K. Nejezchleb. Optical Materials, 24, 281 (2003).
- 4. J.F. Owen, P.B. Dorain, T. Kobayasi. J. Appl. Phys. 52, 12161223 (1981).
- 5. W.J. Miniscalco, J.M. Pellegrino, W.M. Yen. J. Appl. Phys., 49, 6109 (1978).
- V. Mürk, N. Yaroshevich. In: Proc. Intern. Conf. on Inorganic Scintillators and Their Applications (SCINT–95), p. 359 (1996, Delft University Press).
- 7. V.V. Laguta, A.M. Slipenyuk, M.D. Glinchuk, I.P. Bykov, Y. Zorenko, M. Nikl, J. Rose, K. Nejezchleb. Radiat. Meas., 42, 835 (2007).
- 8. V. Babin, V.V. Laguta, A. Makhov, K. Nejezchleb, M. Nikl, S. Zazubobovich. IEEE Trans. Nuclear Science, 55, 1156 (2008).
- 9. C.R. Stanek, K.J. McClellan, M.R. Levy, C. Milanese, R.W. Grimes. Nucl. Instr. and Meth. in Phys. Research, A579, 27 (2007).
- 10. T. Butaeva, I. Ghambaryan, M. Mkrtchyan. Opt. Spectr, 118, 247 (2015).
- H. Przybylinska, Ch.-G. Ma, M.G. Brik, A. Kaminska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, A. Suchocki. Appl. Phys. Letters, 102, 241112 (2013).
- 12. M.M Kuklja. Phys.: Condens. Matter, 12, 295 (2000).
- 13. Kh.S. Bagdasarov. High-Temperature Crystallization from Melt. Yerevan, Edit Print, 2003.
- 14. Д.Т. Свиридов, Р.К. Свиридова, Ю.Ф. Смирнов. Оптические спектры ионов переходных металлов в кристаллах. Москва, Наука, 1975.
- 15. R.D. Shannon. Acta Cryst., A32, 751 (1976).

FORMATION OF LUMINESCENCE BANDS OF Ce³⁺ IONS IN YAG:Ce CRYSTALS

T.I. BUTAEVA, K.L. HOVHANNESYAN, A.V. YEGANYAN

The spectral features and structural factors influencing the formation of luminescence bands of Ce^{3+} ions in YAG:Ce crystals are considered. The energy levels of the 4*f* shell of Ce^{3+} ions occupying both dodecahedral and octahedral sites of the crystal lattice have been determined. The participation of Ce^{3+} ions and Ce^{3+}_{Al} ions in the structure of the luminescence band was shown and the multicenter structure of Ce^{3+} ions in the $4f\leftrightarrow 5d$ transitions of the activator was determined.

Ce³+ ԻՈՆՆԵՐԻ ԼՅՈՒՄԻՆԵՍՑԵՆՑԻՈՆ ՇԵՐՏԵՐԻ ԿԱԶՄԱՎՈՐՈՒՄԸ YAG:Ce ԲՅՈՒՐԵՂՆԵՐՈՒՄ

Տ.Ի. ԲՈՒՏԱԵՎԱ, Կ.Լ. ՀՈՎՀԱՆՆԻՍՅԱՆ, Ա.Վ. ԵԳԱՆՅԱՆ

Ներկայացված աշխատանքում դիտարկված են YAG:Ce բյուրեղներում Ce³⁺ իոնների սպեկտրալ առանձնահատկությունները և կառուցվածքային գործոնները, որոնք ազդում են ակտիվատորի լյումինեսցենցիոն շերտերի կազմավորման վրա։ Որոշված են Ce³⁺ իոնների 4*f* շերտի էլեկտրոնային մակարդակները, որոնք զբաղեցնում են բյուրեղական ցանցում ինչպես դոդեկաէդրիկ, այնպես էլ օկտաէդրիկ հանգույցները։ Ցույց է տրված դոդեկաէդրիկ և օկտաէդրիկ հանգույցներում գտնվող ակտիվատորի մասնակցությունը լյումինեսցենցիոն շերտի կառուցվածքում և սահմանվել են ակտիվատորի 4*ƙ*→5*d* անցումների բազմակենտրոն կառուցվածքը։