Известия НАН Армении, Физика, т.58, №4, с.503–508 (2023) УДК 539.1.075 DOI:10.54503/0002-3035-2023-58.4-503

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА НА ОСНОВЕ LPMWPC И SSD ДЕТЕКТОРОВ ДЛЯ РЕГИСТРАЦИИ И ИДЕНТИФИКАЦИИ АЛЬФА-ЧАСТИЦ И ОСКОЛКОВ ДЕЛЕНИЯ

А.Р. БАЛАБЕКЯН^{1*}, Г.О. ОГАНЕСЯН¹, С.В. ГАГИНЯН¹, Г. М. АЙВАЗЯН², Г.Г. ЗОГРАБЯН², В.О. ХАЧАТРЯН², Г.С. ВАРТАНЯН², А. Т. МАРГАРЯН²

¹Ереванский государственный университет, Ереван, Армения ²Национальная научная лаборатория им. А.И. Алиханяна, Ереван, Армения

*e-mail: balabekyan@ysu.am

(Поступила в редакцию 1 ноября 2023 г.)

В статье описана экспериментальная установка, представляющая собой камеру, наполненную гексаном под давлением 3 Торр, и содержащую многопроволочные пропорциональные камеры (LPMWPC) и кремниевый полупроводниковый детектор (SSD) для исследования редких процессов тройного деления тяжелых ядер. С помощью этой установки зарегистрированы альфа-частицы, испускаемые при распаде радиоактивного изотопа ²²⁶Ra. Экспериментальная установка имеет энергетическое разрешение ≤ 5% и позволяет регистрировать энергетические потери альфа-частиц.

1. Введение

На основе жидкокапельной модели Present в 1941 г. предсказал [1], что для тяжелых радиоактивных ядер разделение на три заряженных сегмента становится динамически возможным. Позднее было показано, что расщепление на четыре и более фрагментов энергетически более выгодно, чем двойное расщепление. Экспериментальные наблюдения показали возможность реализации схем тройного/четверного деления, которые можно сгруппировать как [2]: тройное деление, при котором третий фрагмент представляет собой дальнопробежную альфа-частицу; тройное деление, третий фрагмент которого представляет собой заряженную частицу малой массы; распад на три заряженных фрагмента примерно одинаковой массы; многократное деление, при котором испускаются четыре и более заряженных частицы.

Когда радиоактивное ядро распадается на три и более фрагментов, выделяется больше энергии, но соотношение вероятностей тройного деления к двойному очень мало. Тройное деление ядра определяется как деление ядра на три осколка, массовый диапазон которых с одной стороны ограничен двойным делением ядра, при котором нейтрон выступает в роли третьего частицы, а с другой стороны, рождением осколков одинаковой массы. Последний процесс, который изучен теоретически, но еще не зафиксирован экспериментально, называется истинным тройным делением. Между этими двумя предельными случаями лежит тройное деление, при котором в виде осколка образуется заряженная легкая частица ЗЛЧ (α-частица). Это крайне асимметричное тройное деление является конкурентным процессом бинарного деления и наблюдается при спонтанном и вынужденном тройном делении. Описанные процессы объясняются в рамках различных теоретических моделей, таких как феноменологическая [3, 4], динамическая и статистическая [5, 6], трехфрагментная (кластерная) модель [7, 8].

Феноменологическая модель качественно объясняет квазимолекулярную стадию процесса деления легких частиц. Эта модель выведена из модели жидкой капли в предположении, что выровненная конфигурация с вылетающей частицей между легким и тяжелым фрагментом получается путем непрерывного увеличения расстояния разделения, в то время как радиусы тяжелого фрагмента и легкой частицы сохраняются постоянными. В динамической и статистической модели легкая частица генерируется статистически в результате внезапного разрыва шейки. Статистически генерируемые частицы, находящиеся между основными фрагментами и на достаточном расстоянии от оси разрыва, могут не быть реабсорбированы ни одним из втягивающихся участков шейки, а могут оказаться за пределами кулоновского барьера постразрывной конфигурации и ускоряться прочь друг от друга после разрыва. Трехкластерная модель основана на динамической или квантово-механической теории фрагментации.

Регистрация энергетических спектров α-частиц, образующих в процессе тройного деления, позволит проверить теоретические модели. Энергетические спектры α-частиц, испускаемых при тройном делении разных ядер-мишеней, варьируются от 6 до 40 МэВ [2]. Энергия большинства таких частиц составляет 16 МэВ [2]. Экспериментальные результаты показывают, что фрагменты тройного расщепления обусловлены сферическими или деформированными замкнутыми оболочками, поэтому изучение этого экзотического режима распада также даст информацию о структуре ядра.

Целью настоящей работы является проверка характеристик экспериментальной установки на основе многопроволочной пропорциональной камеры и полупроводникового детектора. Эту установку планируется использовать для регистрации α-частиц и тяжелых фрагментов, образованных при двойном и тройном делении ядер.

2. Экспериментальная установка

Экспериментальная установка состоит из многопроволочных пропорциональных камер (LPMWPC) и кремниевого полупроводникового детектора (SSD), которые установлены в объеме, заполненном газообразным гексаном (C_6H_{14}) под низким давлением. Многопроволочные пропорциональные камеры позволяют регистрировать как α -частицы, так и продукты деления тяжелых ядер. На рис.1 приведена схема экспериментальной установки.

На расстоянии 25 см друг от друга расположены две многопроволочные пропорциональные камеры (LPMWPC1 и LPMWPC2), кремниевый полупроводниковый детектор (SSD) расположен за второй LPMWPC2 камерой. Выбор LPMWPC обусловлен тем, что эти камеры имеют как хорошее временное разрешение (~200 пс для осколков деления и меньше 1 нс для α-частиц), так и малую пролетную толщину (малое количество вещества на пути частиц).

Рис.1. Схема экспериментальной установки.

Полупроводниковый детектор используется для определения полной энергии частиц и имеет энергетическое разрешение порядка 1.5%. Разъемы Lemo, закрепленные на стенках вакуумной камеры, обеспечивают доступ к электронике вне вакуумной камеры. Быстрые сверхмалошумящие усилители для усиления наносекундных сигналов с анодных проводов и твердотельных накопителей установлены вне вакуумной камеры. Газ гексана служит ионизирующей средой при работе LPMWPC. При измерениях давление составляло 3 Торр. На рис.2 приведены схематический и общий вид многопроволочного пропорционального детектора LPMWPC. Типичные потенциалы для LPMWPC: напряжение анода равно +300 В, катода 0, и напряжение защитного слоя равно -300 В, что соответствует двухступенчатым режимам работы [9]. В этом режиме LPMWPC детектирует одновременно осколки деления и альфа-частицы [10].

На рис.3 приведена форма сигнала от осциллографа, полученная от многопроволочной пропорциональной камеры.

На рис.4 приведена блок-схема электроники и сбора данных. Сбор данных проводилась при помощи систем КАМАК GPIB-ADC (General Purpose Interface Bus) [11].

Рис.2. Схематический вид многопроволочной пропорциональной камеры (LPMWPC) (а) и ее общий вид (b).

Рис.3. Форма сигнала от LPMWPC.

Рис.4. Блок-схема электроники и сбора данных.

3. Результаты и обсуждение

Активный источник ²²⁶Ra был помещен внутри камеры. В результате распадов изотопа ²²⁶Ra и его дочерних ядер ²²⁶Ra \rightarrow ²²²Rn \rightarrow ²¹⁸Po \rightarrow ²¹⁴Pb испускаются α -частицы с четырьмя различными энергиями $E_{\alpha} = 4.78$; 5.4; 6.02 и 7.68 МэВ. Результаты измерения энергетического спектра при помощи SSD приведены на рис.5а. Как можно заметить, энергии альфа-частиц $E_{\alpha} = 4.78$; 5.4; 6.02 и 7.68 МэВ хорошо разделяются и аппроксимируются функцией Гаусса. Энергетическое разрешение SSD в этих условиях составляет \leq 5%. Линейность зависимости энергии от номера канала анализатора сохраняется и можно представить формулой E =1.3521 + 0.0079 · $N_{chanell}$ (рис.5b и табл.1). Таким образом, экспериментальная установка при использовании газа (C₆H₁₄) с давлением 3 Торр существенно не искажает энергетическое разрешение зарегистрированных с помощью SSD альфа-частиц.

Рис.5. (а) Энергетический спектр α-частиц. (b) Зависимость энергии α-частиц от канала анализатора, где точки – экспериментальные значения, сплошная кривая – линейная аппроксимация.

Канал	Счет	Энергия, МэВ
436.914±0.708	1209.651	4.78±0.06
517.055±1.091	1841.233	5.4±0.04
594.024±1.111	1393.164	6.02±0.08
800.968±1.370	1492.428	7.68±0.11

Табл.1. Цифровые значения энергетического спектра α-частиц ²²⁶Ra

На основе измерений построена зависимость удельных потерь энергии (dE/dx) от начальной энергии α -частиц (рис.6) в LPMWPC1. Зависимость (dE/dx) от начальной энергии альфа-частиц также рассчитана теоретически с использованием кода SRIM (The Stopping and Range of Ions in Matter) [11]. Результаты расчетов SRIM вместе с экспериментальными данными представлены на рис.6. Значения dE/dx для энергии 7.68 МэВ принято за единицу, а остальные значения рассчитаны относительно указанного. Как видно из рисунка, экспериментальные значения лежат ниже расчетных значений. Это связано с тем, что при регистрации энергии α -частиц происходит потеря энергий из-за образования дельта электронов большой энергии, которые вылетают из чувствительного объема LPMWPC.

Рис.6. Зависимость (dE/dx) от начальной энергии α -частицы. Точки – экспериментальные данные, квадраты – рассчитанные по коду SRIM данные.

Согласно модельным представлениям [2], энергетический спектр α -частиц, образованных в процессе деления, варьирует от 7 до 40 МэВ, максимум распределения приходится на 16 МэВ. Как известно, при α -распаде изотопов излучаются частицы с определенной дискретной энергией (от 4 до 9 МэВ). Разделение по энергиям позволит отличить α -частицы спонтанного распада от α -частиц, образованных в процессе тройного деления.

4. Заключение

При помощи новой экспериментальной установки, состоящей из многопроволочных пропорциональных камер и полупроводникового детектора, зарегистрированы α -частицы, испускаемые радиоактивным изотопом ²²⁶Ra и продуктами его распада ($E_{\alpha} = 4.78$; 5.4; 6.02 и 7.68 МэВ). Хорошее энергетическое разрешение установки ($\leq 5\%$) позволит отличить α -частицы спонтанного распада от α -частиц, образованных в процессе тройного деления. Эта установка также дает возможность регистрировать тяжелые фрагменты деления. Таким образом, состоящая из LPMWPC и SSD установка является хорошим инструментом для изучения как двойного, так и тройного деления, при котором третий фрагмент представляет собой альфа-частицу с высокой энергией.

Исследование выполнено при финансовой поддержке Комитета по науке РА в рамках научного проекта № 21Т-1С164.

ЛИТЕРАТУРА

- 1. R.D. Present. Phys. Rev., 59, 466 (1941).
- 2. M. Balasubramaniam. Ternary Fission J. Chennai Academy of Sciences, 1, 29 (2019).
- 3. D.N. Poenaru, B. Dobrescu, W. Greiner, J.H. Hamilton, A.V. Ramayya. J. Phys. G: Nucl. Part. Phys., 26, L97 (2000).
- 4. A. Florescu, A. Sandulescu, D.S. Delion, J.H. Hamilton, A.V. Ramayya, W. Greiner. Phys. Rev. C, 61, 051602(R) (2000).
- 5. M. Balasubramaniam, C. Karthikraj, N. Arunachalam, S. Selvaraj. Phys. Rev. C, 90, 054611 (2014).
- K.R. Vijayaraghavan, M. Balasubramaniam, W. von Oertzen. Phys. Rev. C, 91, 044616 (2015).
- R.K. Gupta. Proceedings of the Vth International Conference on Nuclear Reaction Mechanisms, Varenna, Italy, 1988, p. 416;
 S.S. Malik, R.K. Gupta. Phys. Rev. C, 39, 1992 (1989).
- R.K. Gupta. Heavy Elements and Related New Phenomena, W. Greiner, R.K. Gupta (Eds), World Scientific, Singapore, vol. II, p. 730 (1999).
- 9. A. Breskin, G. Charpak, S. Majewski. Nucl. Instr. and Meth., 220, 349 (1984).
- A. Margaryan, J.O. Adler, J. Brudvik, N. Grigoryan, K. Fissum, K. Hansen, L. Isaksson, S. Knyazyan, M. Lundin, G. Marikyan, B. Nilsson, L. Parlakyan, B. Schroder, H. Vardanyan, S. Zhamkochyan. Armenian Journal of Physics, 3, 282 (2010).
- 11. F.J. Naivar. CAMAC to GPIB Interface, in IEEE Transactions on Nuclear Science, 25, 515 (1978).
- 12. J.F. Ziegler, M.D. Ziegler, J.P. Biersack. NIM B, 268, 11; 1818 (2010).

EXPERIMENTAL INSTALLATION BASED ON LPMWPC AND SSD DETECTORS FOR REGISTRATION AND IDENTIFICATION OF ALPHA PARTICLES AND FISSION FRAGMENTS

A.R. BALABEKYAN, G.H. HOVHANNISYAN, S.V. GAGINYAN, G.M. AYVAZYAN, H.G. ZOHRABYAN, V.H. KHACHATRYAN, H.S. VARDANYAN, A.T. MARGARYAN

The article describes a new detector, which is a volume filled with hexane at low pressure (3 Torr), and containing multi-wire proportional chambers and a silicon semiconductor detector. Using this setup, alpha particles emitted during the decay of the radioactive isotope 226 Ra were detected. The device has an energy resolution $\leq 5\%$ and allows measuring the ionization energy losses of alpha particles as well. Thus, the LPMWPC and SSD based experimental setup is a good tool for studying both binary and ternary fission of heavy nuclei, in which the third fragment is a high-energy alpha particle.