2 (20) 2009

УДК 532.5

Механи

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ПОТЕРЬ ЭНЕРГИИ В МЕСТНЫХ СОПРОТИВЛЕНИЯХ ЗАДВИЖКИ ВЕНТИЛЯ...

В.Г. Аванесян

Результаты экспериментального исследования коэффициентов местных сопротивле задвижки и вентиля ξ_3 и ξ_B представлены на рис 1-2 в виде зависимостей этих коэффициентом обобщенного числа рейнольдса, R^*e критерия Ильюшина — И и обыкновенного числа Re.

Из опувликованных работ [1-5], видно, что до наших исследований никто не занимат исследованиями местных сопротивлений при движении через неньютовских жидкостей. Поэтом возникла настоятельная необходимость привести специальные исследования при движении черених жидкостей и восполнить пробел в этой области науки.

Обработка экспериментальные данные, приведенные на рис.1 и 2 способом наименым квадратов для различных степеней $\frac{h}{d}$ открытия задвижки и вентиля, рекомендуем следующе эмпирические формулы для определения ξ_3 и ξ_8 при движении через них неньютонового жиддкостей.

Для задвижки:

1. при
$$\frac{h}{d} = \frac{1}{3}$$
 в области $100 < R^*e < 280(R^*e_{kp} = 280)$

$$\xi_3 = \frac{419.8}{(R^*e)^{0.86}};$$

2. при
$$\frac{h}{d} = \frac{2}{3}$$
 до $R^*e = 300$

$$\xi_3 = \frac{372.6}{(R^*e)^{0.92}};$$

3. при
$$\frac{h}{d} = 1$$
 до $R^*e = 300$

$$\xi_3 = \frac{259.5}{(R^*e)^{0.935}};$$

4. при
$$\frac{h}{d} = \frac{1}{3}$$
 $R^*e > 280$

$$\lg \xi_3 = 0,283(\lg R^*e) - 2,08(\lg R^*e) + 3,9651;$$

5. при
$$\frac{h}{d} = \frac{1}{3} R^* e > 300$$

$$\lg \xi_3 = 0.24(\lg R^*e)^2 - 1.74(\lg R^*e) + 3.2775;$$

6. при
$$\frac{h}{d} = 1 R^* e > 400$$

$$\lg \xi_3 = 0, 14(\lg R^* e)^2 - 1,04(\lg R^* e) + 1,74; \tag{6}$$

II. Для вентиля прямого обыкновенного:

1. при
$$\frac{h}{d} = 0.25$$
 в области $100 < R^*e \le 380$
$$\xi_B = \frac{10670}{(R^*e)^{1.14}};$$

2.
$$\text{ ври } \frac{h}{d} = 0,5 \quad 100 < R^*e \le 540$$

$$\xi_B = \frac{8476}{(R^*e)^{1,18}};$$

3. Input
$$\frac{h}{d} = 1$$
 $100 < R^*e \le 760$

$$\xi_B = \frac{9076}{(R^*e)^{1,27}};$$

4. при
$$\frac{h}{d} = 0.25$$
 $R^*e > 380$ $\lg \xi_B = 0.291 (\lg R^*e)^2 - 2.4 (\lg R^*e) - 5.4064;$

5. при
$$\frac{h}{d} = 0.5$$
 $R^*e > 540$ $\lg \xi_B = 0.25 (\lg R^*e)^2 - 2.08 (\lg R^*e) + 4.73;$

6. при
$$\frac{h}{d} = 1$$
 $R^*e > 760$ $\lg \xi_B = 0.311(\lg R^*e)^2 - 2.54(\lg R^*e) + 5.3114;$

Из табл. 1,2 видно, что приведенные выше эмпирические формулы для определения соответствующих коэффициентов местных сопротивлений задвижки и вентиля при движении через них неньютоновских смесей обладают достаточной точностью и могут быть применены для практических расчетов.

В связи с тем, что рекомендованные выше формулы (1) — (12) убобны и обладают достаточной точностью, то нет необходимости для тех же местных сопротивлений рекомендовать и другие формулы в зависимости от критериев Ильюшиа обыкновенного числа Рейнольдса.

Тавлица 1

			иента местного о ных степенях ее	опротивления задви $\left(rac{h}{d} ight)$ открытия	жки при	
R°e	ξ_3 при $\frac{h}{d} = \frac{1}{3}$		$\xi_{3} \frac{h}{\text{при}} = \frac{2}{3}$		ξ_3 при $\frac{h}{d} = 1$	
	опытный	по формуле(1)	опытный	по формуле(2)	опыппый	по формуле(3)
160	5,4	5,4	3,60	5,58	2,23	2,25
250	3,75	3,66	3,33	2,35	1,42	1,47
350	-	-	-	-	1,05	1,04
	опытный	по формуле(4)	опытный	по формуле(5)	опытный	по формуле(6)
700	2,25	2,22	1,45	1,44	0,84	0,85

2000	1,48	1,531	1,10	1,10	0,670	0,675
7000	1,28	1,39	0,980	0,974	0,640	0,641
350	3,200	3,199	2,01	2,02	_	

Тавли

Значения коэффициента местного сопротивления вентиля при

различных степенях его открытия $\left(\frac{h}{d}\right)$

R^*e	ξ_B при $\frac{h}{d} = \frac{1}{4}$		ξ_B при $\frac{h}{d} = \frac{1}{2}$		ξ_B при $\frac{h}{d} = 1$			
	опытный	по формуле(7)	опытный	по формуле(8)	Кынтыпо	по формуле(9)		
100	56,0	56,20	37,5	37,60	26,0	26,01		
140	38,0	38,15	25,0	24,95	17,0	16,92		
200	25,0	25,07	16,00	15,98	10,8	10,07		
250	19,43	19,43	12,50	12,61	8,20	8,13		
300	15.5	15,48	10,00	10,05	6,60	6,57		
500	-	-	5,60	5,57	3,50	3,48		
600	-	-	-	-	2,70	2,69		
	опытный	по формуле(10)	опытный	по формуле(11)	опытный	по формуле(12)		
600	9,98	9,93	-	-	-	-		
1000	7,10	7,15	4,90	4,88	-	*		
1200	6,40	6,47	4,0	4,52	2,700	2,685		
2000	4,70	4,69	3,40	3,41	2,05	2,04		
3000	3,80	3,77	2,90	2,92	1,78	1,77		
4000	1,64	1,65	2,7	2,71	1,640	1,601		

Литература

- 1. Погорелов В.И. Местные сопротивления при течении жидкостей. М-Л: Изд.-во Энергия 1984, 132 с.
- 2. Альтшул А.Д. Определение местных потерь потока при движении вязких жидкостей г трубах. – HX, N 11, 1979, с.40-42.
- 3. Альтичул А.Д. Местные гидравлические сопротивления. М.: Гостоптехиздат, 1972.
- 4. Аванесян В.Г. Экспериментальные исследования потерь напора в местных неньютоновских смесей по трубопроводам. Известия вузов СССР . "Нефть и газ", N 9, 1974, с. 83-87.
- 5. Аванесян В.Г.Исследование гидравлического сопротивления трубопроводов при движени различных жидкостей с развавителями. Промышленность Армении N 9,1970, с.9-12.