ZUBUUSUUF PESNEBBNEUENE UQQUBEU UYUABUFUHAЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИNATIONAL ACADEMY OF SCIENCES OF ARMENIAДОКЛАДЫQUYNEBBUFREPORTS

Zшипп Том Volume

123

2023

№ 3-4 **МЕХАНИКА**

УДК 539.3

DOI: 10.54503/0321-1339-2023.123.3-4-33

К. Ш. Мкртчян

Вынужденные поперечные колебания упругого шарнирно опертого стержня под действием поперечно распределенной движущейся нагрузки

(Представлено чл.-кор. НАН РА А. С. Аветисяном 25/VIII 2023)

Ключевые слова: *стержень, сечение, поперечные колебания, собственные частоты, собственные формы.*

Введение. Исследования вынужденного поперечного колебания упругого шарнирно опертого стержня с учетом вращательного движения под действием движущейся нагрузки представляют интерес для расчета мостовых работ. В [1] исследовано вынужденное поперечное колебание упругого стержня, когда одному концу придано перемещение, а другой конец свободен. В [2] рассмотрены вынужденные поперечные колебания упругого шарнирно опертого стержня с учетом вращательного движения, вызванные периодически колеблющейся сосредоточенной нагрузкой. В [3] приводятся примеры влияния нереальных следящих сил, в [4] исследовано влияние ведомых и нормальных нагрузок, движущихся по свободно опертой балке, когда учитываются поперечная сдвиговая деформация, деформации Кармана или и то, и другое.

В настоящей статье рассматриваются вынужденные поперечные колебания упругого шарнирно опертого стержня с учетом вращательного движения под действием распределенной, периодически меняющейся нагрузки, перемещающейся вдоль стержня с постоянной скоростью. Задача разделена на две связанные части, в каждой из которых рассматриваются вынужденные поперечные колебания упругого шарнирно опертого стержня, обусловленные различными схемами воздействия: динамическим воздействием на стержень и вращательным движением относительно фронта волны изгиба.

1. Постановка математической краевой задачи 1 и ее решение. Рассмотрим упругий шарнирно опертый стержень длиной l. Пусть в момент времени $t=0_{\perp}$ на стержень действует распределенная с перио-

дически меняющейся величиной нагрузка, перемещающаяся вдоль стержня с постоянной скоростью ν . В начальный момент времени t=0 периодически меняющаяся нагрузка расположена на левой опоре стержня. Ось координаты 0x направлена через центр тяжести сечений, причем начало координатной системы 0 расположено на ее левом конце. Оси 0 у и 0 г направлены вдоль главных осей сечения стержня. Колебания стержня происходят в вертикальной плоскости Оzx, геометрия которой представлена на рис. 1. Требуется определить вынужденные поперечные колебания этого стержня, возникающие в результате приложения распределенной, периодически меняющейся нагрузки. Для этого удобно решить вспомогательную задачу о вынужденных поперечных колебаниях упругого шарнирно опертого стержня под воздействием переменной сосредоточенной силы.

Пусть упругий стержень с шарнирно опертыми концами на расстоянии c от левой опоры подвергается действию нормальной, сосредоточенной, периодической силы. Требуется определить вынужденные поперечные колебания стержня, возникающие в результате приложения силы в виде

$$P(x,t) = P_0 \cdot \delta(x-c) \cdot \sin(\omega_0 t) .$$

Рис. 1. Схема воздействия переменной, движущейся, равномерно распределенной нагрузки на упругий шарнирно опертый стержень.

Для рассматриваемой задачи вынужденные поперечные колебания стержня описываются неоднородным уравнением с однородными краевыми и начальными условиями [5]:

$$\frac{\partial^2 \mathbf{w}}{\partial t^2} + b^2 \frac{\partial^4 \mathbf{w}}{\partial x^4} = \frac{P_0}{\rho F} \cdot \delta(x - c) \cdot \sin(\omega_0 t), \text{ где } b^2 = EJ/\rho F;$$
 (1.1)

$$\mathbf{w}(0,t) = 0,$$
 $\partial^2 \mathbf{w}(0,t)/\partial x^2 = 0;$

$$\mathbf{w}(0,t) = 0, \qquad \qquad \partial^2 \mathbf{w}(0,t) / \partial x^2 = 0;$$

$$\mathbf{w}(l,t) = 0, \qquad \qquad \partial^2 \mathbf{w}(l,t) / \partial x^2 = 0;$$
(1.2)

$$w(x,0) = 0, \partial w(x,0)/\partial t = 0, (1.3)$$

где t – время движения нагрузки, l – длина стержня, l_1 – отрезок нагруженной части стержня, F – площадь поперечного сечения стержня, J– момент инерции поперечного сечения стержня, $\delta(*)$ – дельта-функция Дирака, P(x,t) – сосредоточенная сила в некоторой точке x в момент времени t, ρ – плотность материала, E – модули Юнга, w – перемещение центра изгиба сечения в направлении оси z (прогиб), ω_0 – частота внешнего воздействия.

Граничные условия (1.2) и (1.3) будут удовлетворены, если решение уравнения (1.1) представить в виде

$$W(x,t) = \sum_{n=1}^{\infty} W_n(t) \cdot \sin(\lambda_n x), \qquad (1.4)$$

где $\lambda_n = n\pi/l$ — собственные числа колебания стержня, а $n \in \mathbb{Z}^+$.

Подставляя значение w(x,t) из (1.4) в уравнение (1.1), получаем обыкновенное дифференциальное неоднородное уравнение относительно искомой гармоники $w_n(t)$

$$\ddot{\mathbf{w}}_{n}(t) + k_{n}^{2} \cdot \mathbf{w}_{n}(t) = \frac{2P_{0}}{\rho F l} \cdot \sin(\lambda_{n} c) \cdot \sin(\omega_{0} t), \qquad (1.5)$$

в котором $k_{\scriptscriptstyle n} = b \lambda_{\scriptscriptstyle n}^2$ – частота собственных колебаний стержня.

С учетом начальных условий (1.3) решение уравнения (1.5) можно представить в виде

$$\mathbf{w}_{n}(t) = \frac{2P_{0}}{\rho F l k_{n}} \cdot \sin(\lambda_{n} c) \int_{0}^{t} \sin(\omega_{0} \tau) \cdot \sin[k_{n}(t - \tau) \cdot d\tau]$$
 (1.6)

Подставляя значение $W_n(t)$ из (1.6) в соответствующую формулу (1.4), получаем поперечные колебания упругого стержня в виде

$$\mathbf{w}(x,t) = \frac{2P_0}{\rho F} \sum_{n=1}^{\infty} \frac{1}{lk_n} \cdot \sin(\lambda_n c) \cdot \sin(\lambda_n x) \cdot \int_0^t \sin(\omega_0 \tau) \cdot \sin[k_n(t-\tau) \cdot d\tau] \cdot (1.7)$$

После некоторых преобразований решение (1.7) можно представить в виде суммы вынужденных и свободных колебаний. Опуская подробности, представим вынужденные поперечные колебания стержня из общего решения (1.7) в виде

$$w(x,t) = \frac{2P_0}{\rho F l} \sum_{n=1}^{\infty} \frac{\sin(\lambda_n c) \cdot \sin(\lambda_n x) \cdot \sin(\omega_0 t)}{\omega_0^2 - k_n^2} . \tag{1.8}$$

Имея решение (1.8), легко найти колебания стержня в случае действия распределенной, перемещающейся вдоль стержня с постоянной скоростью v, периодически меняющейся нагрузки.

Пусть $p\delta(x-c)\cdot\sin(\omega_0t)\cdot dc$ — нагрузка, приходящаяся на элемент длины стержня dc. Подставляя pdc вместо P_0 в (1.8) и выполняя интегрирование по c в пределах от $-l_1+vt$ до vt, получим прогиб от усилий, распределенных по всей длине

$$\mathbf{w}(x,t) = \frac{4p}{\rho F l} \sum_{n=1}^{\infty} \frac{\lambda_n^{-1} \sin[\lambda_n (Vt - 0.5l_1) \cdot \sin(0.5\lambda_n l_1) \cdot \sin(\lambda_n x) \cdot \sin(\omega_0 t)}{\omega_0^2 - k_n^2} . \tag{1.9}$$

Состояние резонанса имеет место, когда частота возмущающей силы приближается к одной из собственных частот колебаний.

2. Постановка математической краевой задачи **2.** Рассмотрим вращательное движение невозмущенной части стержня относительно фронта волны изгиба (рис. 2 в [2]). Вращательное движение происходит в вертикальной плоскости xz относительно фронта волны изгиба и осуществляется вращательным моментом M(t).

Требуется определить вынужденные поперечные колебания $W_1(x,t)$, возникающие в результате вращательного движения невозмущенной части стержня, а также момент вращения M(t), обеспечивающего заданное движение этой части стержня.

Приведем линейное интегро-дифференциальное уравнение движения (2.1) и уравнение упругих поперечных колебаний стержня (2.2) при большой жесткости на изгиб [6]:

$$\rho F \int_{0}^{l} x [x \ddot{\theta} - \ddot{\mathbf{w}}_{1}(x, t)] \cdot dx =$$
(2.1)

$$= M(t) + \rho g F \int_{0}^{t} x [x \cos \theta(t) + w_{1}(x, t) \cdot \sin \theta(t)] \cdot dx$$

$$\frac{\partial^2 \mathbf{w}}{\partial t^2} + b^2 \frac{\partial^4 \mathbf{w}}{\partial x^4} = -x\ddot{\theta}(t) - g\cos\theta(t) \cdot \tag{2.2}$$

с граничными и начальными условиями:

$$\mathbf{w}_1(0,t) = 0$$
, $\partial^2 \mathbf{w}_1(0,t) / \partial x^2 = 0$,

$$w_1(l,t) = 0,$$
 $\partial^2 w_1(l,t) / \partial x^2 = 0,$ (2.3)

$$\mathbf{w}_{1}(x,0) = 0, \qquad \qquad \partial \mathbf{w}_{1}(x,0)/\partial t = 0. \tag{2.4}$$

В уравнениях (2.1) и (2.2) угол поворота элемента стержня на фронте волны изгиба $\theta(t)$ определяется как

$$\theta(t) = \frac{\partial w(x', t)}{\partial x}, \qquad (2.5)$$

где x'(t) — закон движения переднего фронта волны в прямом и обратном направлении волн изгиба вдоль стержня и дается уравнениями

$$x'(t) = (v+v_1)t - 2ml$$
, (2.6)

где $2ml/(v+v_1) < t < (2m+1)l/(v+v_1)$ и $m \in Z^+$,

$$x'(t) = (2m+1)l - (v+v_1)t, (2.7)$$

где $(2m+1)l/(v+v_1) < t < 2(m+1)l/(v+v_1)$ и $m \in Z^+$.

Здесь m характеризуют число отражений волны от границ стержня, v_1 – групповая скорость распространения волн изгиба вдоль стержня, которая для задачи (1.1) - (1.3) вычисляется по формуле [7]

$$\mathbf{v}_1 = \frac{\partial k}{\partial s}\Big|_{s=\lambda_n} = 2b\lambda_n$$

где $k = bs^2$ – закон дисперсии волны изгиба.

На участке $x'(t) \le x(t) \le l$, $2ml/(v+v_1) < t < (2m+1)l/(v+v_1)$ с помощью (2.5) и (2.6) $\ddot{\theta}(t)$ можно привести к следующему виду:

$$\ddot{\theta}(t) = \sum_{n=1}^{\infty} \ddot{\theta}_n(t),$$

где

$$\begin{split} \ddot{\theta}_n(t) &= -\frac{p}{\rho F l} \cdot \frac{\sin(0.5\lambda_n l)}{\omega^2 - k_n^2} \times \\ &\left\{ -(\lambda_n \mathbf{v}_1 - \omega)^2 \cdot \cos[(\lambda_n \mathbf{v}_1 - \omega)t + 0.5\lambda_n l - 2\lambda_n m l] + \\ &+ (\lambda_n \mathbf{v}_1 + \omega)^2 \cdot \cos[(\lambda_n \mathbf{v}_1 + \omega)t + 0.5\lambda_n l - 2\lambda_n m l] + \\ &+ \{ [\lambda_n (2\mathbf{v} + \mathbf{v}_1) - \omega]^2 \cdot \cos\{ [\lambda_n (2\mathbf{v} + \mathbf{v}_1) - \omega]t - 0.5\lambda_n l - 2\lambda_n m l\} - \\ &- \{ [\lambda_n (2\mathbf{v} + \mathbf{v}_1) + \omega]^2 \cdot \cos\{ [\lambda_n (2\mathbf{v} + \mathbf{v}_1) + \omega]t - 0.5\lambda_n l - 2\lambda_n m l\} \end{bmatrix} \end{split}$$

После определения прогиба $W_1(x,t)$, M(t), обеспечивающего заданное движение, момент вращения в этой части стержня вычисляется по формуле (2.1).

3. Решение задачи 2. Решение уравнения (2.2) без учета собственного веса стержня будем искать в форме

$$\mathbf{w}_{1}(x,t) = \sum_{n=1}^{\infty} \mathbf{w}_{1n}(t) \cdot \sin(\lambda_{n}x), \qquad (3.1)$$

$$x' \le x \le l$$
, $2ml/(v+v_1) < t < (2m+1)l/(v+v_1)$, $m \in Z^+$,

чтобы граничные условия (2.3), а также начальные условия (2.4) удовлетворялись полностью.

Подставляя значение прогиба из (3.1) в (2.2), получаем обыкновенное дифференциальное уравнение относительно искомой функции $W_{1n}(t)$

$$\ddot{\mathbf{w}}_{1n}(t) + k_n^2 \cdot \mathbf{w}_{1n}(t) = -\frac{2}{l} \cdot D_n(x') \ddot{\theta}_n(t), \qquad (3.2)$$

$$D_{n}(x') = \begin{cases} \frac{1}{\lambda_{n}^{2}} \{ \beta_{n} - [\sin(\lambda_{n}x') - \lambda_{n}x'\cos(\lambda_{n}x')] \}, \\ in \quad x' \leq x \leq l, \quad 2ml/(v + v_{1}) < t < (2m+1)l/(v + v_{1}) \\ \frac{1}{\lambda_{n}^{2}} \{ \sin(\lambda_{n}x') - \lambda_{n}x'\cos(\lambda_{n}x') \}, \\ in \quad 0 \leq x \leq x', \quad (2m+1)l/(v + v_{1}) < t < 2(m+1)l/(v + v_{1}) \end{cases}$$
(3.3)

с коэффициентом нормирования $\beta_n = \sin(\lambda_n l) - \lambda_n l \cos(\lambda_n l)$. Решение уравнения (3.2) с начальными условиями (2.4) можно представить в виде

$$\mathbf{w}_{1n}(t) = -\frac{2}{lk_n} \cdot \int_0^t f_n(\tau) \cdot \sin[k_n(t-\tau) \cdot d\tau], \qquad (3.4)$$

где $f_n(t) = D_n(x')\ddot{\theta}_n(t)$ — неоднородная функция в правой части уравнения.

Подставляя значение $W_{1n}(t)$ из (3.4) в общее решение (3.1), получаем общее решение для поперечных упругих колебаний стержня в виде

$$\mathbf{w}(x,t) = \sum_{n=1}^{\infty} \left[-\frac{2}{lk_n} \cdot \int_{0}^{t} f_n(\tau) \cdot \sin[k_n(t-\tau)] \right] \cdot \sin(\lambda_n x) \cdot d\tau$$
 (3.5)

в промежутке времени $2ml/(v+v_1) < t < (2m+1)l/(v+v_1)$.

Решение (3.5) после преобразований можно представить в виде суммы собственных и вынужденных колебаний. Опуская подробности, представим вынужденные поперечные колебания стержня по времени из общего решения (3.5) в виде

$$\mathbf{w}_{1}(x,t) = \sum_{n=1}^{\infty} \frac{2p}{\rho F l^{2} k_{n}} \cdot \frac{\sin(0,5\lambda_{n} l_{1})}{\omega^{2} - k_{n}^{2}} u_{n}(t) \cdot \sin(\lambda_{n} x) \cdot$$
(3.6)

Вынужденные колебания стержня на участке 0 < x < x', $(2m+1)l/(v+v_1) < t < 2(m+1)l/(v+v_1)$, $m \in Z^+$, можно получить с помощью формулы (3.6), заменив m на 2(m+1)l. В формуле (3.6) необходимо также функцию прогиба взять со знаком минус.

Из суммы (3.6) находим резонансные частоты, которые определятся соотношениями

$$\begin{split} \omega_n^* &= 2\lambda_n(\mathbf{v} + \mathbf{v}_1) \pm k_n \,, & \omega_n^* &= \lambda_n(2\mathbf{v} + \mathbf{v}_1) \pm k_n \,, \\ \omega_n^* &= k_n \,, & \omega_n^* &= 2\lambda_n\mathbf{v}_1 \pm k_n \,. \end{split}$$

Сравнивая задачу (1.1) - (1.3) с задачей (2.1) - (2.4), получаем новые значения резонансных частот

$$\omega_n^* = \lambda_n(2v + v_1) \pm k_n$$
, $\omega_n^* = 2\lambda_n(v + v_1) \pm k_n$, $\omega_n^* = 2\lambda_n v_1 \pm k_n$. (3.7)

Из сопоставления решения математических краевых задач (2.1) - (2.4) и (4.7) - (4.10) в [2] становится очевидным, что полученные новые резонансные частоты (3.7) отличаются от резонансных частот (5.7) в [2] значениями $2\lambda_n \mathbf{v}$, которые возникают в результате приложения распределенной, периодически меняющейся нагрузки вдоль стержня.

4. Численные результаты. Для иллюстрации эффективности полученных результатов рассмотрим в качестве конкретного примера стальной стержень с квадратным поперечным сечением со следующими параметрами: $F=1~{\rm cm}^2;~k=2/3;~\omega=50~{\rm c}^{-1};~\rho=7.85\times 10^{-3}~{\rm kr/cm}^3;~p=2~{\rm kr};~E=2.14\times 10^6~{\rm kr/cm}^2;~l=120~{\rm cm};~l_1=10~{\rm cm};~v=15~{\rm m/c}.$

Рис. 2. Изменения прогибов при движении нагрузки.

На рис. 2 показаны графики зависимостей |w| (сплошная линия) и $|w_1|$ (штриховая линия) от времени t в точке x=90 см. Величины |w| и $|w_1|$ представляют абсолютные значения величин вынужденных колебаний стержня, рассчитанных, соответственно, по формулам (1.9) и (3.6). Графики показывают, что наибольшее абсолютное значение прогиба $|w_1|$ больше, чем прогиба |w|. С увеличением t значения |w| и $|w_1|$ вначале возрастают, а затем убывают.

Заключение. Общее решение (3.6) всегда справедливо лишь для достаточно длинных волн, в то время как для коротких волн оно непригодно (изгибные возмущения вдоль стержня распространяются мгновенно). Полученные новые резонансные частоты (3.7) эффективны, если скорость перемещения нагрузки вдоль стержня большая.

Институт геофизики и инженерной сейсмологии им. А. Назарова НАН РА e-mail: karush.mkrtchyan.57@mail.ru

К. Ш. Мкртчян

Вынужденные поперечные колебания упругого шарнирно опертого стержня под действием поперечно распределенной движущейся нагрузки

Рассмотрены вынужденные поперечные колебания упругого стержня с учетом вращательного движения под действием сплошной периодически меняющей свою величину нагрузки, перемещающейся вдоль стержня с постоянной скоростью v. Решение поставленной задачи строится в виде ряда собственных форм колебаний. Получены новые резонансные частоты. Показано, что полученные значения прогибов зависят от скорости перемещающейся вдоль стержня нагрузки. Полученные результаты сравниваются с результатами исследований, проведенных ранее в этой области.

Կ. Շ. Մկրտչյան

Ազատ հենված առաձգական ձողի հարկադրական տատանումները լայնական բաշխված, շարժվող բեռի ազդեցության տակ

Դիտարկված են պտտական շարժման հաշվառումով, ազատ հենված առաձգական ձողի հարկադրական տատանումները, հավասարաչափ բաշխված պարբերական փո-փոխող իր մեծությունը շարժվող բեռի ազդեցության տակ։ Խնդրի լուծումը կառուցվում է տատանումների սեփական ձների շարքի տեսքով։ Ստացված են նոր ռեզոնանսային հաձախականություններ, կախված ձողի երկայնքով բեռի տեղափոխության արագությունից։ Կատարվել է ստացված արդյունքների համեմատական վերլուծություն։

K. Sh. Mkrtchyan

Forced Transversal Vibrations of Elastic Hinged-Opened Rod under the Action of a Distributed Transversal Moving Load

Taking into account the rotational motion under the action of a continuous load, periodically changing its value and moving along the rod at a constant speed, forced transverse vibrations of the elastic rod are considered. The solution to the problem is constructed in the form of a series of natural vibration modes. New resonant frequencies were obtained. It is shown that the obtained deflection values depend on the speed of movement of the load along the road. A comparative analysis of the results obtained was carried out.

Литература

- 1. *Мкртичян К. Ш.* Прикладная математика и механика. 1999. Т. 63. Вып.6. С. 1055—1058.
- 2. *Мкртичян К. Ш.* Изв. РАН. Механика твердого тела. 2019. № 1. С. 151-163
- 3. Koiter W.T. J. Sound Vib. 1996. V. 194. P. 636-638.
- 4. Avetisyan Ara S., Khurshudyan As. Zh. ZAMM J. of Applied Mathematics and Mechanics. 2021. V. 101. Iss. 10. https://doi.org/10.1002/zamm. 202000350.
- 5. *Тимошенко С. П.* Колебания в инженерном деле. М. Физматгиз. 1959. 439
- 6. Гукасян А. А., Саркисян С. В. Изв. АН АрмССР. Механика. 1990. Т. 43. № 4. С. 13–23.
- 7. *Ландау Л. Д., Лифшиц Е. М.* Теоретическая физика. Т. 7. Теория упругости. М. Наука. 1987. 248 с.