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Introduction. It is well-known that the Gibbs formula (which establishes a
relationship between probability and energy) is the basis of statistical physics.
Much attention has been paid to the justification of the Gibbs formula using
physical reasoning. In [1], it was shown that the Gibbs formula can have a
purely mathematical justification for both finite and infinite systems (for the
case of finite-volume systems, see also [2]). In our paper, we will show that
there is a deeper relationship between energy and probability, namely, energy
and probability are dual concepts.

Duality in mathematics is the principle according to which any true state-
ment of one theory corresponds to a true statement in the dual theory. Here, we
will show how this principle can be applied to solve the known problem of
describing a finite random field by a set of consistent conditional distributions
(see, for example, [3]). A direct probabilistic solution to this problem is given in
[2].

1. Duality of energy and probability in finite volume. Let A be a set with
a finite number of elements, 1 < |A| < o, and let each point t € A be asso-
ciated with the set X¢, which is a copy of some finite set X. Denote by X2 =
{x = (x,t € A):x; € X,t € A} the set of functions (configurations) defined on
A and tacking values in X. For any V c A, denote by x,, the restriction of
configuration x € X on V. For any V,I c A such that VNI =@, and any
x € XV, y € X!, denote by xy the concatenation of x with y, that is, the
configuration on V U I equal to x on V and to y on I. For one-point sets {t},
t € A, braces will be omitted.

Probability distribution on X4 is a function P,: X* - [0,1] satisfying the
following conditions:
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PA(x) >0,x € X2, Y, exaPr(x) =1. (1)

Probability distribution P, on X sometimes will be called a (finite) random
field.
A function A,: XA x XA - R satisfying

Ap(x,u) = Ap(x,2) + Mp(z,0),  x,u,z € XP, )

will be called a transition energy. The value A, (x,u) of this function can be
interpreted as an amount of energy needed to change the state of the physical
system from x to u (in the finite volume A).

The following result establishes a relationship between two fundamental
concepts: energy and probability.

Theorem 1. For a set Py = {P5(x),x € X"} of numbers to be a probability
distribution on X it is necessary and sufficient that elements of P, have the
Gibbs form

Pp(x) = 2R} e 3)

X exaexp{da(zuw)}’
where u € XA and A, = {AA(x, u),x,u € XA} is a transition energy on
XA x XM with
Pp(x)
Py(w)’

Ap(x,u) =1In x,u € XA,

Since A, satisfies (2), there is a function Hy, = {H, (x), x € X"} such that

Ap(x,u) = Hy(w) — Hy(x), x € XA, (4)
Substituting (4) into (3), we obtain

exp{—H, (x)}
Yzexs exp{—Hp(2)}’

where H, can be considered as a Hamiltonian (potential energy) of a physical
system. Hence, in the case of finite volume A, any function H, on X* can be
interpreted as a Hamiltonian (see [1]). Particularly, in the classical inter-
pretation,

x € X4,

Pp(x) =

Hy(x) = z Dppgy (xexs),  x € XA,

t,SEA

where @ is a pair interaction potential.
The relationship between probability distribution and transition energy can
be formulated in terms of operators. Let P = {P,} be the set of all probability
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distributions on X and let D = {A,} be the set of all transition energies on
XA x XA, Consider the operator T: P — D which maps an element from P to an
element from D according to the formula

Pp(x)

— = xu€Xxh
Py(u)

(TPy)(x,u) =1In
and the operator T~1:D — P which maps an element from D to an element
from P by the formula
exp{A,(x, W)}

T7A))(x) = ,
) = g exp(Batz, 1))

where u € X2, Due to condition (2), the operator T~ is correctly defined. It is
clear that both operators T and T~ depend on A, but to simplify the notations,
sometimes we will not directly specify this dependence.

The following statement holds true.

Proposition. Operators T and T~ are mutually inverse, that is, for all
P, € P and A, € D, it holds

x € X4,

T-TPy =P,, TT A)=A,.

It is easy to see that for any P, € P, function TP, satisfies the charac-
teristic property (2) of transition energies, while for any A, € D, function
T—1A, satisfies (1), which characterizes a probability distribution. Therefore,
any statement about probability P, can be formulated in terms of corresponding
transition energy A,, and vise versa.

2. Duality of transition energy field and conditional distribution. Let P,
be a probability distribution on X, There is a set Q(Py) = {Qf,x € XA\VV,V c
A} of its conditional probabilities

Pp(xx)
ZZEXV PA(Z.')E) ’

It is clear, that for any fixed V < A and ¥ € XA\, function Q{ is a probability
distribution on XV. We will also consider the set Q;(Py) = {QF, ¥ € XM\, t €
A} c Q(P,) of one-point conditional probabilities generated by P,.

Now, let Q = {qF, x € XA\, V < A} be a set of probability distributions qf
on X" parameterized by boundary conditions ¥ € XA\, V c A. A natural
question arises: does there exist a probability distribution P, on X2 for which Q
is a set of its conditional probabilities, that is, Q(P,) = Q? The answer is given
by the following statement.

Theorem 2. Let Q ={qf,¥ € X"\V,V c A} be a set of probability
distributions on X" parameterized by boundary conditions ¥ € XA\, V c A.
There exists a unique probability distribution P, on X such that Q(P,) = Q if
and only if the elements of Q satisfy the following consistency conditions: for

9
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any disjoint V,I c Aand x € XA\VYD x4 € XV, y € X!, it holds
G gy W) = qu wy)ay” (x). (5)

Condition (5) is a finite-volume version of the well-known R. Dobrushin’s
consistency condition, see [4]. The set Q = {qf, % € X"\V,V c A} of proba-
bility distributions satisfying (5) is called a finite-volume specification. Theorem
2 states that any finite-volume specification is a set of conditional probabilities
of some (uniquely determined) joint distribution.

Let A, be a transition energy on X x XA. Consider the set D(A,) =
(A%, x € XAV, V < A} of functions

L(x,u) = Ap(xx,ux), x,ueX’,xeXM,VvcA

It is not difficult to see that for any fixed V < A and ¥ € XA\, function A¥ is a
transition energy on XV x XV, that is,

AS(x,u) = AL (x,2) + AV (z,u), x,u,z€X'. (6)

Now, let us consider a set D = {57, € XA\, V < A} of transition energies
8% on XV x XV parameterized by boundary conditions ¥ € XA\, V c A. The
following statement holds true (see also [1]).

Theorem 3. Let D = {5, % € X4\, V < A} be a set of transition energies
8% on XV x XV parameterized by boundary conditions x € X4\V, V c A. There
exists a unique transition energy 4, on X4 x X4 such that D(4,) = D if and
only if the elements of D satisfy the following consistency conditions: for any
disjoint V,I c Aand ¥ € XN\VUD x e XV, y € X!, it holds

oy, uy) = 87 (x,w). (7)

The set D = {67, % € XA\V,V c A} of transition energies satisfying (7) is
called a finite-volume transition energy field. This notion was introduced in [1]
for the case of systems defined in infinite volume (on the integer lattice Z¢,
d=>1).

Previously established duality of probability P, and energy A, allows
establishing the one-to-one correspondence between systems Q and D. Namely,
for every fixed V c A, define operators Ty:{qf, x € XA\V} - {5}, x € X2\V}
and T, 2: {6, x € XAV} > {qf, x € X2\V} by

(Tyq¥)(x,u) = n 2 (77168) (x) =5 explyw) e xA (8)

ayw)’ zexV exp{8y(cw)}’

Then operators T: Q — D and T~1: D — Q defined by
10



Tqy =Tyqy, T7'65=Ty'6), xeX™N,Vca

are mutually inverse. Moreover, the elements of Q satisfy conditions (5) if and
only if the elements of D satisfy conditions (7). That means that there is a
duality between specification (conditional distribution) and transition energy
field.

Further, we will establish one of the important properties of the transition
energy — its additivity. Let D = {67, % € XA\V,V < A} be a transition energy
field. Then for any disjoint V,I c A and ¥ € XM\VUD x e XV, y,v e X!,
using (6) and (7), we can write

8Fu1(xy, uv) = 85, (xy, uy) + 6y, (wy, uv) = 553/(95, u) + 67 (y,v)
and
5%, (xy, uv) = 65, (xy, xv) + 85, (xv, uv) = 6% (y,v) + 5F° (x, w).

From here it follows, that for the elements of the one-point subsystem {Sf,f €
XM\t t € A} c D, one has
87 (x,u) + 6F4(y,v) = 6 (y,v) + 65" (x,w) 9)

for any x,u € Xt, y,v € X5, x € XA\t ¢, s € A. Relation (9) has a simple
physical meaning. There are two ways to change the state of the system in {t, s}
from xy to uv with the state X in A\{¢, s} unchanged. First, change the state of
the system at point t from x to u under boundary condition yx, and then at point
s from y to v already under boundary condition ux. Or, starting from point s,
change the state from y to v under the boundary condition xx, and then, under
the boundary condition vi, change it at point t from x to u. Naturally, the same
amount of energy must be spent in both cases.

A set Dy = {67,% € XA\t,t € A} of one-point transition energies 67 on
Xt x Xt parameterized by boundary conditions x € XA\t, t € A, and satisfying
consistency conditions (9) is called a (finite-volume) one-point transition energy
field (see also [1, 2]).

Theorem 4. A function A, on X2 x X2 is a transition energy if and only if
it can be represented in the form

X Ut X u
AA(X, ‘U.) — StlA\tl (xtr utl) + 5t2t1 A\{tq1,t2} (xtzﬂutz) 4ot 5tnA\tn (xtn’utn)'

where A = {t;,t;, ..., t,} is some enumeration of points in A, |A| =n, and
D, = {8F,x € X"\, t € A} is a one-point transition energy field.

3. Application of the duality. In this section, we will show how the estab-
lished duality between the transition energy and probability distribution can be
applied to solve a known problem of the description of a finite random field by
a set of consistent (one-point) conditional distributions.

This problem was considered by many authors. In the well-known paper
[3] by S. Geman and D. Geman, it was divided into two questions (tasks). First,
how one can define (compute) a joint distribution knowing its conditionals?
And second, the most difficult one, how one can spoil conditional distributions,
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that is, when a given set of functions are conditional probabilities for some
(necessary unique) distribution on XA?

As it was mentioned above, the characteristic property (5) of conditional
probabilities was known and successfully applied to the problem of describing
lattice random fields by specifications (see [4]). However, one cannot derive the
characteristic property of one-point conditional probabilities from (5), and such
property remained unknown for a long time. The consistency conditions for a
set of one-point probability distributions parameterized by boundary conditions
to be a one-point subset of some (uniquely determined) specification were
introduced in [5] for the case of infinite systems.

The solution to the problem of the describing finite random field by a set of
consistent one-point conditional distributions was given in [2] using a purely
probabilistic approach. Below, we will give the solution to this problem based
on the duality between transition energy and probability.

Let Q; = {qf,x € X2\t,t € A} be a set of probability distributions g7
on Xt parameterized by boundary conditions x € XA\t, t € A, and let D; =
{6?,9? € XA\t,t € A} be a one-point transition energy field. Consider the
mutually inverse operators T; = {T,,t € A}:Q; » D; and T7'={T/1,te
A}: D, - Q, where T, and T1, t € A, are defined by (8):

§¥(x,uw) = (Tyqf)(xw), qf(x) = (T716F)(x), xueXtxe XM teA

Since the elements of D; satisfy condition (7), the elements of Q; cannot be
arbitrary and have to satisfy appropriate consistency conditions. To find such

conditions, we note that for all t,s € A, ¥ € XA\&s} and x,u € Xt, y,v € X5,
one has

57 (e, w) + 884y, v) = (T1q”) o, w) + (T1qF) (,v)
. <qt’E () q?‘()}))
qu(u) g (v)

and
83 (y,v) + 687 (x,u) = (T1qF) o, v) + (Toqf™) (x, w)
o <q§x(y) . qf”(ﬁf))
a;"(v) q7"(Ww)
Hence, the elements of D, satisfy condition (7) if and only if the elements

of Q, satisfy the following consistency condition: for all t,s € A, ¥ € XA\(ts}
and x,u € X¢, y,v € X5 it holds

;" ()qF* e W ) = q;” Wad* W)g (Dgd* (). (10)

A set Q, = {qf, ¥ € X*\t,t € A} of probability distributions gf on X*

parameterized by boundary conditions ¥ € XA\t t € A, and satisfying the
consistency conditions (10) is called a (finite-volume) 1-specification.
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Let us now show how the established relation between 1-specification and
one-point transition energy field allows constructing the distribution P, on X
compatible with Q,, that is, such P, that Q, (P,) = Q;.

First, let us find the connection between a probability distribution P, and
its one-point conditional probabilities Q,(Py) = {QF, x € XA\, t € A}. Accor-
ding to Theorems 1, there exists a unique transition energy A, for P, such that

-1
PaGe) = P 1) (2 exp{AA(z,x)}) ,

Taexr ez} \ £y

where we used property (2) of A,. Further, due to Theorem 4, there exists a one-
point transition energy field D; (A,) = {AT, x € X"\, t € A} such that

D exp(a(z0)

zexA

- Z exp{Bg* (2, %) + By N (7, 71,
zexA
+ te (Ztn' xtn)}.
Note that by definitions of D;(A,) and Q,(P,), we have

PR _ | (@)

—~— =In——=, x,z€XixeXMN teA\,
Py (xx) Q7 (x)

A¥(z,x) = Ap(zX, x%) = In

and hence,

ZA\t Xt1ZA\(t1,t2) XA\tn -
Py (x) = Z Qt1 (Zt1) Qtz (th) tn (Ztn)
A - ZA\t Xt ZA\(ty b0} T T XA, '
zexh Qtl 1(xtl) Qtzl v (th) Qtn (xt")
The obtained connection between P, and Q,(P,) can be used to define a

probability distribution compatible with a given 1-specification. Namely, let
Q, = {qf ¥ € XM\, ¢ € A} be a 1-specification. For any x € X2, put

-1
ZA\ Xt1ZA\{tq,t2} XA\
Py(x) = § e, 3 (Ztl) qtzl o (th) . .qtn " (Ztn)

S () a0 () o4 () )

where A = {t,, t,, ..., t,,} is some enumeration of the points of A, n = |A|. Due
to (10), this formula is correct, that is, the values of P, does not depend on the
way of enumeration of the points in A. It is not difficult to see that P, is a
probability distribution on X2, Finally, by direct computations, one can show
that Q1 (Py) = Q1.

Hence, the additivity property of the transition energy allowed us to find
the connection between the joint and conditional distributions, and the
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consistency conditions of the elements of the one-point transition energy field
prompted the form of the consistency conditions of the elements of the one-
point conditional distribution.
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