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Computer vision is a rapidly developing field in modern computer science that deals
with various challenging problems. Both mono and stereo imagery data are widely used for
tasks such as depth estimation, visual odometry, and SLAM (Simultaneous Localization
and Mapping). To ensure the clean verification and robust performance of the resulting
software solutions, datasets should contain precise ground truth data. However, creating a
real-world stereo dataset is a costly task as it requires stereo cameras and precise hardware
for ground truth measurements (such as lidars, lasers, barometers, accelerometers, etc.).
These types of hardware are often expensive and not accessible to intermediate users. An
alternative approach is to use synthetic datasets, which are collections of computer-generated
data designed to mimic real-world data. Synthetic datasets are used to train Al models when
real-world data is not available, or to test the performance of models in simulated environments.

Our method suggests combining real-world data collection with synthetic data gene-
ration methods to maintain photorealism while gaining the advantages of synthetic data
generation flow.

Keywords: computer vision, stereo dataset, synthetic dataset, simulated environment,
photorealism.

Introduction. Stereo datasets are an essential component in various computer
vision and autonomous system applications, such as SLAM [1]. They are used to
train models for tasks such as semantic segmentation, object detection, and more.
Stereo datasets are frequently generated using 3D vehicle simulators like AirSim
[2] and Gazebo [3]. These simulators provide a wealth of information that can be
extracted, including depth maps, camera positions, and IMU data, among others.

While synthetic dataset production has several advantages over traditional
real-world data collection methods, it also has its own set of limitations and
weaknesses. One of the main limitations is the cost of obtaining high-quality 3D
assets and scenes, which may come with licensing restrictions. Additionally,
creating a realistic virtual environment that accurately simulates the real world
requires a significant amount of programming and 3D design expertise. The
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simulation tools themselves can also be limited and may not accurately reflect the
complexity and variability of real-world data, leading to models that perform well
in simulation but poorly in real-world scenarios.

Furthermore, synthetic dataset production can also be computationally
intensive, requiring significant processing hardware and time to complete. This can
be a significant drawback for those with limited resources, as the data collection
process can be significantly longer than real-world data collection.

To overcome these limitations, our work describes a novel approach for
stereo dataset production that combines real-world data with camera simulation in
a 3D virtual environment. This approach provides photorealistic images from the
real-world data while also removing hardware errors through ground truth extraction
in the simulator. This allows for the generation of high-quality stereo datasets that
accurately reflect the real-world, while also reducing the time and computation
resources required for data collection.

Moreover, this approach offers greater freedom in terms of camera
positioning, lighting, and object placement. Unlike real-world vehicles, virtual
environments are not limited by the capabilities of physical vehicles, and cameras
in a virtual environment can be programmed to have different intrinsic parameters
or lenses. This opens new possibilities for stereo dataset production and allows for
the generation of datasets that are not restricted by real-world limitations.

In conclusion, the novel approach to stereo dataset production described in
the text provides a compelling solution to the limitations and weaknesses of
synthetic dataset production. By combining real-world data with camera simulation
in a 3D virtual environment, it offers a cost-effective and efficient method for
generating high-quality stereo datasets that accurately reflect the real-world.

Related works. In this section, we study various stereo datasets and recent
advancements in stereo dataset synthesis. The advancements in machine learning
heavily rely on the quality and quantity of data available. Hence, the current wave
of solutions in the field faces challenges related to data size, generation, and
ground truth availability. To ensure continued progress and evaluate algorithms,
robust and relevant datasets are essential.

Synthetic stereo datasets. To address the data challenges, several synthetic
stereo datasets have been created. These datasets provide a platform for machine
learning models to learn from and to be evaluated against.

Synthetic dataset performance. One such dataset is the MPI-Sintel dataset
[4], which was created in 2012. The dataset is used to evaluate optical flow
algorithms and is derived from the animated film "Sintel." The dataset contains
1064 synthesized stereo images and ground truth data for disparity and provides a
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wide range of image degradations and effects. The dataset is generated using the
Blender 3D generation open-source tool. Despite its popularity, the biggest
drawback of the MPI-Sintel dataset is the graphical style of the movie. Models
trained on this dataset have difficulties in recognizing real-world depth and are not
suitable for practical inference in real-life scenarios.

Another synthetic dataset is the Virtual KITTI dataset [5], created in 2016.
The dataset was designed for the evaluation of computer vision models for various
video understanding tasks such as object detection, multi-object tracking, semantic
segmentation, optical flow, and depth estimation. The dataset includes 50 high-
resolution videos, generated from five different virtual worlds in urban settings,
under different imaging and weather conditions. The virtual worlds were created
using the Unity game engine [6] and a novel real-to-virtual cloning method.
Although widely used, the dataset is limited to street views and the camera
movements are restricted to the car's forward movement.

The TartanAir dataset [7] is a more recent addition, created in 2020. The aim
of this dataset was to expand the limited scenes and camera motions provided by
famous real datasets such as KITTI [8] or EuroC [9]. The dataset includes
sequences from 30 various simulation environments, including indoor and outdoor
scenes, and features balanced camera motion in 6 DoF. The dataset also includes
challenging visual effects such as day-night alterations, weather effects, seasons,
and others. Although the dataset is diverse, the photorealism is still far from the
quality of real video frames.

In conclusion, synthetic stereo datasets have proven to be useful in
evaluating optical flow algorithms and training machine learning models. Despite
their limitations, they provide a platform for continued progress in the field.

Method. The dataset generation steps are illustrated in Fig. 1. As a first step
we are capturing photo images by a DJI Mini SE drone. The images are later used
for real-world large scene point cloud creation. The Litchi API [10] application is
used to program the drone. The photos are taken at a minimum interval of one
second, with a flight speed of 2.5 km/h.

To capture an area, the drone is flown in circles with a radius of 50 meters,
at a height of 30 meters above the surface. This height was chosen based on
considerations of drone safety and the presence of environmental objects, such as
trees and buildings.

Several camera views and drone trajectories were tested, and a circle with a
50-meter diameter was found to produce the best results. The image resolution is
4000x3000 and GPS data is attached to each image.
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Fig. 1. Dataset generation steps

To enhance the 3D representation of the real-world large scene, the 3DF
Zephyr [11] open-source tool is employed to calculate the point cloud (Fig. 2). This
tool is known for its ability to create precise and comprehensive 3D models from
photographs. The point cloud calculation is implemented by using Multi-View Stereo
and Structure from motion algorithms. Multi-View Stereo algorithm consists of two
consequent steps. First is depth map computation which is measured via formula (1):

E(d) = E_data(d) + A * E_smooth(d), (1)

where d is the depth value, £ data is the data term that measures the similarity
between the reference image and the corresponding pixels in the other images at
depth d, E_smooth is the smoothing term that encourages the neighboring pixels to
have similar depth values, and A is a weighting parameter that balances the two
terms. The second step is point cloud generation. Once the depth maps have been
computed for each image, a dense point cloud can be generated by triangulating the
3D coordinates of corresponding pixels in different views. The formula for
triangulating a 3D point X from two camera positions Cl and C2, and
corresponding image points x1 and x2, is (2):

X = (1/P1) * x1 = (1/P2) * x2, )

where P1 and P2 are the 3x4 camera matrices for camera positions C1 and C2,
respectively.
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Fig.2. Generating sparse point cloud based on the images and camera positions

Once the point cloud is generated, the next step is to create a mesh using the
same tool (Fig. 3). The mesh acts as a framework for the 3D model, providing
structure and form. The creation of a mesh from the point cloud allows for a more
intuitive and recognizable representation of the real-world scene.

2

Fig. 3. Generating mesh based on the point cloud

Finally, a texture is added to the mesh, which is created from the images
captured by the DJI Mini SE drone. The texture provides visual detail to the 3D
model, giving it a more lifelike appearance. The combination of the mesh and the
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texture results in a highly detailed and accurate representation of the real-world
scene.

Small pieces are joined by using the control point method. The same control
points are picked on 2 or more separate meshes, and a unified mesh is created (Fig. 4).
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Fig. 4. Merging two small textured meshes

The textured mesh is then uploaded to the Blender 3.4 [12] open-source tool.
The Blender platform enables the user to program one or more cameras with
randomized positions, allowing for easy extraction of photos and accompanying
depth maps. Scripting is achieved using Python 3 and is seamlessly integrated into
the Blender environment. It is important to note that the use of two cameras is not a
limit - it is possible to render images and depth maps from multiple cameras.

Of course, the photos produced in the virtual environment are not identical to
the original photos. This is due to several factors such as the absence of small or
intricate objects like trees or chimneys in the virtual environment. Additionally, the
scene geometry may be slightly distorted. These differences can be observed in the
comparison screenshots (Fig. 5).

The distortion of the 3D environment is evident by comparing the bottom
part of the screenshots, as the whole scene is slightly shifted and the same camera
position and angles in the virtual environment result in a slightly different
viewpoint. The camera positioning used in the virtual environment was sourced from
the DJI Mini SE drone flight logs.
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Fig. 5. Original photo made by the DJI SE Mini drone (Top). Rendered image from the
virtual environment (Bottom)

Blender also allows to generate depth maps for the rendered images (Fig. 6).
As rendering happens in simulated environment, depth maps are ideal.

Fig. 6. Rendered image from the virtual environment (Left). Depth map of the rendered
image (Right)

Generated dataset. By following the pipeline outlined in methodology
section, a dataset of 1,000 images (captured by left and right cameras), corresponding
depth maps and camera position ground truths were generated. The structure of the
dataset is based on the KITTI visual odometry dataset. Each image and depth map
has a resolution of 1280x720.

The generated virtual environment spans an area of 153,000 square meters.
The camera positions and angles are randomized, with a height range of 20-100
meters and a horizontal coverage of approximately 38,480 square meters to prevent
the capturing of the map edges in the rendered photos. The camera view angles are
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also randomized and range from -45 to 45 degrees for X and Y rotations and from
0 to 360 degrees for Z rotation.

Scene lighting is also randomized, utilizing the Sun light feature of Blender
3.4. The script adjusts the light angles (ranging from 30 to 150 degrees for X, Y,
and Z rotations) and intensity (from 5 to 10) to simulate different times of day and
levels of cloudiness. The photo realism is measured with formula (3):

li1(x,y)-i2(cy)1)
M=+N#*255%3

Error = 100 * (Z ) 3)

where i1, i2 are the image intensity values, M and N are the image width and
height. The mean photo realism error across the image set is 12.49%. As a
reference, the famous Virtual KITTI dataset’s photo realism error varies from 5 to
20 percents depending on the image sequence.

Conclusion. This work presents a simple and robust flow for producing
photorealistic stereo-datasets which do not require expensive hardware and IMUs
for ground truth extraction. The flow uses open-source tools and does not require
heavy processing for 3D environment synthesis. The other advantage of the presented
flow is its flexibility in randomized data generation. That includes generated image
resolution, camera positioning, light conditions, etc.

The resulting photo realism error was compared to the widely used Virtual
KITTI dataset and can be considered as acceptable.
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U.U. U4EShUSUL, S.£. UUS3UL, U.S. arreNravuu

dNSNAEULPUSPY &Y, Ur260SUUUL USEEN-SI3ULLE P
U4 ULUONPULEP USBNOUUL UtENY SEUNNUYUL SENNNTUUL BY,
ArNkE3UL NCNTUUL ZUUULN

Zudwljupgsuyhtt mbkunnnipniup dudwbwluwlhg hwdwlwpgsuhtt ghnntpjui ke
wpwg qupqugnn njnpun E npp qpunynid | nnwpunbuwl) pupn jpughpubpny: Pusybtu dnin,
wgytiu b unbpbin wunlbpubph ndjuyutpp (uyinptt oquuugnpéymd Eu junpoipyut gw-
hwwndwl, nbunnuljut ninnpnodw b SLAM-h (Simultaneous Localization and Mapping) hw-
dwp: Unwgdws spugpuyptt (nisniditinh hutnwl uinnignidu i juynit junwpnudt www-
hnytnt hwdwp nyjujubph hwjuwpwsniubpp yhwnp E yupnibwlt £ogphin wnknklnipemniu
hpwlwt nhpph dwuht: Ujuntwdbbiwguhy, ppujut wojuwphh unbptn wdjujatph hwjw-
pwédnih unbndnudp dSwhpuwwnwn juughp £ putth np wyt wwhwignid k unbkptn wnkuwjughly-
ubp b &2gphwn uwppbp hpwlut phpph swihnufubph hufwp (ophtwy (hrywptbn, jwqbplbp,
pupdpuwswthbp, wpuquyuthtp b wyb): Ldwb vwppuynpnidubpn unynpwpwp putly B b
hwuwubh skt hwdwpuwunby ogunugnpéudwts hwdwp: Ujptinpuipuyhtt dUninkgnid £ wiphtu-
nwlub nfjuyitbph hwjupwsdniubph oquuugnpdnudp, npnup hwdwlwnpgsh thongny unkins-
Jwd hujupwdniubp ki pwtp twjpuinbudus Eu hpuljut wopuwphh widjuynbph tdwbwy-
dwb hwdwp: Uphkunwljut wfjuitph hwjupwsniubpp unynpwpwp oquuugnpsynid
wphbunwlut pwtwlwinput dngbjubph nunigdwt hwdwp, Epp hpwjuwt wojuwphhp
njjuukpp hwuwubh sk, hyybu bwb dnpijuynpdwt vhowduypmud dnpkjubph wohiw-
wnwlipp thnpdwplbnt hwdwp:

Unwownlynid t hwdwwntnt] ppuljutt wopwphh njuitph hwjwupwugpnidp wp-
hhunwlwi nfyuyiiiph unbnsdwi Ukpnpubph htbn' quwhwywiting htswybu $nunnnbughqup,
wjuytu b wphtunwljut wyjujubph untnddw pupugulupgh wpwybnipniuttpp:

Unwigpuyhli punkp. hadwljupgsuhtt mbunnnipinil, unbpbn wjujukph hwduw-
pwdnt, wphtunwlw ndjuibph hwjwpwsnt, dnpbjudnpyws dhpwduyp, ninnntwhqu:
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A.A. ABETUCHH, T.b. XAYATPSH, M.T. TPUT'OPSIH

METO/J I'EHEPAIIUH ®OTOPEAJIMCTHYHbBIX U CUHTETUYECKHNX
CTEPEOHABOPOB JIAHHBIX JIJIsI BU3YAJIbHOM OJIOMETPUU U OLIEHKH
I''IYBUHbI

KommbloTepHoe 3peHue - 3T0 ObICTpOpa3BHBAaIOIIAsCs 00JacTh B COBPEMEHHOW
KOMITBIOTEPHOH HayKe, KOTOpas 3aHUMAaeTCs PELICHHEM pa3JIMYHBIX CIOXHBIX MPOOIIEM.
MoHO- 1 cTepeon300paXkKeHUst IMMPOKO HCTIONB3YIOTCS LI TaKUX 3aa4, KaK OLEHKa TyOHHEL,
BusyanbHas onomerpus 1 SLAM (Simultaneous Localization and Mapping). Jlnst oGecrie-
YeHHs XOPOLICH MPOBEPKU U HAJIEKHOH pabOThl MOJTYYSHHBIX IPOrPAMMHBIX PELICHU Ha-
0OpbI JaHHBIX OJDKHBI COEPKAaTh TOUHYIO HH()OPMALHUIO O PEabHOM IOJIOKEHHH 0OBEKTOB.
OmHako co3maHue pearbHOro Habopa cTepeon300pakeHMH SBIACTCS 3aTpaTHOW 3amadet,
TaK Kak TpeOyeT HMCIOJIb30BaHUS CTEPEOKaMep U TOUYHOTO 00OpYyIOBaHMS ISl M3MEPEHHS
peanbHOro MOJIOKEHNSI OOBEKTOB (TaKMX Kak JIMJApHl, J1a3epbl, 0apOMeTpPhI, aKCEIePOMETPEI
u T.Il.). OTH THUIIBI 060py[lOBaHl/IH 4acCTo SABJIAKOTCA AOPOTUMH U HEAOCTYIITHBIMU JJI1 PAAOBBIX
MOJI30BaTENEH. AﬂbTepHaTl/IBHI)IM II0AXO0J0M SABJICTCA HCIIOJIB30BAHUEC CHHTCTHUUYCCKUX
KOMITIBIOTEPHO-CI'€HEPUPOBAHHBIX Ha60pOB JaHHBIX, MIPEAHA3HAYCHHBIX JI1 UMUTAIIUN pEaJib-
HBIX ciieH. CHHTeTHYecKHe HaOOphl JaHHBIX YacTO MCIOJB3YIOTCS A 00ydYeHHs Moemei
HCKYCCTBEHHOT'O HHTEJUIEKTA B CIIydasiX, KOT/ia peabHble JaHHbIC HEIOCTYIIHBI, MU JIS TECTH-
POBaHUS IPOM3BOMUTEIILHOCTH MOJIENiel B CHMYJIMPOBAHHBIX CpElax.

[pemiaraeMplii HAMH METOJ TIPEAJIaraeT KOMOMHHPOBATH COOP pealbHBIX TaHHBIX C
METOJaMH I'eHEepalliil CHHTETHYECKHX TaHHBIX, YTOOBI COXPaHATH (OTOPEATU3M, COXPaHSIs
MPEeUMYIIECTBA MIPOLEAYPhl TeHEpallui CHHTETHYECKUX JTaHHBIX.

Kniouegvle cnoea: KOMIBIOTEPHOE 3pEHHE, CTEPEOHAOOp NaHHBIX, CHHTETHYECKUI
Ha0Op JaHHBIX, CHMYJIMPOBaHHas cpesa, GoTopeaansm.
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