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Abstract. In this paper, we will continue to consider “under what sharing value conditions,
does f ′(z) = f(z+c) hold?” For example, we prove the following result: Let f(z) be a meromorphic
function of hyper-order strictly less than 1, and let a, b be two distinct constants. If f ′(z) and
f(z + c) share ∞ CM and a, b IM, and if N(r, f) = O(N(r, f)), (r → ∞), then f ′(z) = f(z + c).
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1. Introduction

In the study of complex differential equations, Nevanlinna theory has a wide

range of applications. In addition, with the difference correspondence of the logarithmic

derivative lemma obtained by Chiang-Feng [4], and Halburd-Korhonen [7] respectively,

the complex domain differences and the complex difference equations have also been

rapidly developed. The related results, readers can refer to [3].

The study of complex differential-difference equations can be traced back to

Naftalevich’s work in [6, 16, 17], but the results of using Nevanlinna theory to

study differential-difference equations are relatively limited, the reader is invited to

see [5, 9, 11, 13, 14].

The delay equation f ′(x) = f(x−k), (k > 0) have been studied extensively in real

analysis. The related results can be found in [1]. Inspired by such results, Liu and

Dong [12] discussed the properties of the solutions of complex differential-difference

equation f ′(z) = f(z + c), (c( ̸= 0) ∈ C) by using Nevanlinna theory.

We have tried to clarify the form of the solutions to the equation f ′(z) = f(z+c),

but unfortunately, this attempt has not been successful. Then, we investigated this

equation from another point of view, namely, “under what sharing value conditions,

does f ′(z) = f(z + c) hold?” And in [18, Theorem 1.4], we obtained:

1The work was supported by the NNSF of China (No. 12061042) and the NSF of Shandong
Province (No. ZR2018MA021, ZR2022MA071).
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Theorem A. Let f(z) be a transcendental entire function of finite order, and let

a(̸= 0) ∈ C. If f ′(z) and f(z + c) share 0, a CM, then f ′(z) = f(z + c).

Afterwards, for entire functions, Qi et al. improved Theorem A to “share 0 CM

and a IM ” in [19, Theorem 1.2] and “share two distinct constants a, b CM” in [20,

Theorem 2.1]. Further, Huang and Fang [10, Theorem 1] improved the value sharing

assumption to “share two distinct constants a, b IM”. In addition, some authors tried

to extend Theorem A to meromorphic functions:

Theorem B [19, Theorem 1.1]. Let f(z) be a non-constant meromorphic function

of finite order, and let a(̸= 0) ∈ C. If f ′(z) and f(z + c) share a CM, and satisfy

f(z + c) = 0 → f ′(z) = 0, f(z + c) = ∞ ← f ′(z) = ∞, then f ′(z) = f(z + c).

Further, f(z) is a transcendental entire function.

Remark. Let zn(n = 1, 2, . . .) be zeros of f − α with multiplicity ν(n). If zn are

also ν(n) multiple zeros of g − α at least, then we write f = α → g = α, where

α ∈ C ∪ {∞}.
From Theorem 2.1 in [2], we know that:

Theorem C. Let f(z) be a non-constant meromorphic function of hyper order

ρ2(f) < 1. If f ′(z) and f(z + c) share 0,∞ CM and 1 IM, then f ′(z) = f(z + c).

In this paper, we will continue to consider the above question as f(z) is a

meromorphic function. We, for instance, get “Let f(z) be a meromorphic function

of hyper-order strictly less than 1, and let a, b be two distinct constants. If f ′(z)

and f(z+ c) share ∞ CM and a, b IM, and if N(r, f) = O(N(r, f)), (r →∞), then

f ′(z) = f(z + c).” The reminder of this paper is organized as follows: In Sections 3

and 4, we will improve Theorem B and Theorem C, respectively. In Section 5, we

will give some partially shared values results for f ′(z) and f(z + c), which can be

seen as the improvements of Theorems B and C as well.

2. Lemmas

Lemma 2.1. [8, Theorem 5.1] Let f(z) be a meromorphic function of hyper-order

strictly less than 1. Then,

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).

Throughout the paper, we denote by S(r, f) any quantity satisfying S(r, f) =

o(T (r, f)) as r →∞ outside a possible exceptional set of finite logarithmic measure.

Lemma 2.2. [22, Lemma 1.2] Let f1(z), f2(z) be two meromorphic functions, then

N(r, f1f2)−N

(
r,

1

f1f2

)
= N(r, f1) +N(r, f2)−N

(
r,

1

f1

)
−N

(
r,

1

f2

)
.
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Lemma 2.3. [15],[21, Theorem 1.13] Let f(z) be a non-constant meromorphic

function, and R(f) = P (f)
Q(f) , where P (f) =

p∑
i=0

αif
i and Q(f) =

q∑
j=0

βjf
j are two

mutually prime polynomials in f(z). If the coefficients {αi(z)}, {βj(z)} are small

functions of f(z) and αp(z) ̸≡ 0, βq(z) ̸≡ 0, then

T (r,R(f)) = max{p, q} · T (r, f) + S(r, f).

Lemma 2.4. Let f(z) be a non-constant meromorphic function of hyper-order

strictly less than 1, and let a1, . . . , ap ∈ C, p ≥ 2, be distinct points. Then,

(p− 1)T (r, f(z + c)) ≤
p∑

k=1

N

(
r,

1

f(z + c)− ak

)
−N(r, f(z + c))

+N(r, f ′)−N

(
r,

1

f ′

)
+ S(r, f).

Proof. Let

P (f) =

p∏
k=1

(f(z + c)− ak),

then we have

(2.1)
1

P (f)
=

p∑
k=1

bk
f(z + c)− ak

,

for some constants bk. From Lemma 2.1 and the lemma of logarithmic derivative,

we have

(2.2) m

(
r,

f ′

f(z + c)− ak

)
= m

(
r,

f ′

f(z)− ak

f(z)− ak
f(z + c)− ak

)
= S(r, f).

Hence, by (2.1) and (2.2), it follows that

m

(
r,

f ′

P (f)

)
≤

p∑
k=1

m

(
r,

f ′

f(z + c)− ak

)
+ S(r, f) = S(r, f).

From the above equation, we get

(2.3) m

(
r,

1

P (f)

)
= m

(
r,

f ′

P (f)

1

f ′

)
≤ m

(
r,

1

f ′

)
+ S(r, f).

From (2.3), we have

T (r, f ′) = m

(
r,

1

f ′

)
+N

(
r,

1

f ′

)
+O(1)

≥ m

(
r,

1

P (f)

)
+N

(
r,

1

f ′

)
+ S(r, f)

=

p∑
k=1

m

(
r,

1

f(z + c)− ak

)
+N

(
r,

1

f ′

)
+ S(r, f),
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which means

m(r, f(z + c)) +

p∑
k=1

m

(
r,

1

f(z + c)− ak

)
≤ m(r, f ′) +N(r, f ′) + T (r, f(z + c))−N(r, f(z + c))−N

(
r,

1

f ′

)
+ S(r, f)

≤ m

(
r,

f ′

f(z + c)

)
+m(r, f(z + c)) +N(r, f ′) + T (r, f(z + c))

−N(r, f(z + c))−N

(
r,

1

f ′

)
+ S(r, f)

= 2T (r, f(z + c))− 2N(r, f(z + c)) +N(r, f ′)−N

(
r,

1

f ′

)
+ S(r, f).

Therefore,

(p− 1)T (r, f(z + c)) ≤
p∑

k=1

N

(
r,

1

f(z + c)− ak

)
−N(r, f(z + c))

+N(r, f ′)−N

(
r,

1

f ′

)
+ S(r, f).

From Lemma 8.3 in [8] and Lemma 2.1, we have the following lemma:

Lemma 2.5. Let f(z) be a meromorphic function of hyper-order strictly less than

1, then we have

N(r, f(z + c)) = N(r, f) + S(r, f), N(r, f(z + c)) = N(r, f) + S(r, f),

N

(
r,

1

f(z + c)

)
= N

(
r,

1

f

)
+ S(r, f),

and

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.6. Let f(z) be a meromorphic function of hyper-order strictly less than

1. If f ′(z) and f(z + c) satisfy f(z + c) = ∞ ← f ′ = ∞, then N(r, f(z + c)) =

N(r, f ′) = N(r, f) = S(r, f).

Proof. By the assumption and Lemma 2.5, we have

N(r, f) +N(r, f) = N(r, f ′) ≤ N(r, f(z + c)) + S(r, f)

= N(r, f) + S(r, f),

which means that

N(r, f) = S(r, f),

and

N(r, f(z + c)) = N(r, f ′) = N(r, f) = S(r, f).
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Lemma 2.7. [21, Lemma 4.3] Suppose that f(z) is a non-constant meromorphic

function and P (f) = apf
p + ap−1f

p−1 + · · · + a0 (ap ̸= 0) is a polynomial in f(z)

with degree p and coefficients ai (i = 0, 1, . . . , p) are constants, suppose furthermore

that bj (j = 1, . . . , q) (q > p) are distinct finite values. Then,

m

(
r,

P (f)f ′

(f − b1)(f − b2) · · · (f − bq)

)
= S(r, f).

Lemma 2.8. Suppose that f(z) and g(z) are meromorphic functions such that

N(r, f) = N(r, g) = S(r, f) and a, b are two distinct finite values. Let

V (z) =

(
f ′

f − a
− f ′

f − b

)
−
(

g′

g − a
− g′

g − b

)
.

If V (z) ≡ 0, then either

2T (r, f) ≤ N

(
r,

1

f − a

)
+N

(
r,

1

f − b

)
+ S(r, f),

or

f(z) = g(z).

Proof. From V (z) ≡ 0, we have

(2.4)
f − a

f − b
= A

g − a

g − b
,

where A is a non-zero constant. If A = 1, then we obtain f(z) = g(z). If A ̸= 1,

then it follows from (2.4) that

A− 1

A

f − Ab−a
A−1

f − b
=

a− b

g − b
.

Since N(r, f) = N(r, g) = S(r, f), we get N

(
r, 1

f−Ab−a
A−1

)
= S(r, f). Clearly,

Ab−a
A−1 ̸= a and Ab−a

A−1 ̸= b, and then from the second main theorem, we obtain

2T (r, f) ≤ N

(
r,

1

f − a

)
+N

(
r,

1

f − b

)
+ S(r, f).

3. The improvement of Theorem B

Proposition 3.1. Let f(z) be a non-constant meromorphic function. If f ′(z) and

f(z + c) satisfy f(z + c) = 0 → f ′ = 0 and f(z + c) = ∞ ← f ′ = ∞, then f(z)

must be transcendental.

Proof. Suppose f(z) is a non-constant rational function. Then, set

f(z) =
P (z)

Q(z)
,

where P (z) and Q(z) are two mutually prime polynomials. Hence,

f ′(z) =

(
P

Q

)′

=
P ′Q− PQ′

Q2
=

P1

Q1
,
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and

f(z + c) =
P (z + c)

Q(z + c)
,

where P1 and Q1 are two mutually prime polynomials. If Q(z) is not a constant,

then by the assumption that f(z + c) =∞← f ′(z) =∞, we have

Q1(z) = 0→ Q(z + c) = 0.

Let z1 is a zero of Q(z), then we have Q1(z1) = 0, and so Q(z1 + c) = 0. From

Q(z1+c) = 0, we have Q1(z1+c) = 0, which implies that Q(z1+2c) = 0. Continuing

inductively, we get that Q(z1 + nc) = 0, which is impossible. Hence, Q(z) is a

constant. And so, f(z) is a non-constant polynomial. Suppose deg f(z) = p ≥ 1,

then we know the number of zeros of f(z + c) is p and the number of zeros of f ′

is p− 1, which contradicts the assumption f(z + c) = 0 → f ′ = 0. (Here, multiple

zeros are counted to their multiplicities.) Therefore, f(z) is transcendental.

Remarks. (1). Proposition 3.1 is an improvement of Theorem B and [2, Proposition

1]. Moreover, Proposition 3.1 leads us only to consider the condition that f(z) is a

transcendental meromorphic function in this paper.

(2). The main ideas of Proposition 3.1 and Theorem 3.1 come from Theorem B,

however, the key way of proof is somewhat different. Hence, for the convenience of

the reader, we provide the proof.

Theorem 3.1. Let f(z) be a transcendental meromorphic function of hyper-order

strictly less than 1, and let a( ̸= 0) ∈ C. If f ′(z) and f(z+ c) satisfy f(z+ c) = 0→
f ′ = 0, f(z + c) = a→ f ′ = a and f(z + c) =∞← f ′ =∞, then f ′(z) = f(z + c).

Proof of Theorem 3.1. Suppose that f ′(z) ̸≡ f(z + c). Set

(3.1) F (z) =
f ′

f(z + c)
.

Then, we see F (z) ̸≡ 1. Further, from the assumption f(z + c) = 0 → f ′ = 0 and

f(z + c) = ∞ ← f ′ = ∞, we know that F (z) is an entire function. Moreover, we

have

(3.2) m(r, F ) = m

(
r,
f ′

f

f

f(z + c)

)
= S(r, f).

Hence,

(3.3) T (r, F ) = S(r, f).

By the assumption that f(z + c) = a→ f ′ = a and (3.3), it follows that

(3.4) N

(
r,

1

f(z + c)− a

)
≤ N

(
r,

1

F − 1

)
+ S(r, f) = S(r, f).
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From Lemmas 2.4-2.5, (3.4), and the sharing values assumption, we obtain that
T (r, f) = T (r, f(z + c)) + S(r, f)

≤
(
N

(
r,

1

f(z + c)

)
−N

(
r,

1

f ′

))
+ (N(r, f ′)−N(r, f(z + c)))

+N

(
r,

1

f(z + c)− a

)
+ S(r, f) = S(r, f),

which is a contradiction. Therefore, f ′(z) = f(z + c).

4. The improvement of Theorem C

When f(z) is meromorphic, all the previous results were around the condition

“f ′(z) and f(z+c) share 0, a”. What happens if f ′ and f(z+c) share two arbitrary

constants? In this part, we will give some results on the sharing value assumption

that “2 IM” for meromorphic functions. As a corollary, we will get an improvement

of Theorem C in Theorem 4.2.

Proposition 4.1. Let f(z) be a meromorphic function of hyper-order strictly less

than 1, and let a, b be two distinct constants. Suppose f ′(z) and f(z + c) share

a, b IM and satisfy f(z + c) = ∞ ← f ′ = ∞. If f ′(z) ̸≡ f(z + c) and N(r, f) =

O(N(r, f)), (r →∞). Then,

(1).

T (r, f ′) = T (r, f(z + c)) + S(r, f).

(2).

T (r, f(z + c)) = N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
+ S(r, f).

(3).

m

(
r,
f(z + c)− d

f ′ − d

)
= S(r, f), where d(̸= a, b) ∈ C.

Proof. (1). Since f(z + c) = ∞ ← f ′ = ∞, we have N(r, f(z + c)) = N(r, f ′) =

N(r, f) = S(r, f), from Lemma 2.6. And N(r, f) = O(N(r, f)), (r → ∞) means

that

N(r, f) ≤ kN(r, f) + S(r, f) = S(r, f),

where k is a positive number. Hence,

(4.1) N(r, f(z + c)) = N(r, f) + S(r, f) = S(r, f),

and

(4.2) N(r, f ′) ≤ N(r, f) +N(r, f) = S(r, f).

Set

(4.3) H(z) =
f ′(z + c)(f(z + c)− f ′)

(f(z + c)− a)(f(z + c)− b)
.
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Noting f ′(z) and f(z + c) share a, b IM, we obtain the zeros of f(z + c) − a or

f(z + c)− b are not poles of H(z), by using an elementary computation. Hence, it

follows from (4.1) and (4.2) that

(4.4) N(r,H) ≤ 2N(r, f(z + c)) +N(r, f ′) + S(r, f) = S(r, f).

Rewrite (4.3) as

H(z) =
f ′(z + c)f(z + c)

(f(z + c)− a)(f(z + c)− b)

f(z + c)− f ′

f(z + c)
.

It follows from Lemma 2.5 and Lemma 2.7 that

m

(
r,

f ′(z + c)f(z + c)

(f(z + c)− a)(f(z + c)− b)

)
= S(r, f(z + c)) = S(r, f).

Moreover, by Lemma 2.1 and the lemma on the logarithmic derivative, we obtain

m

(
r,
f(z + c)− f ′

f(z + c)

)
≤ m

(
r,

f ′

f(z + c)

f

f

)
+ S(r, f) = S(r, f).

Therefore,

(4.5) T (r,H) = S(r, f).

Rewrite (4.3) as

H(z)f2(z + c)− (a+ b)H(z)f(z + c) + abH(z) = f ′(z + c)f(z + c)− f ′(z + c)f ′.

Note f ′(z) ̸= f(z + c), we have H(z) ̸≡ 0. Further, from (4.1) and (4.2), we get

2T (r, f(z + c)) = T (r, f ′(z + c)f(z + c)− f ′(z + c)f ′) + S(r, f)

= m(r, f ′(z + c)f(z + c)− f ′(z + c)f ′) + S(r, f)

≤ m

(
r,
f ′(z + c)f(z + c)− f ′(z + c)f ′

f(z + c)f ′

)
+m(r, f(z + c)) +m(r, f ′) + S(r, f)

≤ T (r, f(z + c)) + T (r, f ′) + S(r, f),

which means that

(4.6) T (r, f(z + c)) ≤ T (r, f ′) + S(r, f).

On the other hand, from Lemma 2.5 and Lemma 2.6, we conclude that

(4.7) T (r, f ′) ≤ T (r, f) +N(r, f) + S(r, f) = T (r, f(z + c)) + S(r, f).

Combining (4.6) and (4.7), it follows that

(4.8) T (r, f ′) = T (r, f(z + c)) + S(r, f).
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(2). From (4.1), (4.2), (4.8), the second fundamental theorem and the value sharing

condition, we have

T (r, f ′) = T (r, f(z + c)) + S(r, f)

≤ N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
+ S(r, f)

≤ N

(
r,

1

f ′ − a

)
+N

(
r,

1

f ′ − b

)
+ S(r, f) ≤ N

(
r,

1

f ′ − f(z + c)

)
+ S(r, f)

≤ T (r, f ′ − f(z + c)) + S(r, f) = m(r, f ′ − f(z + c)) + S(r, f)

≤ m

(
r,
f ′ − f(z + c)

f(z + c)

)
+m(r, f(z + c)) + S(r.f)

≤ m

(
r,

f ′

f(z + c)

f

f

)
+ T (r, f(z + c)) + S(r, f)

≤ T (r, f(z + c)) + S(r, f) = T (r, f ′) + S(r, f),

which means that

(4.9) T (r, f(z + c)) = N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
+ S(r, f),

and

T (r, f ′) = N

(
r,

1

f ′ − a

)
+N

(
r,

1

f ′ − b

)
+ S(r, f).

(3). From the second fundamental theorem, Lemma 2.6 and (4.9), we obtain that

2T (r, f(z + c))

≤ N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
+N

(
r,

1

f(z + c)− d

)
+N(r, f(z + c)) + S(r, f)

= T (r, f(z + c)) +N

(
r,

1

f(z + c)− d

)
+ S(r, f) ≤ 2T (r, f(z + c)) + S(r, f).

Hence, we have

T (r, f(z + c)) = N

(
r,

1

f(z + c)− d

)
+ S(r, f),

which means that

(4.10) m

(
r,

1

f(z + c)− d

)
= S(r, f).

Further, we know

m

(
r,

f ′ − d

f(z + c)− d

)
≤ m

(
r,

f ′

f(z + c)− d

)
+m

(
r,

d

f(z + c)− d

)
+ S(r, f)

≤ m

(
r,

f ′

f − d

f − d

f(z + c)− d

)
+ S(r, f) = S(r, f).

(4.11)
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Similarly, we have

(4.12) m

(
r,

1

f ′ − d

)
= S(r, f).

From (4.1), (4.2), (4.8), (4.10), (4.12) and Lemma 2.2, we have

m

(
r,
f(z + c)− d

f ′ − d

)
−m

(
r,

f ′ − d

f(z + c)− d

)
= T

(
r,
f(z + c)− d

f ′ − d

)
−N

(
r,
f(z + c)− d

f ′ − d

)
− T

(
r,

f ′ − d

f(z + c)− d

)
+N

(
r,

f ′ − d

f(z + c)− d

)
= N

(
r,

f ′ − d

f(z + c)− d

)
−N

(
r,
f(z + c)− d

f ′ − d

)
+ S(r, f)

= N

(
r,

1

f(z + c)− d

)
−N

(
r,

1

f ′ − d

)
+ S(r, f)

= T

(
r,

1

f(z + c)− d

)
−m

(
r,

1

f(z + c)− d

)
− T

(
r,

1

f ′ − d

)
+m

(
r,

1

f ′ − d

)
+ S(r, f)

= T (r, f(z + c))− T (r, f ′) + S(r, f) = S(r, f).

Combining this equation and (4.11), we get

(4.13) m

(
r,
f(z + c)− d

f ′ − d

)
= m

(
r,

f ′ − d

f(z + c)− d

)
+ S(r, f) = S(r, f).

Theorem 4.1. Let f(z) be a meromorphic function of hyper-order strictly less than

1, and let a, b be two distinct constants. If f ′(z) and f(z + c) share a, b IM and

satisfy f(z + c) = ∞ ← f ′ = ∞, and if N(r, f) = O(N(r, f)), (r → ∞), then

f ′(z) = f(z + c).

As a corollary of Theorem 4.1, we are easy to get the following result:

Theorem 4.2. Let f(z) be a meromorphic function of hyper-order strictly less than

1, and let a, b be two distinct constants. If f ′(z) and f(z + c) share ∞ CM and a,

b IM, and if N(r, f) = O(N(r, f)), (r →∞), then f ′(z) = f(z + c).

Question. If we omit the condition that ¡°N(r, f) = O(N(r, f)), (r →∞)¡±, would

Theorems 4.1 and 4.2 still valid?

Proof of Theorem 4.1. Suppose that f ′(z) ̸= f(z + c). Set

(4.14) U(z) =
f ′′(f(z + c)− f ′)

(f ′ − a)(f ′ − b)
.

Using the same argument of H(z), we have that U(z) ̸≡ 0 and N(r, U) = S(r, f).

Further, from the lemma on the logarithmic derivative and the conclusion (3) of
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Proposition 4.1, we have

m(r, U) = m

(
r,

(
(a− d)f ′′

(a− b)(f ′ − a)
− (b− d)f ′′

(a− b)(f ′ − b)

)(
f(z + c)− d

f ′ − d
− 1

))
≤ m

(
r,
f(z + c)− d

f ′ − d

)
+ S(r, f)

= S(r, f).

Hence,

(4.15) T (r, U) = S(r, f).

Define SF∼G(m,n)(α) for the set of those points z ∈ C such that z is an α-point of

F with multiplicity m and an α-point of G with multiplicity n. Let N(m,n)(r,
1

F−α )

and N (m,n)(r,
1

F−α ) denote the counting function and reduced counting function of

F with respect to the set SF∼G(m,n)(α), respectively.

Let z1 ∈ Sf ′∼f(z+c)(m,n)(a). Substituting the Taylor expansion of f ′ and f(z+c)

at z1 into (4.3), (4.14), by calculating carefully, we conclude that mH(z1)−nU(z1) =

0.

If mH = nU for some m,n, then we have

(4.16) m

(
f ′(z + c)

f(z + c)− a
− f ′(z + c)

f(z + c)− b

)
= n

(
f ′′

f ′ − a
− f ′′

f ′ − b

)
.

Hence, (
f(z + c)− a

f(z + c)− b

)m

= A

(
f ′ − a

f ′ − b

)n

,

where A is a non-zero constant. Suppose m ̸= n, then from Lemma 2.3, we get

nT (r, f ′) = mT (r, f(z + c)) + S(r, f),

which contradicts the conclusion (1) of Proposition 4.1. Hence, m = n. From (4.1),

(4.2), (4.16) and Lemma 2.8, it follows that

2T (r, f(z + c)) ≤ N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
+ S(r, f),

which contradicts the conclusion (2) of Proposition 4.1.

If mH ̸≡ nU for all m,n, then we get

N (m,n)

(
r,

1

f(z + c)− a

)
≤ N

(
r,

1

mH − nU

)
= S(r, f).

Similarly, we also get

N (m,n)

(
r,

1

f(z + c)− b

)
≤ N

(
r,

1

mH − nU

)
= S(r, f).

Hence,

(4.17) N (m,n)

(
r,

1

f(z + c)− a

)
+N (m,n)

(
r,

1

f(z + c)− b

)
= S(r, f).
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From (4.17) and the conclusions (1)-(2) of Proposition 4.1, we get

T (r, f(z + c))

= N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
+ S(r, f)

=
∑
m,n

(
N (m,n)

(
r,

1

f(z + c)− a

)
+N (m,n)

(
r,

1

f(z + c)− b

))
+ S(r, f)

=
∑

m+n≥5

(
N (m,n)

(
r,

1

f(z + c)− a

)
+N (m,n)

(
r,

1

f(z + c)− b

))
+ S(r, f)

≤ 1

5

∑
m+n≥5

(
N(m,n)

(
r,

1

f(z + c)− a

)
+N(m,n)

(
r,

1

f(z + c)− b

)

+N(m,n)

(
r,

1

f ′ − a

)
+N(m,n)

(
r,

1

f ′ − b

))
+ S(r, f)

≤ 4

5
T (r, f(z + c)) + S(r, f),

which is a contradiction. Therefore, f ′(z) = f(z + c).

5. Some partially shared values results

In this part, we will give two partially shared values results related to theorems

B and C.

Theorem 5.1. Let f(z) be a transcendental meromorphic function of hyper-order

strictly less than 1, and let a( ̸= 0) ∈ C. If f ′(z) and f(z+c) share a IM, and satisfy

f(z + c) = 0→ f ′ = 0, f(z + c) =∞← f ′ =∞, then f ′(z) = f(z + c).

Proof of Theorem 5.1. Set

(5.1) F (z) =
f ′

f(z + c)
.

If F (z) ≡ 1, then we have f ′ = f(z+c). In the following, we suppose that F (z) ̸≡ 1.

Then, by the the same argument of Theorem 3.1, we know F (z) also satisfy

(5.2) T (r, F ) = S(r, f).

In addition, from (5.1)-(5.2), and Lemma 2.5, it follows that

(5.3) T (r, f ′) = T (r, f(z + c)) + S(r, f) = T (r, f) + S(r, f).

Hence,

(5.4) S(r, f ′) = S(r, f(z + c)) = S(r, f).
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Further, since f ′ and f(z + c) share a IM, we get

N

(
r,

1

f ′ − a

)
= N

(
r,

1

f(z + c)− a

)
≤ N

(
r,

1
f ′

f(z+c) − 1

)
+ S(r, f)

= N

(
r,

1

F − 1

)
+ S(r, f) ≤ T (r, F ) + S(r, f) = S(r, f).

(5.5)

Set

(5.6) G(z) =
f ′′

f ′ − a
− f ′(z + c)

f(z + c)− a
.

In the following, we distinguish two cases.

Case 1. If G(z) ≡ 0, then we have

(5.7) f ′ − a = A(f(z + c)− a),

where A is a non-zero constant.

If A = 1, then f ′ = f(z + c). In the following, we suppose that A ̸= 1, then by

(5.7) and A ̸= 1, we can immediately get f(z+ c) ̸= 0. Hence, 0 is a Picard value of

f(z + c), then it follows from (5.4)-(5.5), Lemma 2.6 and the second main theorem

that

T (r, f(z + c)) ≤ N

(
r,

1

f(z + c)

)
+N

(
r,

1

f(z + c)− a

)
+N(r, f(z + c)) + S(r, f(z + c)) = S(r, f(z + c)),

which is a contradiction.

Case 2. If G(z) ̸≡ 0, then by (5.4) and the lemma of logarithmic derivative, we

obtain

m(r,G) = S(r, f).

Further, by (5.5) and Lemma 2.6, we get

N(r,G) ≤ N(r, f ′) +N

(
r,

1

f ′ − a

)
+N(r, f(z + c)) +N

(
r,

1

f(z + c)− a

)
+ S(r, f) = S(r, f).

Therefore,

T (r,G) = S(r, f).

According to (5.1), we have

(5.8) f ′′ = F ′f(z + c) + Ff ′(z + c).

Substituting (5.1) and (5.8) into (5.6), we get

G(z) =
F ′f(z + c) + Ff ′(z + c)

Ff(z + c)− a
− f ′(z + c)

f(z + c)− a
,
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which means that

(5.9) (FG−F ′)f2(z+ c)+ (aF ′− aG(1+F ))f(z+ c)+ a2G = a(1−F )f ′(z+ c).

If FG− F ′ ̸≡ 0, then by Lemma 2.6 and (5.9), we have

2T (r, f(z + c)) = T (r, f ′(z + c)) + S(r, f(z + c))

≤ T (r, f(z + c)) +N(r, f(z + c)) + S(r, f(z + c))

≤ T (r, f(z + c)) + S(r, f(z + c)),

and so, T (r, f(z + c)) = S(r, f(z + c)), which is impossible. Hence, FG − F ′ ≡ 0.

Namely,
F ′

F
= G =

f ′′

f ′ − a
− f ′(z + c)

f(z + c)− a
,

which implies that

(5.10)
f ′

f(z + c)
= B

f ′ − a

f(z + c)− a
,

where B is a non-zero constant. Note that f ′ and f(z + c) share a IM.

If a is a picard value of f ′ and f(z + c), then f ′ and f(z + c) share a CM. From

Theorem B, we have f ′ = f(z + c).

If a is not a picard value of f ′ and f(z+ c), then compare both side of (5.10), we

also get f ′ and f(z+c) share a CM. Otherwise, suppose z2 is a common zero of f ′−a
and f(z + c) − a, then from (5.10), we have 1 = f ′(z2)

f(z2+c) = 0 or 1 = f ′(z2)
f(z2+c) = ∞,

which is impossible. Hence, from Theorem B, the conclusion holds as well.

Theorem 5.2. Let f(z) be a transcendental meromorphic function of hyper-order

strictly less than 1, and let a, b be two distinct non-zero constants. If f ′(z) and

f(z+c) satisfy f(z+c) = a→ f ′ = a, f(z+c) = b→ f ′ = b, f(z+c) =∞← f ′ =∞
and δ(0, f) > 0, then f ′(z) = f(z + c).

Here, we define δ(0, f) as following

δ(0, f) = 1− lim sup
r→∞

N(r, 1
f )

T (r, f)
.

Question. If we omit the condition that ¡°δ(0, f) > 0¡±, is Theorem 5.2 still valid?

Proof of Theorem 5.2. Suppose that f ′(z) ̸≡ f(z + c). Set

(5.11) F (z) =
f ′

f(z + c)
.

Similarly as above, we know F (z) ̸≡ 1. And the equation (3.2) also holds, namely,

m(r, F ) = S(r, f).
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Combining this equation, Lemma 2.5 and the assumption that f(z + c) = ∞ ←
f ′ =∞, it follows that

T (r, F ) =N(r, F ) + S(r, f) ≤ N

(
r,

1

f(z + c)

)
+ S(r, f)

= N

(
r,

1

f

)
+ S(r, f).

(5.12)

Moreover, by the assumption that f(z + c) = a → f ′ = a, f(z + c) = b → f ′ = b

and (5.12), we get that

N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
≤ N

(
r,

1
f ′

f(z+c) − 1

)
+ S(r, f)

= N

(
r,

1

F − 1

)
+ S(r, f) ≤ T (r, F ) + S(r, f) ≤ N

(
r,

1

f

)
+ S(r, f).

(5.13)

Therefore, from Lemmas 2.4-2.5, the assumption that f(z+ c) =∞← f ′ =∞ and

(5.13), we get

T (r, f) = T (r, f(z + c)) + S(r, f) ≤ (N(r, f ′)−N(r, f(z + c)))

+N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
+ S(r, f)

≤ N(r,
1

f
) + S(r, f),

which contradicts the assumption that δ(0, f) > 0. Therefore, f ′(z) = f(z + c).
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