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1. Introduction

Looking into mathematical research articles, someone can encounter one class of

functions introduced in the past and its generalizations defined in the last decades

- the Hölder class. Focusing to our research interest, this provoking class for many

researchers has been used to a research problem (question) which specifically is

related to the trigonometric Fourier series and “more rarely” to their conjugate

series. Factually, the problem consists in determining the degree of approximation

of 2π-periodic integrable functions (which belongs to the Hölder class) and for the

conjugate functions by various means of their Fourier series and their conjugate

series, respectively.

Pertaining to the above problem, a lot of results have been published for dozens

of decades. For instance, Prössdorf [25], Leindler [13]–[14], Chandra [1], Mohapatra

and Chandra [17], Singh et al. [26]-[27], Das et al. [2]–[3], Mittal and Rhoades [19],

Krasniqi [9] and [11], Krasniqi and Szal [10], Lenski at al. [15], Krasniqi et al. [12],

Nayak at al. [21]–[22], Singh and Sonker [29], Deǧer and Kücükaslan [4], Deǧer [5],

Pradhan et al. [24], and Kim [8], are among the researchers who have contributed

to the present topic.

In the sequel, we do not recall all results in the mentioned papers, but for our

purpose we are going to write some definitions and notations from [21]–[22] and the

result in [8], which serve as preliminary materials.
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Let ω(t) be a modulus of continuity, i.e., ω(t) is a positive nondecreasing continuous

function with the properties

ω(0) = 0, ω(t1 + t2) ≤ ω(t1) + ω(t2), ω(λt) ≤ (λ+ 1)ω(t),

where 0 ≤ t1 ≤ t2 ≤ t1 + t2 ≤ 2π and λ is any nonnegative real number.

On one hand, Das, Nath and Ray [3] introduced the space Hω
p as follows:

Hω
p :=

{
f ∈ Lp[0, 2π] : sup

h̸=0

∥f(x+ h)− f(x)∥p
ω(|h|)

<∞

}
with

∥f∥(ω)
p := ∥f∥p + sup

h̸=0

∥f(x+ h)− f(x)∥p
ω(|h|)

,

where Lp[0, 2π] denotes all integrable 2π-periodic functions and

∥f∥p :=


(

1
2π

∫ 2π

0
|f(x)|p dx

) 1
p

for 1 ≤ p <∞
ess sup

x∈(0,2π)

{|f(x)|} for p = ∞.

It is shown (see [22]) that ∥ · ∥(ω)
p is a norm in the space Hω

p and it is a Banach

space as well. For an integrable 2π-periodic function f(x), by

sn(f ;x) :=
a0
2

+

n∑
k=1

ak cos kx+ bk sin kx

we denote the n-th partial sums of Fourier series of f (at the point x)

(1.1) f(x) ∼ a0
2

+

∞∑
k=1

ak cos kx+ bk sin kx.

We need to recall the delayed mean σn,q(f ;x) defined as follows ([33]):

σn,q(f ;x) :=
1

q

n+q−1∑
i=n

si(f ;x)

or

σn,q(f ;x) :=
n+ q

q
σn+q−1(f ;x)−

n

q
σn−1(f ;x),

where σm(f ;x) denotes the well-known Fejer mean of si(f ;x).

In his result, Kim [8] used the (even–type) delayed means σn,q(f ;x) with q = rn,

r = 2, 4, 6, . . . , which can be expressed by the convolution

σn,rn(f ;x) =
1

π

∫ π

−π

f(x− t)Krn(t)dt,

where the kernel Krn(t) is defined by

Krn(t) :=
2 sin

(
r
2 + 1

)
nt sin

(
rnt
2

)
rn
(
2 sin t

2

)2 .

The following theorem already has been proved.
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Theorem 1.1 ([8]). Let v(t) and ω(t) be moduli of continuity such that ω(t)/v(t)

is nondecreasing. If f ∈ Hω
p , p ≥ 1, then for an even positive integer r,

∥σn,rn(f)− f∥(v)p = O
(

1

rn

)
+O

( r
n

)∫ π

π
n

ω(t)dt

t3v(t)
.

In addition, if ω(t)/(tv(t)) is non-increasing, then we have

∥σn,rn(f)− f∥(v)p = O
( r
n

)∫ π

π
n

ω(t)dt

t3v(t)

and

∥σn,rn(f)− f∥(v)p = O

(
r
ω
(
π
n

)
v
(
π
n

) ) .
In the other hand, to reveal our intention in this paper, we recall the weighted

Lebesgue space Lp
β [0, 2π]. Let f be a 2π-periodic function and f ∈ Lp

β := Lp
β [0, 2π]

for p ≥ 1, where Lp
β [0, 2π] denotes all measurable functions and ∥f∥p;β the weighted

norm

∥f∥p;β :=


(

1
2π

∫ 2π

0
|f(x)|p

∣∣sin (x2 )∣∣βp dx) 1
p

for 1 ≤ p <∞

ess sup
x∈(0,2π)

{
|f(x)|

∣∣sin (x2 )∣∣β} for p = ∞

with β ≥ 0 a real number (see [30], [32]).

We define the generalized Hölder space with weight by

H
(w)
p;β :=

{
f ∈ Lp

β [0, 2π] : sup
t ̸=0

∥f(x+ t)− f(x− t)∥p;β
w(|t|)

<∞

}
and

∥f∥(w)
p;β := ∥f∥p;β + sup

t ̸=0

∥f(x+ t)− f(x− t)∥p;β
w(|t|)

,

where 1 ≤ p <∞, β ≥ 0, and w(t) is a function of modulus continuity type.

Note that ∥ · ∥(w)
p;β is a norm in H

(w)
p;β . The completeness of the space H(w)

p;β can

be debated as long as the completeness of Lp space, and thus the space H(w)
p;β is a

Banach space under the norm ∥ · ∥(w)
p;β .

Assume that the functions w1(t) and w2(t) are two moduli of continuity, and
w1(t)
w2(t)

is a non-negative and non-decreasing function. Then,

∥f∥(w2)
p;β ≤ max

(
1,
w1(2π)

w2(2π)

)
∥f∥(w1)

p;β ,

which shows that

H
(w1)
p;β ⊆ H

(w2)
p;β ⊆ Lp

β , p ≥ 1.

The series

(1.2)
∞∑
k=1

(ak sin kx− bk cos kx)

is the conjugate series of its Fourier series (1.1).
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If f is integrable functions in the sens of Lebesgue, then it known that

f̃(x) := − 1

π

∫ π

0

ψx(t)
1

2
cot

t

2
dt = lim

ε→0
f̃(x; ε)

exists for almost all x (see [34]), where

f̃(x; ε) := − 1

π

∫ π

ε

ψx(t)
1

2
cot

t

2
dt

with

ψ(x; t) := f(x+ t)− f(x− t).

Regrading to Lp integrability of the function f̃ , conjugate to the function f , we are

based on a theorem of M.Riesz which states that ([34]): If f ∈ Lp for 1 < p < ∞,

then f̃ ∈ Lp.

We have to mentioned here that, as a whole, the conjugate series of a Fourier

series is not necessarily a Fourier series. For example, the series
∑∞

k=2 (log n)
−1

sin kx

is the conjugate series of the Fourier series
∑∞

k=2 (log n)
−1

cos kx, however it is not

itself a Fourier series (see [34], p. 186). This fact has provoked and motivated us to

determine the degree of approximation of the function f̃ , conjugate to the function

f , in the metric of the space H(w)
p;β , by using the even–type delayed arithmetic mean

σ̃n,rn(f ;x), (r = 2, 4, 6, . . . ) of the series (1.2), which is the aim of the present

paper.

More results, in reference to determining the degree of approximation of the

function f̃ , conjugate to the function f , in the metrics of the Hölder spaces, the

interested reader could find in the work of Chandra [1], Nigam and Hadish [23],

Mishra and Khatri [18]-[7], Singh [31], and London et al. [16].

Even though we adopt the same technique (as other authors) for the proof of our

result, this last one is new and includes its application for a wide class of functions,

which at least is not narrower than classes of functions defined by others.

Our paper is organized as follows. The second section contains some helpful

lemmas which play a key role for the proof of the new result, the third section is

devoted to the main result, and in the forth section we give a conclusion.

2. Auxiliary lemmas

We need four auxiliary statements. The first one and the third one previously

are known, the second one and the fourth one will be proved in sequel (their play

a key role in the proof of the main result).
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Lemma 2.1 (Generalized Minkowski inequality, [6], [34]). If z(x, t) is a function

in two variables defined for c ≤ t ≤ d, a ≤ x ≤ b, then{∫ b

a

∣∣∣∣∣
∫ d

c

z(x, t)dt

∣∣∣∣∣
p

dx

} 1
p

≤
∫ d

c

{∫ b

a

|z(x, t)|pdx

} 1
p

dt, p ≥ 1.

Lemma 2.2. Let wrm(t) := sin(r+1)mt−sinmt

(2 sin t
2 )

2 and 0 ≤ t ≤ 1
n+1 . Then,

(i) wrm(t) =
2 sin rmt

2 cos
(r+2)mt

2

(2 sin t
2 )

2

(ii) |wrm(t)| ≤ rmπ2

4t , (r = 2, 4, 6, . . . ).

Proof. (i) The equality follows by the formula for converting the difference into

product.

(ii) Using the well-known inequalities | sin(mα)| ≤ m| sin(α)| and π sin(α) ≥ 2α for

α ∈ [0, π/2], we obtain

|wrm(t)| =

∣∣2 sin rmt
2

∣∣ ∣∣∣cos (r+2)mt
2

∣∣∣(
2 sin t

2

)2 ≤
2rm

∣∣sin t
2

∣∣(
2t
π

)2 ≤
2π2rm t

2

4t2
=
π2rm

4t
.

The proof is completed. □

Lemma 2.3 ([34]). A function w(t) of modulus of continuity type on the interval

[0, 2π] satisfies the following condition δ−1
2 w(δ2) ≤ 2δ−1

1 w(δ1) for 0 < δ1 ≤ δ2.

Lemma 2.4. Let w1(t)
w2(t)

be a positive and a non-decreasing function, f ∈ H
(w1)
p;β ,

p ≥ 1, and β ≥ 0 a real number. Then,

(a)

∥ψ(x+ y; t)− ψ(x− y; t)∥p;β = O (w1(t)) .

(b)

∥ψ(x+ y; t)− ψ(x− y; t)∥p;β = O (w1(y)) .

(c)

∥ψ(x+ y; t)− ψ(x− y; t)∥p;β = O
(
w1(t)

w2(t)
w2(y)

)
.

(d)

∥ψ(x+ y; t)− ψ(x− y; t)− ψ(x+ y; t+ π/m) + ψ(x− y; t+ π/m)∥p;β

= O
(
w1(t)

w2(t)
w2(y)

)
.

Proof. (a) Because of

ψ(x+ y; t)− ψ(x− y; t) = f(x+ y + t)− f(x+ y − t)

− f(x− y + t) + f(x− y − t),
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then (applying the Minkowski inequality) we have

∥ψ(x+ y; t)− ψ(x− y; t)∥p;β ≤ ∥f(x+ y + t)− f(x+ y − t)∥p;β
+ ∥f(x− y + t)− f(x− y − t)∥p;β = O (w1(t)) .

(b) Very similarly, rearrangement of the terms into the brackets of the case (a)

implies

ψ(x+ y; t)− ψ(x− y; t) = f(x+ t+ y)− f(x+ t− y)

− f(x− t+ y) + f(x− t− y),

and thus, we have

∥ψ(x+ y; t)− ψ(x− y; t)∥p;β ≤ ∥f(x+ t+ y)− f(x+ t− y)∥p;β
+ ∥f(x− t+ y)− f(x− t− y)∥p;β = O (w1(y)) .

(c) Let w2(t) be positive and non-decreasing function. Then, for t ≤ y and (a), we

get

∥ψ(x+ y; t)− ψ(x− y; t)∥p;β = O
(
w2(t)

w1(t)

w2(t)

)
= O

(
w2(y)

w1(t)

w2(t)

)
.

Now, let t ≥ y. Since w1(t)
w2(t)

is positive and non-decreasing function, then based on

(b) we obtain

∥ψ(x+ y; t)− ψ(x− y; t)∥p;β = O
(
w2(y)

w1(y)

w2(y)

)
= O

(
w2(y)

w1(t)

w2(t)

)
.

(d) The proof can be done similarly. □

3. Main results

We managed to prove the following.

Theorem 3.1. Let w1(t) and w2(t) be two moduli of continuity such that w1(t)
w2(t)

is

positive and non-decreasing function. In addition, let f be a 2π-periodic function,

Lebesgue integrable on [0, 2π], belonging to the generalized Hölder class with weight

H
(w1)
p;β , p ≥ 1, and β ≥ 0. Then for the function f̃ , conjugate to the function f , and

for an even positive integer r

∥σ̃m,rm(f)− f̃∥(w2)
p;β

= O

(
1

r

(
1

m
+

(
1 + r +

1

m

)
w1

(
π
m

)
w2

(
π
m

) + 1

m2

∫ π

π
m

w1(t)

t3w2(t)
dt

))
provided that

(3.1)
∫ η

0

t−1w1(t)dt = O (w1(η))
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and

(3.2)
∫ π

η

t−2w1(t)dt = O
(
η−1w1(η)

)
for 0 < η < π.

Proof. It is a well-known fact that the Cesàro mean σ̃m(f ;x) of the partial sums

s̃j(f ;x) of the series (1.2) can be expressed as follows (see [34])

σ̃m(f ;x) = − 2

π

∫ π

0

[f(x+ t)− f(x− t)]K̃m(t)dt,

where

K̃m(t) :=
(m+ 1) sin t− sin(m+ 1)t

(m+ 1)
(
2 sin t

2

)2 .

The above equality can be rewritten as follows

σ̃m(f ;x)− f̃(x) =
2

π(m+ 1)

∫ π

0

[f(x+ t)− f(x− t)]
sin(m+ 1)t(
2 sin t

2

)2 dt.

Whence, for the even-type delayed arithmetic mean σ̃m,rm(f ;x) of the series (1.2),

we can write

τ̃m(x) := σ̃m,rm(f ;x)− f̃(x)

=
r + 1

r

[
σ(r+1)m−1(f ;x)− f̃(x)

]
− 1

r

[
σm−1(f ;x)− f̃(x)

]
=
r + 1

r

2

π(r + 1)m

∫ π

0

[f(x+ t)− f(x− t)]
sin(r + 1)mt(

2 sin t
2

)2 dt

− 1

r

2

πm

∫ π

0

[f(x+ t)− f(x− t)]
sinmt(
2 sin t

2

)2 dt
=

2

rmπ

∫ π

0

[f(x+ t)− f(x− t)]wrm(t)dt,(3.3)

where

wrm(t) =
2 sin rmt

2 cos (r+2)mt
2(

2 sin t
2

)2 .

By definition of the norm ∥ · ∥(w2)
p;β , we have

(3.4) ∥τ̃m(x)∥(w2)
p;β := ∥τ̃m(x)∥p;β + sup

y ̸=0

∥τ̃m(x+ y)− τ̃m(x− y)∥p;β
w2(y)

.
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Further, we will find the upper bound of ∥τ̃m(x)∥p;β . First of all, it clear that

τ̃m(x) =
2

rmπ

∫ π
m

0

[f(x+ t)− f(x− t)]wrm(t)dt

+
2

rmπ

∫ π

π
m

[f(x+ t)− f(x− t)]

×
(
2 sin

rmt

2
cos

(r + 2)mt

2

)(
1

4 sin2 t
2

− 1

t2

)
dt

+
2

rmπ

∫ π

π
m

[f(x+ t)− f(x− t)]
2 sin rmt

2 cos (r+2)mt
2

t2
dt.

Hence, applying Lemma 2.1, we have

∥τ̃m(x)∥p;β ≤ 2

rmπ

∫ π
m

0

∥f(x+ t)− f(x− t)∥p;β |wrm(t)| dt

+
2

rmπ

∫ π

π
m

∥f(x+ t)− f(x− t)∥p;β

×
∣∣∣∣2 sin rmt2 cos

(r + 2)mt

2

∣∣∣∣∣∣∣∣ 1

4 sin2 t
2

− 1

t2

∣∣∣∣dt
+

2

rmπ

∫ π

π
m

∥f(x+ t)− f(x− t)∥p;β

∣∣∣2 sin rmt
2 cos (r+2)mt

2

∣∣∣
t2

dt

:= P1 + P2 + P3.(3.5)

Since f ∈ H
(w1)
p;β , for p ≥ 1 and β ≥ 0, then

(3.6) ∥f(x+ t)− f(x− t)∥p;β = O (w1(t)) ,

and consequently by Lemma 2.2 we have

P1 =
O(1)

rm

∫ π
m

0

w1(t)
rm

t
dt = O(1)

∫ π
m

0

w1(t)

t
dt

= O(1)
w1

(
π
m

)
w2

(
π
m

)w2

( π
m

)
= O(1)

w1

(
π
m

)
w2

(
π
m

)w2 (π) = O

(
w1

(
π
m

)
w2

(
π
m

))(3.7)

taking into account the condition (3.1).

Noticing that the function

t→ 1

4 sin2 t
2

− 1

t2

is bounded for t ∈ [π/(n+ 1), π], and using Lemma 2.3 and (3.6) we can write
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P2 =
2

rmπ

∫ π

π
m

∥f(x+ t)− f(x− t)∥p;β
∣∣∣∣2 sin rmt2 cos

(r + 2)mt

2

∣∣∣∣∣∣∣∣ 1

4 sin2 t
2

− 1

t2

∣∣∣∣dt
=

2

rmπ

∫ π

π
m

O
(
tw1(t)

t

)
dt =

4w2 (π)

rπ2
O

(
w1

(
π
m

)
w2

(
π
m

)) = O

(
w1

(
π
m

)
rw2

(
π
m

)) .
(3.8)

In

P0 :=
2

rmπ

∫ π

π
m

ψ(x; t)
2 sin rmt

2 cos (r+2)mt
2

t2
dt

we substitute t with t+ π/m and since r is an even natural number, we get

P0 := − 2

rmπ

∫ π− π
m

0

ψ(x; t+ π/m)
2 sin rmt

2 cos (r+2)mt
2

(t+ π/m)2
dt

= − 2

rmπ

(∫ π
m

0

+

∫ π

π
m

−
∫ π

π− π
m

)
ψ(x; t+ π/m)

2 sin rmt
2 cos (r+2)mt

2

(t+ π/m)2
dt

Adding these two expressions side by side we obtaining

P0 :=
1

rmπ

∫ π

π
m

[
ψ(x; t)

t2
− ψ(x; t+ π/m)

(t+ π/m)2

]
2 sin

rmt

2
cos

(r + 2)mt

2
dt

+

∫ π

π− π
m

ψ(x; t+ π/m)
2 sin rmt

2 cos (r+2)mt
2

(t+ π/m)2
dt

− 1

rmπ

∫ π
m

0

ψ(x; t+ π/m)
2 sin rmt

2 cos (r+2)mt
2

(t+ π/m)2
dt := P00 + P01 − P02.(3.9)

The quantity P00 can be rewritten as follows

P00 =
1

rmπ

∫ π

π
m

(ψ(x; t)− ψ(x; t+ π/m))
2 sin rmt

2 cos (r+2)mt
2

t2
dt

+
1

rmπ

∫ π

π
m

ψ(x; t+ π/m)

(
1

t2
− 1

(t+ π/m)2

)
2 sin

rmt

2
cos

(r + 2)mt

2
dt

:= P000 + P001.
(3.10)

Now, applying Lemma 2.1 we have

∥P000∥p;β =
1

rmπ

∫ π

π
m

∥ψ(x; t)− ψ(x; t+ π/m)∥p;β

∣∣∣sin rmt
2 cos (r+2)mt

2

∣∣∣ dt
t2

=
O(1)

rmπ

∫ π

π
m

(w1(t) + w1(t+ π/m))
dt

t2

=
O(1)

rmπ

∫ π

π
m

w1(t)

t2
dt =

w2 (π)

rπ2
O

(
w1

(
π
m

)
w2

(
π
m

)) = O

(
w1

(
π
m

)
rw2

(
π
m

))(3.11)

since
∣∣∣sin rmt

2 cos (r+2)mt
2

∣∣∣ ≤ 1, w1(t + π/m) ≤ 2w1(t) for t ≥ π/m, and condition

(3.2).
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By the same manner, we obtain

∥P001∥p;β =
1

rmπ

∫ π

π
m

∥ψ(x; t+ π/m)∥p;β

∣∣∣∣ 1t2 − 1

(t+ π/m)2

∣∣∣∣ dt
=

O(1)

rmπ

∫ π

π
m

(w1(t+ π/m))
(t+ π/m)2 − t2

t2(t+ π/m)2
dt

=
O(1)

rm2

∫ π

π
m

w1(t)
2t+ π/m

t2(t+ π/m)2
dt

=
O(1)

rm2

∫ π

π
m

w1(t)

t3w2(t)
w2(t)dt =

O(1)

rm2

∫ π

π
m

w1(t)

t3w2(t)
dt.(3.12)

Thus, from (3.11) and (3.12), we get

(3.13) ∥P00∥p;β = O(1)

(
w1

(
π
m

)
rw2

(
π
m

) + 1

rm2

∫ π

π
m

w1(t)

t3w2(t)
dt

)
.

Since ∣∣∣∣2 sin rmt2 cos
(r + 2)mt

2

∣∣∣∣ ≤ rmt, t ∈ (0, π]

then

∥P02∥p;β =
O(1)

rmπ

∫ π
m

0

∥ψ(x; t+ π/m)∥p;β
rmtdt

(t+ π/m)2

=
O(1)

π

∫ π
m

0

w1(t)

t
dt = O(1)

w1

(
π
m

)
w2

(
π
m

)w2

( π
m

)
= O(1)

w1

(
π
m

)
w2

(
π
m

)w2 (π) = O

(
w1

(
π
m

)
w2

(
π
m

))(3.14)

taking into account the condition (3.1).

Moreover, applying Lemma 2.1, we have

∥P01∥p;β =
1

rmπ

∫ π

π− π
m

∥ψ(x; t+ π/m)∥p;β
dt

(t+ π/m)2

=
O(1)

rmπ

∫ π

π− π
m

w1(t+ π/m)

(t+ π/m)2w2(t+ π/m)
w2(t+ π/m)dt

=
O(2w2 (π))

rmπ

∫ π+ π
m

π

w1(t)

t2w2(t)
dt = O

(
1

rm2

)
.(3.15)

So, from (3.9) we obtain

∥P0∥p;β = O(1)

(
1

rm2
+

(
1 +

1

r

)
w1

(
π
m

)
w2

(
π
m

) + 1

rm2

∫ π

π
m

w1(t)

t3w2(t)
dt

)
(3.16)

based on (3.13), (3.14), and (3.15).

Combining (3.5), (3.7), (3.8), and (3.16) we get

∥τ̃m(x)∥p;β = O(1)

(
1

rm2
+

(
1 +

1

r

)
w1

(
π
m

)
w2

(
π
m

) + 1

rm2

∫ π

π
m

w1(t)

t3w2(t)
dt

)
.(3.17)
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Now we are going to estimate the second term in (3.4). For the sake of the interested

reader, we will sketch the proof in details and along the same lines. Based on (3.3)

we have

(3.18) τ̃m(x+ y)− τ̃m(x− y) =
2

rmπ

∫ π

0

[ψ(x+ y; t)− ψ(x− y; t)]wrm(t)dt.

We split the integral as follows

∥τ̃m(x+ y)− τ̃m(x− y)∥p;β

≤ 2

rmπ

∫ π
m

0

∥ψ(x+ y; t)− ψ(x− y; t)∥p;β |wrm(t)| dt

+
2

rmπ

∫ π

π
m

∥ψ(x+ y; t)− ψ(x− y; t)∥p;β

×
∣∣∣∣2 sin rmt2 cos

(r + 2)mt

2

∣∣∣∣∣∣∣∣ 1

4 sin2 t
2

− 1

t2

∣∣∣∣dt
+

2

rmπ

∫ π

π
m

∥ψ(x+ y; t)− ψ(x− y; t)∥p;β

∣∣∣2 sin rmt
2 cos (r+2)mt

2

∣∣∣
t2

dt

:= R1 +R2 +R3.(3.19)

Inasmuch as ∣∣∣∣∣2 sin rmt
2 cos (r+2)mt

2(
2 sin t

2

)2
∣∣∣∣∣ = O (rm) , t ∈ (0, π),

then using Lemma 2.4 (c), we have

R1 = O (w2(y))

∫ π
m

0

w1(t)

w2(t)
dt = O

(
w2(y)

m

)
w1

(
π
m

)
w2

(
π
m

) .(3.20)

The function

t→ 1

4 sin2 t
2

− 1

t2

is bounded for t ∈ [π/(n+ 1), π], therefore and using Lemma 2.4 (c) we get

R2 = O
(
w2(y)

rm

)∫ π

π
m

w1(t)

w2(t)
dt = O

(
w2(y)

rm

)
.(3.21)

Taking into account that r is an even positive integer number and substituting t

with t+ π/m in

R
(0)
3 :=

2

rmπ

∫ π

π
m

[ψ(x+ y; t)− ψ(x− y; t)]
2 sin rmt

2 cos (r+2)mt
2

t2
dt
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we substitute t with t+ π/m and since r is an even natural number, we get

R
(0)
3 = − 2

rmπ

∫ π− π
m

0

[ψ(x+ y; t+ π/m)− ψ(x− y; t+ π/m)]

×
2 sin rmt

2 cos (r+2)mt
2

(t+ π/m)2
dt = − 2

rmπ

(∫ π
m

0

+

∫ π

π
m

−
∫ π

π− π
m

)

× [ψ(x+ y; t+ π/m)− ψ(x− y; t+ π/m)]
2 sin rmt

2 cos (r+2)mt
2

(t+ π/m)2
dt

Adding these two latest equalities we have

R
(0)
3 =

1

rmπ

∫ π

π
m

[
ψ(x+ y; t)− ψ(x− y; t)

t2

− ψ(x+ y; t+ π/m)− ψ(x− y; t+ π/m)

(t+ π/m)2

]
2 sin

rmt

2
cos

(r + 2)mt

2
dt

+
1

rmπ

∫ π

π− π
m

[ψ(x+ y; t+ π/m)− ψ(x− y; t+ π/m)]

×
2 sin rmt

2 cos (r+2)mt
2

(t+ π/m)2
dt

− 1

rmπ

∫ π
m

0

[ψ(x+ y; t+ π/m)− ψ(x− y; t+ π/m)]

×
2 sin rmt

2 cos (r+2)mt
2

(t+ π/m)2
dt := R

(00)
3 +R

(01)
3 −R

(02)
3 .(3.22)

For R(00)
3 we can write

R
(00)
3 =

1

rmπ

∫ π

π
m

ψ(x+ y; t)− ψ(x− y; t)− ψ(x+ y; t+ π/m) + ψ(x− y; t+ π/m)

t2

× 2 sin
rmt

2
cos

(r + 2)mt

2
dt

+
1

rmπ

∫ π

π
m

[ψ(x+ y; t+ π/m)− ψ(x− y; t+ π/m)]

× 2 sin
rmt

2
cos

(r + 2)mt

2

(
1

t2
− 1

(t+ π/m)2

)
dt := R

(00)
31 +R

(00)
32 .

(3.23)

Now, using Lemma 2.1, Lemma 2.4 (d), and condition (3.2), we get

∥R(00)
31 ∥p;β = O

(
w2(y)

rm

∫ π

π
m

w1(t)

t2w2(t)
dt

)

= O

(
w2(y)

rmw2

(
π
m

))∫ π

π
m

w1(t)

t2
dt = O

(
w2(y)w1

(
π
m

)
rw2

(
π
m

) )
.(3.24)
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Moreover, using Lemma 2.1 and Lemma 2.4 (c), we also get

∥R(00)
32 ∥p;β = O

(
w2(y)

rm2

)∫ π

π
m

w1

(
t+ π

m

)
w2

(
t+ π

m

) 2t+ π/m

t2(t+ π/m)2
dt

= O
(
w2(y)

rm2

)∫ π

π
m

2w1 (t)

w2 (t)

3t

t4
dt = O

(
w2(y)

rm2

)∫ π

π
m

w1(t)

t3w2(t)
dt.(3.25)

Whence, using (3.23), (3.24), and (3.25), we obtain

∥R(00)
3 ∥p;β = O(1)

(
∥R(00)

32 ∥p;β + ∥R(00)
32 ∥p;β

)
= O

(
w2(y)

r

(
w1

(
π
m

)
w2

(
π
m

) + 1

m2

∫ π

π
m

w1(t)

t3w2(t)
dt

))
.(3.26)

By similar reasoning we also have

∥R(01)
3 ∥p;β = O

(
w2(y)

rm

)∫ π

π− π
m

w1

(
t+ π

m

)
w2

(
t+ π

m

)
(t+ π/m)2

dt

= O
(
w2(y)

rm

)∫ π+ π
m

π

w1(t)

t2w2(t)
dt = O

(
w2(y)

rm2

)
.(3.27)

Once more, using Lemma 2.1 and Lemma 2.4 (c), we proceed as follows

∥R(02)
3 ∥p;β = O

(
w2(y)

rm

)∫ π
m

0

w1

(
t+ π

m

)
w2

(
t+ π

m

)rmdt
= O (w2(y))

∫ π
m

0

2w1 (t)

w2 (t)
dt = O

(
w2(y)w1

(
π
m

)
mw2

(
π
m

) )
.(3.28)

Now, from (3.22), (3.26), (3.27), and (3.28), we find that

∥R3∥p;β = O(1)
(
∥R(00)

3 ∥p;β + ∥R(01)
3 ∥p;β + ∥R(02)

3 ∥p;β
)

= O

(
w2(y)

r

(
1

m2
+

(
1 +

1

m

)
w1

(
π
m

)
w2

(
π
m

) + 1

m2

∫ π

π
m

w1(t)

t3w2(t)
dt

))
.(3.29)

Thus, using (3.19), (3.20), (3.21), and (3.29), we have

∥τ̃m(x+ y)− τ̃m(x− y)∥p;β
w2(y)

= O

(
1

r

(
1

m
+

(
r +

1

m

)
w1

(
π
m

)
w2

(
π
m

) + 1

m2

∫ π

π
m

w1(t)

t3w2(t)
dt

))
.(3.30)

Finally, inserting (3.17) and (3.30) in (3.4), we obtain

∥τ̃m(x)∥(w2)
p;β = O

(
1

r

(
1

m
+

(
1 + r +

1

m

)
w1

(
π
m

)
w2

(
π
m

) + 1

m2

∫ π

π
m

w1(t)

t3w2(t)
dt

))
.

The proof is completed. □

Next, from the main result we are going to extract only one of its particular case.

To begin with, for γ ∈ (0, 1] and w(t) = |t|γ in H
(w)
p;β class, we obtain the Hölder
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class with weight

H
(γ)
p;β :=

{
f ∈ Lp

β [0, 2π] : sup
t̸=0

∥f(x+ t)− f(x− t)∥p;β
|t|γ

<∞

}
endowed with the norm

∥f∥(γ)p;β := ∥f∥p;β + sup
t ̸=0

∥f(x+ t)− f(x− t)∥p;β
|t|γ

,

where 1 ≤ p <∞ and β ≥ 0.

Remark 3.1. Note that the functions w1(t)
w2(t)

= |t|γ1−γ2 is positive and non-decreasing,

and w1(t)
tw2(t)

= |t|γ1−γ2−1 is positive and non-increasing for 0 ≤ γ2 < γ1 ≤ 1, and

t ∈ (0, π]. Furthermore, the condition (3.1) and (3.2) automatically are satisfied.

It worth to mentioned here that is said w1(t) to be of the first kind (see [20]) if it

satisfies condition (3.2).

Corollary 3.1. Let w1(t) = |t|γ1 , w2(t) = |t|γ2 and 0 ≤ γ2 < γ1 ≤ 1. Additionally,

let f ∈ H
(γ1)
p;β be a 2π-periodic function and Lebesgue integrable on [0, 2π], with

p ≥ 1 and β ≥ 0. Then for the function f̃ , conjugate to the function f , and for an

even positive integer r

∥σ̃m,rm(f)− f̃∥(γ2)
p;β = O

((
3 +

1

r

)
1

mγ1−γ2

)
.

Proof. Since the function w1(t)
tw2(t)

= |t|γ1−γ2−1 is positive and non-increasing for

0 ≤ γ2 < γ1 ≤ 1, then we have

∥τ̃m(x)∥(w2)
p;β = O

(
1

r

(
1

m
+

1

m2
+

(
1 + r +

1

m

)
w1

(
π
m

)
w2

(
π
m

) + 1

m2

∫ π

π
m

w1(t)

t3w2(t)
dt

))

= O

(
1

r

(
2

m
+ (2 + r)

(
π
m

)γ1(
π
m

)γ2
+

1

m2

(
π
m

)γ1

π
m

(
π
m

)γ2

∫ π

π
m

dt

t2

))

= O
(
1

r

(
2

m
+

2r

mγ1−γ2
+

1

m1+γ1−γ2

(
m

π
− 1

π

)))
= O

(
1

r

(
3r

mγ1−γ2
+

1

mγ1−γ2

))
= O

((
3 +

1

r

)
1

mγ1−γ2

)
.

The proof has ended. □

4. Conclusion

Using the even-type delayed mean of conjugate series, we have obtained the

degree of approximation for a conjugate function in the metric of generalized Höder

class with weight. Involving two moduli of continuity and two condition on them,

we have shown that this mean are streamlined to guarantee this degree to be of the

Jackson order.
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[6] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, London
(1967).

[7] K. Khatri and V. N. Mishra, “Degree of approximation by the (T.E1) means of conjugate
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