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1. Introduction

Let Pn := {P ∈ C[z]; degP ≤ n} be the space of all univariate complex

coefficient polynomials P (z) :=
n∑

j=0

ajz
j of degree at most n and let P ′(z) be the

derivative of P (z). The famous Bernstein inequality for the uniform-norm on the

unit circle states that if P ∈ Pn, then

max
|z|=1

|P ′(z)| ≤ nM1,(1.1)

where here and throughout M1 = max|z|=1 |P (z)| is the uniform-norm of P on the

unit circle. On the other hand, concerning the maximum modulus of P (z) on the

circle |z| = R ≥ 1, we have

max
|z|=R

|P (z)| ≤ RnM1.(1.2)

Inequality (1.1) is due to Bernstein [4], while as inequality (1.2) is a simple deduction

from the Maximum Modulus Principle, for reference see ([16], page 346). Equality

holds in (1.1) and (1.2) if and only if P (z) is a non-zero multiple of zn. For P ∈ Pn,

it is known (see [2] and [12]) that

|P (Rz)|+ |Q(Rz)| ≤ (Rn + 1)M1,(1.3)

where Q(z) = znP ( 1z ).

For the class of polynomials P ∈ Pn not vanishing in the interior of the unit circle,

the inequalities (1.1) and (1.2) have been respectively replaced by the following
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inequalities:

max
|z|=1

|P ′(z)| ≤ n

2
M1(1.4)

and

max
|z|=R

|P (z)| ≤ Rn + 1

2
M1, R ≥ 1.(1.5)

Inequalities (1.4) and (1.5) are sharp and equality holds for polynomials having all

their zeros on the unit circle. As is well known, inequality (1.4) was conjectured

by Erdös and later proved by Lax [8], while inequality (1.5) is due to Ankeny and

Rivlin [1]. As an generalization of (1.3), Jain [6] proved the following interesting

result:

Theorem A. If P ∈ Pn, then for every β with |β| ≤ 1, R ≥ 1 and |z| = 1, we have∣∣∣∣P (Rz) + β

(
R+ 1

2

)n

P (z)

∣∣∣∣+ ∣∣∣∣Q(Rz) + β

(
R+ 1

2

)n

Q(z)

∣∣∣∣
≤
{∣∣∣∣1 + β

(
R+ 1

2

)n∣∣∣∣+ ∣∣∣∣Rn + β

(
R+ 1

2

)n∣∣∣∣}M1.(1.6)

In 2012, Zireh ([17], Lemma 2.6) proved a more general result, which in particular

gives the following generalization of (1.6).

Theorem B. If P ∈ Pn, then for every β with |β| ≤ 1, R > r ≥ k, k ≤ 1 and

|z| = 1, we have∣∣∣∣P (Rz) + β

(
R+ k

r + k

)n

P (rz)

∣∣∣∣+ ∣∣∣∣Q(Rz) + β

(
R+ k

r + k

)n

Q(rz)

∣∣∣∣
≤
{∣∣∣∣1 + β

(
R+ k

r + k

)n∣∣∣∣+ k−n

∣∣∣∣Rn + β

(
R+ k

r + k

)n∣∣∣∣}M1,

where Q(z) =
(

z
k

)n
P

(
k2

z

)
.

It is topical in the geometric function theory to study the extremal problems of

functions of a complex variable and generalizing the classical polynomial inequalities

in various directions. Although the literature on polynomial inequalities is vast

and growing and over the years, many authors produced an abundance of various

versions and generalizations of the above inequalities by introducing various operators

that preserve such type of inequalities between polynomials (for example, see [5],

[11] and [12]). It is an interesting problem, as pointed out by Rahman to characterize

all such operators, and as part of this characterization Rahman in [12] (see also [9]

or Rahman and Schmeisser [[14], pp. 538-551]) introduced a class Bn of operators

B that maps P ∈ Pn to B[P ] ∈ Pn.

The class of Bn-operators: For fixed n ∈ N, Marden ([9], pp. 65) in 1966 defined

and studied the differential operator B that to each polynomial P (z) of degree at
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most n assigns the polynomial

B[P ](z) := λ0P (z) + λ1

(nz
2

)P ′(z)

1!
+ λ2

(nz
2

)2P ′′
(z)

2!
,

where λ0, λ1 and λ2 are such that all the zeros of

ϕ(z) = λ0 +

(
n

1

)
λ1z +

(
n

2

)
λ2z

2

lie in the half plane

Re(z) ≤ n

4
.(1.7)

In fact, Marden proved that this operator preserves the zeros of the polynomial in a

closed disk, i.e., if all the zeros of P (z) lie in the closed unit disk, then all the zeros

of B[P ](z) also lie in the same disk. Usually, such operators are called Bn-operators

(see [14], page 538) and were also extensilvely studied by Rahman [12]. For more

information regarding the Bn-operators (see [10], [13] and [14]). The study of such

operators preserving inequalities between polynomials in the geometric function

theory is a problem of interest both in mathematics and in the application areas

such as physical systems. In addition to having numerous applications, this study

has been the inspiration for much more research both from the theoretical point

of view, as well as from the practical point of view. Recently, Rather et al. [15]

considered the generalized Bn-operator Nv which carries P ∈ Pn into Nv[P ] ∈ Pn

defined by

Nv[P ](z) :=

m∑
v=0

λv

(
nz

2

)v
P (v)(z)

v!
,(1.8)

where λv; v = 0, 1, 2, ...,m, are such that the zeros of the polynomial

ϕv(z) =

m∑
v=0

(
n

v

)
λvz

v, m ≤ n,(1.9)

lie in the half plane (1.7).

It is easy to observe that if we take λv = 0 in (1.8) and (1.9) for 3 ≤ v ≤ m, then Nv

reduces to the B-operator. They established certain results concerning the upper

bound of |Nv[P ]| for |z| ≥ 1. More precisely, they proved the following results:

Theorem C. If f(z) is a polynomial of degree n having all its zeros in |z| ≤ 1 and

P ∈ Pn such that |P (z)| ≤ |f(z)| for |z| = 1, then

|Nv[P ](z)| ≤ |Nv[f ](z)| for |z| ≥ 1.(1.10)

Equality in (1.10) holds for P (z) = eiγf(z), γ ∈ R.
Theorem D. If P ∈ Pn, and P (z) ̸= 0 in |z| < 1, then

|Nv[P ](z)| ≤ 1

2

{∣∣Nv[ρn](z)
∣∣+ |λ0|

}
M1 for |z| ≥ 1,(1.11)
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where here and throughout ρn = zn.

Equality in (1.11) holds for P (z) = azn + b, |a| = |b| ≠ 0.

Very recently, Mir [11] obtained the following generalizations of the above inequalities

by considering a more general problem of investigating the dependence of |Nv[P (Rz)]−
βNv[P (rz)]| on the maximum of |P (z)| on |z| = 1 for every |β| ≤ 1, R ≥ r ≥ 1,

and developed a unified method for arriving at these results. More precisely, Mir

proved the following results:

Theorem E. If f(z) is a polynomial of degree n having all its zeros in |z| ≤ 1 and

if P ∈ Pn such that |P (z)| ≤ |f(z)| for |z| = 1, then for any complex number β

with |β| ≤ 1 and R ≥ r ≥ 1, we have∣∣∣Nv[P ](Rz)− βNv[P ](rz)
∣∣∣ ≤ ∣∣∣Nv[f ](Rz)− βNv[f ](rz)

∣∣∣ for |z| ≥ 1.(1.12)

Equality in (1.12) holds for P (z) = eiαf(z), α ∈ R.

Theorem F. If If P ∈ Pn and P (z) ̸= 0 in |z| < 1, then for every |β| ≤ 1 and

R ≥ r ≥ 1, we have∣∣∣Nv[P ](Rz)− βNv[P ](rz)
∣∣∣

≤ 1

2

{(
|Rn − βrn||Nv[ρn](z)|+ |1− β||λ0|

)
M1

−
(
|Rn − βrn||Nv[ρn](z)| − |1− β||λ0|

)
m1

}
for |z| ≥ 1,(1.13)

where here and throughout m1 = min|z|=1 |P (z)|.
Equality in (1.13) holds for P (z) = αzn + β with |α| = |β| ≠ 0.

The Bernstein-type inequalities are seminal in the field of classical analysis, and over

a period, these inequalities have been studied for different operators, in different

norms, and for different classes of functions. The present paper is mainly motivated

by the desire to establish some new inequalities concerning the Nv-operator in the

uniform-norm between polynomials, which in turn yield compact generalizations of

inequalities (1.10)-(1.13) and other related results. The essence in the papers of Jain

([6], [7]) and Zireh [17] is the origin of thought for the new inequalities presented

in this paper.

2. Main results

In this section, we state our main results. Their proofs are given in the next

section. We begin by proving the following inequality giving compact generalizations

of Theorems A and B.
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Theorem 2.1. If P ∈ Pn, then for |β| ≤ 1, R > r ≥ k, k > 0, and |z| ≥ 1 with

Q(z) = znP (1/z) we have∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣
+ kn

∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n

Nv[Q](rz/k2)

∣∣∣∣
≤

[
1

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣+ ∣∣∣∣1 + β

(
R+ k

r + k

)n∣∣∣∣|λ0|

]
Mk,

(2.1)

where here and throughout Mk = max|z|=k |P (z)|.

Remark 2.1. One can observe that Theorem 2.1 provides an interesting generalization

of Theorem A. For instance, if in (2.1), after substituting the value of Nv[ρn](z)

and taking λv = 0 for v = 1, 2, 3, ...,m, and noting that Nv[P ](z) = λ0P (z), we get

Theorem A as a special case when k = r = 1.

Theorem 2.2. If P ∈ Pn, and P (z) has all its zeros in |z| ≤ k, k > 0, then for

every |β| ≤ 1 and R > r ≥ k, we have

min
|z|=1

∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣
≥ 1

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣mk,

(2.2)

where here and throughout mk = min|z|=k |P (z)|.

As in remark 2.1, after substituting the value of Nv[ρn](z) in (2.2) and taking

λv = 0 for v = 1, 2, 3, ...,m, and noting that Nv[P ](z) = λ0P (z), we get a result of

(Zireh [17], when α = 0), see also Dewan and Hans ([5], Theorem 1).

Theorem 2.3. If P ∈ Pn, and P (z) has all its zeros in |z| ≥ k, k ≤ 1 then for

every |β| ≤ 1 and R > r ≥ k, we have for |z| ≥ 1,∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣
≤ 1

2

[
1

kn

∣∣∣∣Rn + β

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣+ |λ0|

∣∣∣∣1 + β

(
R+ k

r + k

)n∣∣∣∣
]
Mk.(2.3)

Remark 2.2. By taking β = 0 and k = 1, Theorem 2.3 in particular gives Theorem

D and for suitable choices of λv; 0 ≤ v ≤ m, it yields inequalities (1.4) and (1.5)

as well.

The above inequality (2.3) will be a consequence of a more fundamental inequality

presented by the following theorem.
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Theorem 2.4. If P ∈ Pn, and P (z) has all its zeros in |z| ≥ k, k ≤ 1 then for

every |β| ≤ 1 and R > r ≥ k, we have

∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣ ≤ 1

2

[(
1

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣

+ |λ0|
∣∣∣∣1 + β

(
R+ k

r + k

)n∣∣∣∣
)
Mk −

(
1

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣

− |λ0|
∣∣∣∣1 + β

(
R+ k

r + k

)n∣∣∣∣
)
mk

]
.

(2.4)

Equality in (2.4) holds for P (z) = γzn + δ with |γ| = |δ| ̸= 0. We shall now

discuss some consequences of Theorem 2.4. If in (2.4), after substituting the value

of Nv[ρn](z), we get for every |β| ≤ 1 and R > r ≥ k,

∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣
≤ 1

2

[(
1

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣|z|n∣∣∣∣ m∑
v=0

λv

(
n

v

)(
n

2

)v∣∣∣∣
+ |λ0|

∣∣∣∣1 + β

(
R+ k

r + k

)n∣∣∣∣
)
Mk

−

(
1

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣|z|n∣∣∣∣ m∑
v=0

λv

(
n

v

)(
n

2

)v∣∣∣∣
− |λ0|

∣∣∣∣1 + β

(
R+ k

r + k

)n∣∣∣∣
)
mk

]
for |z| ≥ 1,(2.5)

where λv; 0 ≤ v ≤ m are such that all the zeros of ϕv(z) defined by (1.9) lie in the

half plane (1.7).

Remark 2.3. Taking λv = 0 for v = 1, 2, 3, ...,m in (2.5) and noting that Nv[P ](z) =

λ0P (z), we get the following result which is of independent interest, because besides

giving generalizations and refinements of (1.4) and (1.5) it also provides generalizations

and refinements of some results of Zireh [17], Dewan and Hans [5] and Jain ([6], [7]).
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Corollary 2.1. If P ∈ Pn, and P (z) has all its zeros in |z| ≥ k, k ≤ 1 then for

|β| ≤ 1, R > r ≥ k, we have∣∣∣∣P (Rz) + β

(
R+ k

r + k

)n

P (rz)

∣∣∣∣ ≤ 1

2

[(
1

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣|z|n
+

∣∣∣∣1 + β

(
R+ k

r + k

)n∣∣∣∣
)
Mk −

(
1

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣|z|n
−
∣∣∣∣1 + β

(
R+ k

r + k

)n∣∣∣∣
)
mk

]
for |z| ≥ 1.(2.6)

Equality in (2.6) holds for P (z) = γzn + δ with |γ| = |δ| ≠ 0.

Self-inversive polynomial: A polynomial P ∈ Pn is said to be self-inversive

if P (z) = ζQ(z), |ζ| = 1. Finally, we prove the following result for self-inversive

polynomials.

Theorem 2.5. If P ∈ Pn is self-inversive, then for |β| ≤ 1 and R > r ≥ 1, we

have for |z| ≥ 1,∣∣∣∣Nv[P ](Rz) + β

(
R+ 1

r + 1

)n

Nv[P ](rz)

∣∣∣∣ ≤ 1

2

[∣∣∣∣Rn + rnβ

(
R+ 1

r + 1

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣

+ |λ0|
∣∣∣∣1 + β

(
R+ 1

r + 1

)n∣∣∣∣
]
M1.

(2.7)

Equality in (2.7) holds for P (z) = zn + 1.

Remark 2.4. For β = 0, the above result in particular reduces to a result of Rather

et al. ([15], Theorem 1.4). Taking λv = 0 for v = 1, 2, 3, ...,m in (2.7) and noting

that Nv[P ](z) = λ0P (z), we get the following result for self-inversive polynomials.

Corollary 2.2. If P ∈ Pn is self-inversive, then for |β| ≤ 1 and R > r ≥ 1, we

have for |z| ≥ 1,∣∣∣∣P (Rz) + β

(
R+ 1

r + 1

)n

P (rz)

∣∣∣∣ ≤ 1

2

[∣∣∣∣Rn + rnβ

(
R+ 1

r + 1

)n∣∣∣∣|z|n
+

∣∣∣∣1 + β

(
R+ 1

r + 1

)n∣∣∣∣
]
M1.(2.8)

For β = 0, the inequality (2.8) shows that the inequality (1.5) also holds for self-

inversive polynomials.
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3. Auxiliary results

In order to prove our main results, we need the following lemmas.

Lemma 3.1. ([3]) If P ∈ Pn, and P (z) has all its zeros in |z| ≤ k, k ≥ 0, then for

every R ≥ r and rR ≥ k2,

|P (Rz)| ≥
(
R+ k

r + k

)n

|P (rz)| for |z| = 1.

If we take r = s = 1 and σ = n
2 in Theorem 1.1 of Rather et al. [15], we get the

following:

Lemma 3.2. If all the zeros of polynomial P ∈ Pn lie in |z| ≤ 1, then all the zeros

of Nv[P (z)] defined by (1.8) also lie in |z| ≤ 1.

We now prove the following lemma from which we can obtain Theorem C as a

special case.

Lemma 3.3. If f(z) is a polynomial of degree n having all its zeros in |z| ≤
k, k > 0, and P ∈ Pn such that |P (z)| ≤ |f(z)| for |z| = k, then for every |β| ≤ 1,

R > r ≥ k and for |z| ≥ 1,∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣ ≤ ∣∣∣∣Nv[f ](Rz) + β

(
R+ k

r + k

)n

Nv[f ](rz)

∣∣∣∣.
Proof of Lemma 3.3. By hypothesis |P (z)| ≤ |f(z)| for |z| = k, therefore any

zero of f(z) that lies on |z| = k is also a zero of P (z). On the other hand, for every

ζ ∈ C with |ζ| > 1, we have |P (z)| < |ζf(z)|, for |z| = k, when all the zeros of f(z)

lie in |z| < k, it follows by Rouché’s theorem that all the zeros of the polynomial

g(z) = P (z)− ζf(z) lie in |z| ≤ k. On applying Lemma 3.1 to the polynomial g(z),

we have

|g(Rz)| >
(
R+ k

r + k

)n

|g(rz)| for |z| = k.

Since g(Rz) has all its zeros in |z| ≤ k
R ≤ 1. Therefore, if β is any complex

number such that |β| ≤ 1, it follows that all the zeros of the polynomial g(Rz) +

β

(
R+k
r+k

)n

g(rz) also lie in |z| ≤ 1. Applying Lemma 3.2 and noting that Nv is a

linear operator, we conclude that all the zeros of the polynomial

J(z) := Nv[g](Rz) + β

(
R+ k

r + k

)n

Nv[g](rz)
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lie in |z| ≤ 1, for every |β| ≤ 1 and R > r ≥ k. Replacing g(z) by P (z)− ζf(z), we

conclude that all the zeros of the polynomial

J(z) := Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

− ζ

[
Nv[f ](Rz) + β

(
R+ k

r + k

)n

Nv[f ](rz)

]
lie in |z| ≤ 1 for all real or complex number β with |β| ≤ 1 and R > r ≥ k. This

implies, ∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣
≤
∣∣∣∣Nv[f ](Rz) + β

(
R+ k

r + k

)n

Nv[f ](rz)

∣∣∣∣ for |z| ≥ 1.(3.1)

If inequality (3.1) is not true, then there is a point z = z0 with |z0| ≥ 1, such that∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣
>

∣∣∣∣Nv[f ](Rz) + β

(
R+ k

r + k

)n

Nv[f ](rz)

∣∣∣∣.
Taking

ζ =

Nv[P ](Rz) + β

(
R+k
r+k

)n

Nv[P ](rz)

Nv[f ](Rz) + β

(
R+k
r+k

)n

Nv[f ](rz)

,

so that |ζ| > 1 and with this choice of ζ, we have J(z0) = 0 for |z0| ≥ 1, which is

a clear contradiction to the fact that J(z) ̸= 0 for |z| ≥ 1. Thus for every complex

number β with |β| ≤ 1 and R > r ≥ k, we have (3.1) holds. This proves Lemma

3.3 completely.

Remark 3.1. On applying Lemma 3.3 with f(z) = Mkz
n/kn, giving us the following

inequality: ∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣
≤ 1

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣Mk for |z| ≥ 1.(3.2)

Lemma 3.4. If P ∈ Pn and P (z) ̸= 0 in |z| < k, k > 0, then for every |β| ≤ 1

and R > r ≥ k, we have∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣
≤ kn

∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n

Nv[Q](rz/k2)

∣∣∣∣ for |z| ≥ 1.
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Proof of Lemma 3.4. Since P (z) ̸= 0 in |z| < k, therefore, all the zeros of

polynomial Q
(
z/k2

)
lie in |z| < k. Also |knQ(z/k2)| = |P (z)| for |z| = k. Applying

Lemma 3.3 to P (z) with f(z) replaced by knQ(z/k2), we get for every |β| ≤ 1,

R > r ≥ k and |z| ≥ 1,∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣
≤ kn

∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n

Nv[Q](rz/k2)

∣∣∣∣.
4. Proofs of main results

Proof of Theorem 2.1. Let Mk = max|z|=k |P (z)|, then by Rouché’s theorem

the polynomial U(z) = P (z) − ζMk has no zeros in |z| < k for every ζ ∈ C with

|ζ| > 1. On using Lemma 3.4 to U(z), we have for |β| ≤ 1 and R > r ≥ k,∣∣∣∣Nv[U ](Rz) + β

(
R+ k

r + k

)n

Nv[U ](rz)

∣∣∣∣
≤ kn

∣∣∣∣Nv[L](Rz/k2) + β

(
R+ k

r + k

)n

Nv[L](rz/k
2)

∣∣∣∣,
where L(z) = znU( 1z ) = Q(z)− ζznMk. Using U(z) = P (z)− ζMk, L(z) = Q(z)−
ζznMk, and the fact that Nv is linear and Nv[1] = λ0, we get from above inequality

for |β| ≤ 1, |z| ≥ 1 and R > r ≥ k,∣∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)− λ0ζMk

[
1 + β

(
R+ k

r + k

)n]∣∣∣∣∣
≤ kn

∣∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n

Nv[Q](rz/k2)

− ζMk

k2n

[
Rn + rnβ

(
R+ k

r + k

)n]
Nv[ρn](z)

∣∣∣∣∣,(4.1)

where Q(z) = znP ( 1z ).

Now choosing the argument of ζ suitably on the right hand side of (4.1) such that

kn

∣∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n

Nv[Q](rz/k2)

− ζMk

k2n

[
Rn + rnβ

(
R+ k

r + k

)n]
Nv[ρn](z)

∣∣∣∣∣
=

|ζ|Mk

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣

− kn

∣∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n

Nv[Q](rz/k2)

∣∣∣∣∣,
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which is possible by applying inequality (3.2) to the polynomial Q(z/k2) and using

the fact that max|z|=k

∣∣Q(z/k2)
∣∣ = Mk/k

n, we get for |β| ≤ 1, R > r ≥ k and

|z| ≥ 1,

∣∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣∣− |λ0||ζ|Mk

∣∣∣∣∣1 + β

(
R+ k

r + k

)n
∣∣∣∣∣

≤ |ζ|Mk

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣

− kn

∣∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n

Nv[Q](rz/k2)

∣∣∣∣∣.
The required result follows on making |ζ| → 1.

Proof of Theorem 2.2. Let mk = min|z|=k |P (z)|. In case mk = 0, there is

nothing to prove. Assume that mk > 0, so that all the zeros of P (z) lie in |z| < k and

we have, mk

∣∣z/k∣∣n ≤ |P (z)| for |z| = k. Applying Lemma 3.3 with f(z) replaced

by mk

(
z/k
)n

, we obtain for every |β| ≤ 1 and R > r ≥ k,

min
|z|=1

∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣
≥ 1

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣mk,

which is inequality (2.2). This completes the proof of Theorem 2.2.

Proof of Theorem 2.3. The desired result immediately follows by combining

Lemma 3.4 and Theorem 2.1.

Proof of Theorem 2.4. The result follows obviously in case P (z) has a zero on

|z| = k (by Theorem 2.3). Therefore, we assume that P (z) has all its zeros in |z| > k,

so that mk = min|z|=k |P (z)| > 0. Now for every real or complex number ζ with

|ζ| < 1, it follows by Rouché’s theorem, that the polynomial U(z) = P (z) − ζmk

does not vanish in |z| < k. On applying Lemma 3.4 to the polynomial U(z) and

noting that Nv is a linear operator with Nv[1] = λ0, we get for every |β| ≤ 1,

R > r ≥ k and |z| ≥ 1,

∣∣∣∣Nv[U ](Rz) + β

(
R+ k

r + k

)n

Nv[U ](rz)

∣∣∣∣
≤ kn

∣∣∣∣Nv[L](Rz/k2) + β

(
R+ k

r + k

)n

Nv[L](rz/k
2)

∣∣∣∣,
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where L(z) = znW ( 1z ). Equivalently,∣∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)− ζλ0mk

[
1 + β

(
R+ k

r + k

)n]∣∣∣∣∣
≤ kn

∣∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n

Nv[Q](rz/k2)

− ζmk

k2n

[
Rn + rnβ

(
R+ k

r + k

)n]
Nv[ρn](z)

∣∣∣∣∣ for |z| ≥ 1,(4.2)

where Q(z) = znP ( 1z ).

Now choosing the argument of ζ on the right hand side of (4.2) such that

kn

∣∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n

Nv[Q](rz/k2)

− ζmk

k2n

[
Rn + rnβ

(
R+ k

r + k

)n]
Nv[ρn](z)

∣∣∣∣∣
= kn

∣∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n

Nv[Q](rz/k2)

∣∣∣∣∣
− |ζ|mk

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣,

which is possible by Theorem 2.2 applied to Q(z/k2), we get∣∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣∣− |ζ||λ0|mk

∣∣∣∣1 + β

(
R+ k

r + k

)n∣∣∣∣
≤ kn

∣∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n

Nv[Q](rz/k2)

∣∣∣∣∣
− |ζ|

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣mk for |z| ≥ 1.

This gives by letting |ζ| → 1,∣∣∣∣∣Nv[P ](Rz) + β

(
R+ k

r + k

)n

Nv[P ](rz)

∣∣∣∣∣ ≤
∣∣∣∣∣Nv[Q](Rz/k2) + β

(
R+ k

r + k

)n
∣∣∣∣∣

−

[
1

kn

∣∣∣∣Rn + rnβ

(
R+ k

r + k

)n∣∣∣∣∣∣Nv[ρn](z)
∣∣− |λ0|

∣∣∣∣1 + β

(
R+ k

r + k

)n∣∣∣∣
]
mk.(4.3)

Inequality (4.3) in conjunction with Theorem 2.1 yields (2.4). This completes the

proof of Theorem 2.4.

Proof of Theorem 2.5. By hypothesis P ∈ Pn is self-inversive, therefore P (z) =

ζQ(z), |ζ| = 1. It gives for every |β| ≤ 1, R > r ≥ 1 and for all z,∣∣∣∣Nv[P ](Rz) + β

(
R+ 1

r + 1

)n

Nv[P ](rz)

∣∣∣∣ = ∣∣∣∣Nv[Q](Rz) + β

(
R+ 1

r + 1

)n

Nv[Q](rz)

∣∣∣∣.
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The above equality when combined with Theorem 2.1 (for k = 1) yields (2.7). This

completes the proof of Theorem 2.5.
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