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Abstract. Let W (ζ) = (a0+a1ζ+ ...+anζn) be a polynomial of degree n having all its zeros
in Tk ∪ E−

k , k ≥ 1, then for every real or complex number α with |α| ≥ 1 + k + kn, Govil and
Mctume [7] showed that the following inequality holds

max
ζ∈T1

|DαW (ζ)| ≥ n

(
|α| − k

1 + kn

)
∥W∥+ n

(
|α| − (1 + k + kn)

1 + kn

)
min
ζ∈Tk

|W (ζ)|.

In this paper, we have obtained a generalization of this inequality involving sequence of operators
known as polar derivatives. In addition, the problem for the limiting case is also considered.
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1. Introduction and statement of results

Let L be the space of all complex polynomials W (ζ) =
n∑

v=1
bvζ

v of degree n. For

each positive real number k let Tk = {ζ : |ζ| = k}, E−
k = {ζ ∈ C : |ζ| < k} and

E+
k = {ζ ∈ C : |ζ| > k} respectively. For any holomorphic function f defined on

T1, we write ∥f∥ = sup
z∈T1

|f(z)|, the supremum norm of f on T1. The Bernstein’s

classical inequality states that

max{|W ′(ζ)| : ζ ∈ T1} ≤ nmax{|W (ζ)| : ζ ∈ T1}(1.1)

holds for all polynomials W ∈ L. This result is best possible and the extremal

polynomial for (1.1) is W (ζ) = αζn, α ̸= 0. The relationships between the bounds,

their refinements and extensions, and the distribution of zeros of W in a certain

region of C have been studied extensively and has deeply influenced the sequel

of such type of inequalities throughout the decades. Since the equality in the

Bernstein’s inequality (1.1) holds for polynomials which have all their zeros at the

origin, improvement in (1.1) is not possible if we consider polynomials having all

their zeros inside the unit circle. For this reason, in this case, it may be interesting

to obtain inequality in the reverse direction, and in this connection, we have the

inequality ascribed to Turán[10], which asserts that

max{|W ′(ζ)| : ζ ∈ T1} ≥ n

2
max{|W (ζ)| : ζ ∈ T1}(1.2)
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holds for all polynomials W ∈ L having all zeros in T1 ∪ E−
1 . This result is best

possible and the extremal polynomial for (1.2) is W (ζ) = ζn+1. One would expect,

the refinement of the lower bound estimate in (1.2) under the condition when W is

free of zeros on T1. This assertion was observed in [1] in which the authors proved

the following inequality under the same hypothesis as of (1.2)

∥W ′∥ ≥ n

2
{∥W∥+ min

ζ∈T1

|W (ζ)|}.(1.3)

Inequalities (1.2) and (1.3) are very useful in proving some well known classical

polynomial inequalities.

For polynomials of a complex variable, we also have the following more general

result, due to Govil [4], which is one of the most known polynomial inequality in

this direction and will be useful for our results. More precisely, the inequality

∥W ′∥ ≥ n

1 + kn
∥W∥(1.4)

holds for all polynomials W ∈ L having all zeros in Tk ∪ E−
k , where k ≥ 1. As is

easy to see that (1.4) becomes equality when W (ζ) = ζn+kn. Again, excluding the

class of polynomials having all zeros on Tk, then one may expect that the bound

(1.4) could be amended. In this direction, under the same hypothesis as of (1.4), it

was shown by Govil [3] that the following inequality holds good

∥W ′∥ ≥ n

1 + kn
{∥W∥+ min

ζ∈T1

|W (ζ)|}.(1.5)

The research on mathematical objects associated with Turán type inequalities

has been active over a period; there are many research papers published in a variety

of journals each year and different approaches have been taken for different targets.

The present article is concerned with Turán type inequalities for the polar derivative

of a polynomial with restricted zeros. Before moving on to our main results, we will

take a moment to introduce the concept of the polar derivative being involved.

Definition 1.1. Let W ∈ L, and α is any complex number, then

DαW (ζ) = −
[

W (ζ)

(ζ − α)n

]′
(ζ − α)n+1

= nW (ζ) + (α− ζ)W ′(ζ),

(1.6)

is called the polar derivative of W (ζ). Note that Dαp(z) is a polynomial of degree

at most n− 1 and it generalizes the concept of “ordinary derivative” is evident and

convincing from the fact that

lim
α→∞

DαW (ζ)

α
= W ′(ζ)(1.7)

uniformly with respect to ζ for TR ∪ E−
R, R > 0.
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In the polar derivative milieu, all the above inequalities have been widely investigated,

the research in this field has taken many different directions and resulting in slew of

publications see, e.g.,([5], [8], [11], [6]). In this paper our interest is mainly motivated

upon the study of various versions of inequalities (1.4) and (1.5), their refinements,

strengthening and generalizations in the polar derivative setting by introducing

constraints on the zeros of W ∈ L, the modulus of largest root of W or restrictions

on coefficients etc. In this contexture, the inequality

max
ζ∈T1

|DαW (ζ)| ≥ n(|α| − k)

1 + kn
∥W∥(1.8)

holds for all polynomials W ∈ L which has all its zeros in Tk ∪ E−
k , k ≥ 1 and for

every α ∈ C with |α| ≥ k. This result is ascribed to Aziz and Rather [2]. Another

result in this direction ascribed to Govil and Mctume [7] acts as a refinement of

(1.7) and states that the inequality

max
ζ∈T1

|DαW (ζ)| ≥ n

(
|α| − k

1 + kn

)
∥W∥+ n

(
|α| − (1 + k + kn)

1 + kn

)
min
ζ∈Tk

|W (ζ)|(1.9)

holds for all polynomials W ∈ L which has all its zeros in Tk ∪ E−
k , k ≥ 1 and for

every α ∈ C with |α| ≥ 1 + k + kn.

Definition 1.2. Given a polynomial W ∈ L, we can construct a sequence of polar

derivatives or so-called higher order derivatives with respect to finitely many poles

as given below

Dα1W (ζ) = nW (ζ) + (α1 − ζ)W ′(ζ)

Dα2Dα1W (ζ) = (n− 1)Dα1W (ζ) + (α2 − ζ)(Dα1W (ζ))′

... ... ...

Dαt ...Dα2Dα1W (ζ) = (n− t+ 1)Dαt−1 ...Dα1W (ζ) + (αt − ζ)(Dαt−1 ...Dα1W (ζ))′,

for 2 ≤ t ≤ n.

Like the tth ordinary derivative W (t)(ζ) of W (ζ), the tth polar derivative Dαt
...Dα2

Dα1W (ζ) of W (ζ) is a polynomial of degree at most n−t. For the sake of simplicity,

we use the following notations:

Ak
αt

= (|α1| − k)(|α2| − k)...(|αt| − k),

Nt = n(n− 1)(n− 2)...(n− t+ 1).

In this paper we obtain a generalization of inequalities (1.8) and (1.9), and besides

our theorem includes many quality inequalities in this connection as special cases.

To be more precise, we prove
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Theorem 1.1. Let W ∈ L, and W (ζ) has all its zeros in Tk ∪E−
k , k ≥ 1, then for

every real or complex numbers α1, α2, ..., αt with |αi| ≥ 1 + k + kn, i = 1, 2, ..., t,

max
ζ∈T1

|Dαt
...Dα2

Dα1
W (ζ)| ≥ Nt

Kt

[
Ak

αt
∥W∥+ {Ak

αt
−Kt} min

ζ∈Tk

|W (ζ)|
]
,(1.10)

where Kt = (1 + kn)(1 + kn−1)...(1 + kn−t+1).

Remark 1.1. For t = 1, one easily gets inequality (1.9) from Theorem 1.1 and

when there is no information about minimum of a polynomial W (ζ) we get inequality

(1.8) as a special case.

If we choose α1 = α2 = ... = αt = α, then by dividing both sides of inequality

(1.10) by |α|t and letting |α| → ∞, therefore taking (1.7) into consideration, we

obtain the following result.

Corollary 1.1. Let W ∈ L, and W (ζ) has all its zeros in Tk ∪ E−
k , k ≥ 1, then

max
ζ∈T1

|W (t)(ζ)| ≥ Nt

Kt

{
∥W∥+ min

ζ∈Tk

|W (ζ)|
}
,(1.11)

where Kt = (1 + kn)(1 + kn−1)...(1 + kn−t+1).

Inequality (1.5) can easily be obtained from above Corollary 1.1 for t = 1.

2. Lemmas

Lemma 2.1. If all the zeros of an nth degree polynomial W lie in a circular region

C and if none of the points αt, αt−1, ..., α1 lie in the region C, then each of the

polar derivatives

Dαt
...Dα2

Dα1
W (ζ), t = 1, 2, .., n− 1

has all of its zeros in C.

This lemma follows by repeated applications of Laguerre’s theorem [9].

Lemma 2.2. Let W ∈ L, and W (ζ) has all its zeros in Tk ∪ E−
k , k ≥ 1, then for

every real or complex numbers α with |α| ≥ k,

|DαW (ζ)| ≥ n(|α| − k)

1 + kn
|W (ζ)|.

This lemma is due to Aziz and Rather [2].

Lemma 2.3. Let W ∈ L, and W (ζ) has all its zeros in Tk ∪ E−
k , k ≥ 1, then for

every real or complex numbers α1, α2, ..., αt with |αi| ≥ k, i = 1, 2, ..., t,

|Dαt
...Dα2

Dα1
W (ζ)| ≥ Nt

(1 + kn)(1 + kn−1)...(1 + kn−t+1)
Ak

αt
|W (ζ)|.(2.1)
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Proof of Lemma 2.3. Well, Lemma follows trivially if |αi| = k for at least one

i, 1 ≤ i ≤ t ≤ n. Therefore from now on we will assume that |αi| > k. We will

prove this lemma by mathematical induction. Lemma is true for t = 1 by Lemma

2.2 i.e., if |α1| > k then

|Dα1W (ζ)| ≥ n(|α1| − k)

1 + kn
|W (ζ)|.(2.2)

Now for t = 2. Except for one value (say a) of α1, Dα1
W (ζ) will be a polynomial

of degree (n − 1). Let us take any α1(α1 ̸= a if |a| > k) with |α1| > k and fix it

up. Thus Dα1W (ζ) is a polynomial of degree (n− 1) and by Lemma 2.1 it has all

its zeros in Tk ∪E−
k . Therefore on applying ?Lemma 2.2 to Dα1W (ζ) with α = α2,

|α2| > k we get,

|Dα2
(Dα1

W (ζ))| ≥ n− 1

1 + kn−1
(|α2| − k)|Dα1

W (ζ)|.

Using (2.2) we have

|Dα2Dα1W (ζ)| ≥ n(n− 1)

(1 + kn)(1 + kn−1)
(|α1| − k)(|α2| − k)|W (ζ)|.

It follows Lemma is true for t = 2. We assume that Lemma is true for t = s i.e.,

for ζ ∈ T1 and |αi| > k, i = 1, 2, ..., s

|Dαs ...Dα2Dα1W (ζ)| ≥ Ns

(1 + kn)(1 + kn−1)...(1 + kn−s+1)
Ak

αs
|W (ζ)|,(2.3)

and we will prove that Lemma is true for t = s+1, (< n). Again except for one value

(say α
′

1) of α1, Dα1
W (ζ) will be a polynomial of degree (n − 1). Let us take any

α1(α1 ̸= α
′

1 if |α′

1| > k) with |α1| > k and fix it up. Thus Dα1
W (ζ) is a polynomial

of degree (n − 1). Now Dα2
Dα1

W (ζ) will be a polynomial of degree (n − 2) for

every α2, except for one value α
′

2, (say), of α2. Let us take any α2(α2 ̸= α
′

2 if

|α′

2| > k) with |α2| > k and fix it up. Therefore, Dα2Dα1W (ζ) is a polynomial of

degree (n− 2). Likewise one can continue and say that Dαs
...Dα2

Dα1
W (ζ) will be

a polynomial of degree (n−s) for every for every αs, except for one value α
′

s, (say),

of αs. Let us take any αs(αs ̸= α
′

s if |α′

s| > k) with |αs| > k and fix it up. Thus

Dαs ...Dα2Dα1W (ζ) is a polynomial of degree (n− s) with fixed αs(|αs| > k), fixed

αs−1(|αs−1| > k),...,fixed α1(|α1| > k) and by Lemma 2.1 Dαs
...Dα2

Dα1
W (ζ) has

all its zeros in Tk ∪ E−
k . Therefore on applying Lemma 2.2 to Dαs

...Dα2
Dα1

W (ζ)

with α = αs+1, |αs+1| > k we get,

|Dαs+1(Dαs ...Dα2Dα1W (ζ))| ≥ n− s

1 + kn−s
(|αs+1| − k)|Dαs

...Dα2
Dα1

W (ζ)|,

which on being combined with (2.3) gives for ζ ∈ T1 and |αs+1| > k

|Dαs+1
Dαs

...Dα2
Dα1

W (ζ)| ≥ n(n− 1)...(n− s)

(1 + kn)(1 + kn−1)...(1 + kn−s)
Ak

αs+1
|W (ζ)|.(2.4)
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Further αs(αs ̸= α
′

s if |α′

s| > k) with |αs| > k was a fixed element but was chosen

arbitrarily. Accordingly (2.4) is true for every αs+1(|αs+1| > k) and every αs(αs ̸=
α

′

s if |α′

s| > k) with |αs| > k, i.e.

|Dαs+1
Dαs

...Dα2
Dα1

W (ζ)| ≥ n(n− 1)...(n− s)

(1 + kn)(1 + kn−1)...(1 + kn−s)
Ak

αs+1
|W (ζ)|,

for ζ ∈ T1, |αs+1| > k & |αs| > k(αs ̸= α
′

s if |α
′

s| > k).

(2.5)

Now if |α′

s| > k then for a fixed αs+1(|αs+1| > k), Dαs+1
Dαs

...Dα2
Dα1

is continuous

function of αs and hence by continuity we can say (2.5) will be true for a fixed αs+1

and α
′

s and accordingly (2.5) will be true for every αs+1(|αs+1| > k) and α
′

s. Thus

(2.5) is true for every αs+1(|αs+1| > k) and every αs(|αs| > k). That is

|Dαs+1
Dαs

...Dα2
Dα1

W (ζ)| ≥ n(n− 1)...(n− s)

(1 + kn)(1 + kn−1)...(1 + kn−s)
Ak

αs+1
|W (ζ)|,

for ζ ∈ T1, |αs+1| > k & |αs| > k.

(2.6)

As argued for αs and α
′

s, we can argue for αs−1 and α
′

s−1 and say that

|Dαs+1
Dαs

...Dα2
Dα1

W (ζ)| ≥ n(n− 1)...(n− s)

(1 + kn)(1 + kn−1)...(1 + kn−s)
Ak

αs+1
|W (ζ)|,

for ζ ∈ T1, |αs+1| > k, |αs| > k & |αs−1| > k.

One can continue similarly and obtain

|Dαs+1Dαs ...Dα2Dα1W (ζ)| ≥ n(n− 1)...(n− s)

(1 + kn)(1 + kn−1)...(1 + kn−s)
Ak

αs+1
|W (ζ)|,

for ζ ∈ T1, |αs+1| > k, |αs| > k, |αs−1| > k, ..., |α2| > k, |α1| > k.

Hence Lemma is true for t = s+ 1. This completes the proof of Lemma.

3. Proof of Theorem 1.1

Let m = min
ζ∈Tk

|W (ζ)|, then |W (ζ)| ≥ m on Tk. Therefore, for every λ with |λ| < 1,

|W (ζ)| > |λ| on Tk. If W (ζ) has a zero on Tk then m = 0 and the result follows

from Lemma 2.3. Therefore from now onwards we will assume that W (ζ) has all

its zeros in E−
k , where k ≥ 1. By Rouche’s theorem the polynomial

F (ζ) = W (ζ) + λm

also has all its zeros in E−
k . Thus, on applying Lemma 2.3 to F (ζ) we obtain for

|α1| ≥ k, |α2| ≥ k, ..., |αt| ≥ k

|Dαt ...Dα2Dα1F (ζ)| ≥ Nt

(1 + kn)(1 + kn−1)...(1 + kn−t+1)
Ak

αt
|F (ζ)|, ζ ∈ T1,

i.e.,

|Dαt
...Dα2

Dα1
W (ζ) +mλn(n− 1)...(n− t+ 1)| ≥ Nt

Kt
Ak

αt
|W (ζ) + λm|, ζ ∈ T1,

(3.1)

where Kt = (1 + kn)(1 + kn−1)...(1 + kn−t+1).
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If we choose the argument of λ such that

|W (ζ) + λm| = |W (ζ)|+ |λ|m,

then from (3.1), we get

|Dαt ...Dα2Dα1W (ζ) +mλn(n− 1)...(n− t+ 1)| ≥ Nt

Kt
Ak

αt
{|W (ζ)|+ |λ|m},

this gives

|Dαt
...Dα2

Dα1
W (ζ)|+mNt|λ| ≥

Nt

Kt
Ak

αt
{|W (ζ)|+ |λ|m}, ζ ∈ T1.

Equivalently

|Dαt ...Dα2Dα1W (ζ)| ≥ Nt

Kt

[
Ak

αt
|W (ζ)|+ |λ|{Ak

αt
−Kt}m

]
.(3.2)

Now letting |λ| → 1 in (3.2),we get

max
ζ∈T1

|Dαt ...Dα2Dα1W (ζ)| ≥ Nt

Kt

[
Ak

αt
∥W∥+ {Ak

αt
−Kt} min

ζ∈Tk

|W (ζ)|
]
,

which is (1.10) and Theorem 1.1 is thus proved.
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