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Abstract. We define a new type of spectrum, called the (P,Q)− ε-pseudo condition spectra

Σ
(2)
(P,Q)−ε

(T ) = σ
(2)
(P,Q)

(T )
⋃{

λ ∈ C : ∥(λ− T )
(2)
(P,Q)

∥∥λ− T∥ >
1

ε

}
.

This (P,Q)− ε-pseudo condition spectrum shares some properties of the usual spectrum such as
non emptiness. Our aim in this paper is to show some properties of (P,Q) − ε-pseudo condition
spectra of a linear operator T in Banach spaces and reveal the relation between their (P,Q)− ε-
pseudo condition spectra. Additionally, we investigate the (P,Q) − ε-pseudo condition spectrum
of a block matrix in a Banach space.
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1. Introduction

For the past ten years, there has been in the field of mathematics digital technology

has a keen interest in the study of the notion of pseudo-spectrum and pseudo

condition spectra. The development of this notion is explained by the fact that

in a certain number of mathematical engineering problems were natural non-self-

employed operators. This original observation suggests that in some cases, knowledge

of the spectrum of an operator alone does not sufficiently understand his action.

It is as well as to make up for this apparent lack of information contained in

the spectrum, new subsets of the complex plane called pseudo-spectra have been

introduced. There are several generalizations of the concept of the spectrum in

literature such as Ransford spectrum [8], pseudo spectrum [12], condition spectrum

[1, 2, 5, 10], pseudo spectra of multivalued linear operator [3]. Unlike the spectrum,

which is a purely algebraic concept, both the pseudo spectrum and condition

spectrum depend on the norm. Also, both these sets contain the spectrum as a

subset.

Consider two idempotent elements P,Q ∈ B(X) i.e. P 2 = P and Q2 = Q.
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Definition 1.1. Let T ∈ B(X). An operator S ∈ B(X) satisfying,

STS = S, ST = P and I − TS = Q

will be called a (P,Q)-outer generalized inverse of T and it is denoted by T
(2)
P,Q.

The detailed treatment of outer generalized inverses of operators on Banach and

Hilbert spaces can be found in [4, 7].

Definition 1.2. For an element T ∈ B(X), the (P,Q)-resolvent set is defined as

ρ
(2)
(P,Q)(T ) :=

{
λ ∈ C : (λ− T )

(2)
P,Q exist

}
.

The complement of the set ρ(2)(P,Q)(T ) is called (P,Q)-spectrum and it is denoted by

σ
(2)
(P,Q)(T ).

From now onwards, we consider the idempotent P ̸= 0 and P ̸= I and we fix the

operator Q = I − P . If λ ∈ ρ
(2)
(P,Q)(T ), then we denote (λ − T )

(2)
P,Q by RT (λ). For

given T ∈ B(X), if RT (λ) exists for some λ ∈ C, then from Definition 1.1,

(1.1) RT (λ)(λ− T ) = P and (λ− T )RT (λ) = P

By (Eq. 1.1), TP = PT . Consequently, if TP ̸= PT then σ
(2)
(P,Q)(T ) = C. Because

of this reason, in the rest of the paper we assume TP = PT .

In this note, we dedicate to research the (P,Q) − ε-pseudo condition spectra

of a linear operator and its properties. The remainder of this paper is organized

as follows. In Section 2, we first suggest a characterize for the (P,Q) − ε-pseudo

condition spectra of a linear operator. Then, in Section 3, we investigate the (P,Q)−
ε-pseudo condition spectra, of a block matrix in a Banach space.

2. (P,Q)− ε-Pseudo condition spectra of linear operator

The (P,Q)−ε-pseudo spectrum were studied in [6, 11]. Let ε > 0 and T ∈ B(X).

The (P,Q)− ε-pseudo spectrum is defined as

σ
(2)
(P,Q)−ε(T ) :=

{
λ ∈ C : (λ− T )

(2)
P,Q does not exist or

∥∥∥(λ− T )
(2)
P,Q

∥∥∥ > ε
}
.

By convention, we write ∥RT (λ)∥ = ∞ if RT (λ) is unbounded or nonexistent, i.e., if

λ is in the spectrum σ
(2)
(P,Q)(T ). It is well known that ρ(2)(P,Q)−ε(T ) for any T ∈ B(X)

is a nonempty open subset, the following remark prove the same for (P,Q) − ε-

pseudo resolvent set. In this section, we define the pseudo spectra of linear relation

and study some properties.
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Definition 2.1. ((P,Q)− ε-pseudo spectra of T )

Let T ∈ B(X) where X is a normed space and ε > 0 we define the (P,Q)−ε-pseudo

spectra of T by

σ
(2)
(P,Q)−ε(T ) = σ

(2)
(P,Q)(T )

⋃{
λ ∈ C : ∥RT (λ)∥ >

1

ε

}
.

We denote the (P,Q)− ε-pseudo resolvent set of T

ρ
(2)
(P,Q)−ε(T ) = C\σ(2)

(P,Q)−ε(T ) = ρ
(2)
(P,Q)(T )

⋂{
λ ∈ C : ∥RT (λ)∥ ≤ 1

ε

}
.

Definition 2.2. ((P,Q)− ε-pseudo condition spectra of T )

Let T ∈ B(X) where X is a normed space and ε > 0 we define the (P,Q)−ε-pseudo

condition spectra of T by

Σ
(2)
(P,Q)−ε(T ) = σ

(2)
(P,Q)(T )

⋃{
λ ∈ C : ∥(λ− T )

(2)
(P,Q)∥∥λ− T∥ >

1

ε

}
with the convention that ∥(λ− T )

(2)
(P,Q)∥∥λ− T∥ = ∞, if (λ− T )

(2)
(P,Q) is not exists.

Notice that the uniqueness of Σ(2)
(P,Q)−ε(T ) allows us to consider the (P,Q)−ε-pseudo

condition spectrum and (P,Q)− ε-pseudo spectrum.

Theorem 2.1. Let T ∈ B(X) and 0 < ε < 1. Then,

(1) σ
(2)
(P,Q)(T ) =

⋂
0<ε<1

Σ
(2)
(P,Q)−ε(T ).

(2) If 0 < ε1 < ε2 < 1, then

σ
(2)
(P,Q)(T ) ⊂ Σ

(2)
(P,Q)−ε1

(T ) ⊂ Σ
(2)
(P,Q)−ε2

(T ).

(3) If α ∈ C, then

Σ
(2)
(P,Q)−ε(T + αI) = α+Σ

(2)
(P,Q)−ε(T ).

Proof. (1) It is clear that σ
(2)
(P,Q)(T ) ⊂ Σ

(2)
(P,Q)−ε(T ) for all 0 < ε < 1. Then,

σ
(2)
(P,Q)(T ) ⊂

⋂
0<ε<1

Σ
(2)
(P,Q)−ε(T ).

Conversely, if λ ∈
⋂

0<ε<1

Σ
(2)
(P,Q)−ε(T ), then for all 0 < ε < 1, we get λ ∈ Σ

(2)
(P,Q)−ε(T ).

We will discuss these two cases:

1st case : If λ ∈ σ
(2)
(P,Q)(T ), then we get the desired result.

2nd case : If λ ∈
{
λ ∈ C : ∥(λ − T )

(2)
(P,Q)∥∥λ − T∥ > 1

ε

}
, then taking limits as

ε −→ 0+, we get

∥(λ− T )
(2)
(P,Q)∥∥λ− T∥ = ∞.

We deduce that λ ∈ σ
(2)
(P,Q)(T ).
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(2) Let λ ∈ Σ
(2)
(P,Q)−ε1

(T ), so

∥(λ− T )
(2)
(P,Q)∥∥λ− T∥ >

1

ε1
>

1

ε2
.

We conclude that λ ∈ Σ
(2)
(P,Q)−ε2

(T ). Let λ ∈ Σ
(2)
(P,Q)−ε(T + αI), hence

∥((λ− α)− T )
(2)
(P,Q)∥∥(λ− α)− T∥ >

1

ε
.

Therefore, λ− α ∈ Σ
(2)
(P,Q)−ε(T ). This yields to

λ ∈ α+Σ
(2)
(P,Q)−ε(T ).

Lemma 2.1. Let T ∈ B(X), 0 < ε < 1 and P is invertible. Then, λ ∈ Σ
(2)
(P,Q)−ε(T )\

σ
(2)
(P,Q)(T ) if and only if there exists x such that

∥P−1(λ− T )x∥ < ε∥λ− T∥∥x∥.

Proof. Let λ ∈ Σ
(2)
(P,Q)−ε(T )\σ

(2)
(P,Q)(T ), then

∥(λ− T )
(2)
(P,Q)∥∥λ− T∥ >

1

ε
.

Thus

∥(λ− T )
(2)
(P,Q)∥ >

1

ε∥λ− T∥
.

Moreover

sup
y ̸=0

∥(λ− T )
(2)
(P,Q)y∥

∥y∥
>

1

ε∥λ− T∥
.

Then, there exists a nonzero y ∈ X such that

∥(λ− T )
(2)
(P,Q)y∥ >

∥y∥
ε∥λ− T∥

.

Putting x = (λ− T )
(2)
(P,Q)y, then (λ− T )x = (λ− T )(λ− T )

(2)
(P,Q)y = Py. Hence,

ε∥λ− T∥∥x∥ > ∥P−1(λ− T )x∥.

Conversely, we assume that there exists x ∈ X such that

ε∥λ− T∥∥x∥ > ∥P−1(λ− T )x∥.

Let λ ̸∈ σ
(2)
(P,Q)(T ) and x = (λ− T )

(2)
(P,Q)y, then

∥x∥ ≤ ∥(λ− T )
(2)
(P,Q)∥∥y∥.

Moreover,

ε∥λ− T∥∥(λ− T )
(2)
(P,Q)∥∥y∥ > ∥P−1(λ− T )x∥ = ∥y∥.

It follows that 1 < ε∥λ− T∥∥(λ− T )
(2)
(P,Q)∥. We conclude that,

λ ∈ Σ
(2)
(P,Q)−ε(T )\σ

(2)
(P,Q)(T ).

6
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Suppose X is a Banach space with the following property: For all generalized

invertible operator T ∈ B(X) there exist B ∈ B(X) such that B is not generalized

invertible and

∥T −B∥ =
1

∥T (2)
(P,Q)∥

.

Theorem 2.2. Let λ ∈ Σ
(2)
(P,Q)−ε(T ). Then, there exists D ∈ B(X) such that

∥D∥ ≤ ε∥λ− T∥ and λ ∈ Σ
(2)
(P,Q)(T +D).

Proof. Suppose λ ∈ Σ
(2)
(P,Q)−ε(T ). We will discuss these two cases:

1st case : If λ ∈ σ
(2)
(P,Q)(T ), then it is sufficient to take D = 0.

2nd case : If λ ∈ Σ
(2)
(P,Q)−ε(T )\σ

(2)
(P,Q)(T ). Hence, by assumption, there exists an

element B ∈ B(X) such that

∥λ− T −B∥ =
1

∥(λ− T )
(2)
(P,Q)∥

.

Let D = λ− T −B. Then

∥D∥ =
1

∥(λ− T )
(2)
(P,Q)∥

≤ ε∥λ− T∥.

Also B = λ− (T +D), is not generalized invertible. So, λ ∈ σ
(2)
(P,Q)(T +D).

Corollary 2.1. Let X be a Banach space satisfying the hypothesis of Theorem 2.3.

Then, λ ∈ Σ
(2)
(P,Q)−ε(T ) if, and only if, there exists D ∈ B(X) such that ∥D∥ ≤

ε∥λ− T∥ and λ ∈ σ
(2)
(P,Q)(T +D).

Theorem 2.3. Let T ∈ B(X), λ ∈ C, and 0 < ε < 1. If there is D ∈ B(X) such

that ∥D∥ ≤ ε∥λ− T∥ and λ ∈ σ
(2)
(P,Q)(T +D). Then, λ ∈ Σ

(2)
(P,Q)−ε(T ).

Proof. We assume that there exists D such that ∥D∥ < ε∥λ − T∥ and λ ∈
σ
(2)
(P,Q)(T +D). Let λ /∈ Σ

(2)
(P,Q)−ε(T ), then for all (λ− T )

(2)
(P,Q) a generalized inverse

of λ− T we have

∥λ− T∥∥(λ− T )
(2)
(P,Q)∥ ≤ 1

ε
.

Now, we define the operator S : X −→ X by

S :=

∞∑
n=0

(λ− T )
(2)
(P,Q)

(
D(λ− T )

(2)
(P,Q)

)n
.

Since,

∥D(λ− T )
(2)
(P,Q)∥ < 1,

we can write

S = (λ− T )
(2)
(P,Q)

(
I −D(λ− T )

(2)
(P,Q)

)−1

.

7
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Then, there exists y ∈ X such that

S
(
I −D(λ− T )

(2)
(P,Q)

)
y = (λ− T )

(2)
(P,Q)y.

Let y = P (λ− T )x. Then,

S(λ− T −D)Px = Px

for every x ∈ X. Hence, λ− T −D is generalized invertible, so λ ∈ Σ
(2)
(P,Q)−ε(T ).

Theorem 2.4. Let T ∈ B(X), k = ∥T∥∥T (2)
(P,Q)∥ and 0 < ε < 1. Then,

(i)λ ∈ Σ
(2)
(P,Q)−ε(T ) if, and only if, λ ∈ Σ

(2)
(P,Q)−ε(T

′
).

(ii) If λn /∈ Σ
(2)
(P,Q)−ε(T )(T ) such that λn → λ for all λ ∈ Σ

(2)
(P,Q)−ε(T )(T ), then

∥(λ− T )
(2)
(P,Q)∥ = ∞.

Proof. (i) Using the identity

∥λ− T∥∥(λ− T )
(2)
(P,Q)∥ = ∥λ− T

′
∥∥(λ− T

′
)
(2)
(P,Q)∥,

it is easy to see that the (P,Q)− ε-pseudo condition spectrum of T
′
is given by the

mirror image of Σε(T ) with respect to the real axis.

(ii) Suppose ∥(λ − T )
(2)
(P,Q)∥ ≤ 1

δ
for some δ ∈ R and since λn → λ for all λ ∈

σ
(2)
(P,Q)−ε(T ), then there exists n0 ∈ N such that

|λn − λ| < δ − 1 < δ ≤ 1

∥(λ− T )
(2)
(P,Q)∥

for all n ≥ n0.

Hence, λ /∈ Σ
(2)
(P,Q)−ε(T ). This is a contradiction.

Theorem 2.5. Let T,E ∈ B(X) such that ∥E∥ <
ε

2
∥λ− T∥ and 0 < ε < 1. Then,

Σ
(2)
(P,Q)−( ε

2−∥E∥)(T ) ⊆ Σ
(2)
(P,Q)−ε(T + E) ⊆ Σ

(2)
(P,Q)−τε

(T )

where, 0 < τε =
ε2

2
+ ε < 1 and 0 < ε

2 − ∥E∥ < 1.

Proof. Let λ ∈ Σ
(2)
(P,Q)−( ε

2−∥E∥)(T ). Then, by Theorem 2.3, there exists a bounded

operator D ∈ B(X) with

∥D∥ <
(ε
2
− ∥E∥

)
∥λ− T∥

such that

λ ∈ σ
(2)
(P,Q)(T +D) = σ

(2)
(P,Q)

(
(T + E) + (D − E)

)
.

The fact that

∥D − E∥ ≤ ∥D∥+ ∥E∥ <
(ε
2
− ∥E∥

)
∥λ− T∥+ ∥E∥ < ε∥λ− T∥,

8
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allows us to deduce that λ ∈ Σ
(2)
(P,Q)−ε(T+E). Now, let us prove the second inclusion.

Suppose λ ∈ Σ
(2)
(P,Q)−ε(T + E), then there exists D ∈ B(X) verifying

∥D∥ < ε∥λ− T − E∥ ≤ ε∥λ− T∥+ ε∥E∥

and λ ∈ σ
(2)
(P,Q)(T +E+D). The fact that ∥D+E∥ ≤ τε∥λ−T∥ allows us to deduce

that λ ∈ Σ
(2)
(P,Q)−τε

(T ).

Theorem 2.6. Let T ∈ B(X) and ε > 0. Then, Σ(2)
(P,Q)−ε(T ) has no isolated points.

Proof. Suppose Σ
(2)
(P,Q)−ε(T ) has an isolated point µ. Then there exists an δ > 0

such that for all λ ∈ C with 0 < |λ−µ| < δ and there exists a generalized invertible

(λ− T )
(2)
(P,Q) such that

∥λ− T∥∥(λ− T )
(2)
(P,Q)∥ <

1

ε
.

Let µ ∈ Σ
(2)
(P,Q)−ε(T )\σ

(2)
(P,Q)(T ). Then, using the Hahn-Banach Theorem, there exist

x′ ∈ X ′ such that

x′
(
(µ− T )

(2)
(P,Q)

)
= ∥λ− T∥∥(λ− T )

(2)
(P,Q)∥ with ∥x′∥ = 1.

Now, we define
ϕ : ρ

(2)
(P,Q)(T ) −→ R,

λ −→ ϕ(λ) = x′
(
(λ− T )

(2)
(P,Q)

)
.

Since ϕ is is well-defined and continuous; in B(µ, δ) and for all λ ∈ C with 0 <

|λ− µ| < δ, we have

|ϕ(λ)| =
∣∣∣x′((λ− T )

(2)
(P,Q))

∣∣∣ = ∥λ− T∥∥(λ− T )
(2)
(P,Q)∥ <

1

ε
.

But, ϕ(µ) = ∥µ− T∥∥(µ− T )
(2)
(P,Q)∥ ≥ 1

ε
. This contradicts the maximum modulus

principle.

Definition 2.3. We define T ∈ B(X) to be of d-class operator if

∥(λ− T )
(2)
(P,Q)∥ =

1

d(λ, σ
(2)
(P,Q)(T ))

∀λ ∈ C\σ(2)
(P,Q)(T ).

In fact, we have the following theorem

Theorem 2.7. Let T ∈ B(X) and ε > 0. If T ∈ B(X) is of d−class operator, then

Σ
(2)
(P,Q)−ε(T ) ⊆

{
λ ∈ C : d(λ, σ

(2)
(P,Q)(T )) ≤ ε∥λ− T∥

}
.

Proof. Let λ ∈ Σ
(2)
(P,Q)−ε(T ), then

∥λ− T∥∥(λ− T )
(2)
(P,Q)∥ >

1

ε
.

9
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Now, if T ∈ B(X) is a d-class, we already have

∥(λ− T )
(2)
(P,Q)∥ =

1

d(λ, σ
(2)
(P,Q)(T ))

∀λ ∈ C\σ(2)
(P,Q)(T ).

Hence,
1

ε
< ∥λ− T∥∥(λ− T )

(2)
(P,Q)∥ =

∥λ− T∥
d(λ, σ

(2)
(P,Q)(T ))

∀λ ∈ C\σ(2)
(P,Q)(T ).

Therefore,

λ ∈
{
λ ∈ C : d(λ, σ

(2)
(P,Q)(T )) ≤ ε∥λ− T∥

}
.

Theorem 2.8. Let T ∈ B(X) and ε > 0. Then

(i) If T = µI for some number µ, then T is of d-class operator and σ
(2)
(P,Q)(T ) = {µ}.

(ii) If T is of d-class operator, then αT + β is also of d-class operator for every

number α, β.

Proof. (i) Let T = µ. for some number µ. Then clearly σ
(2)
(P,Q)(T ) = {µ}. Hence

for all λ ∈ C \ σ(2)
(P,Q)(T ), we have λ ̸= µ. Thus

∥(λ− T )
(2)
(P,Q)∥ =

1

|λ− µ|
=

1

d(λ, σ
(2)
(P,Q)(T ))

.

This shows that a is of d-class operator.

(ii) Next suppose that T is of d-class operator and B = αT + β for some complex

numbers α, β. We want to prove that B is of d-class operator. If α = 0, then it follows

from (i). So assume that α ̸= 0. Let w /∈ σ
(2)
(P,Q)(B) = {αλ + β : λ ∈ σ

(2)
(P,Q)(B)}.

Then, λ := w−β
α /∈ σ

(2)
(P,Q)(B) and since T is of d-class operator,

∥(λ− T )
(2)
(P,Q)∥ =

1

d(λ, σ
(2)
(P,Q)(T ))

∀λ ∈ C\σ(2)
(P,Q)(T ).

Now

∥(w −B)
(2)
(P,Q)∥ = ∥(αλ+ β − (αT + β))

(2)
(P,Q)∥ =

1

|α|
∥(λ− T )

(2)
(P,Q)∥.

Therefore,

∥(w −B)
(2)
(P,Q)∥ =

1

|α|d(λ, σ(2)
(P,Q)(T ))

=
1

d(λα, σ
(2)
(P,Q)(αT ))

=
1

d(w, σ
(2)
(P,Q)(B))

.

This shows that B is of d-class operator.

Remark 2.1. Under what additional conditions can we conclude that, if T is of

d-class operator and σ
(2)
(P,Q)(T ) = {µ}, then T = µ.

10
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Theorem 2.9. Let T ∈ B(X) and for every 0 < ε < 1 such that ε < ∥λ − T∥ we

have

(i) λ ∈ Σ
(2)
(P,Q)−ε(T ) if, and only if, λ ∈ σ

(2)
(P,Q)−ε∥λ−T∥(T ).

(ii) λ ∈ σ
(2)
(P,Q)−ε(T ) if, and only if, λ ∈ Σ

(2)
(P,Q)− ε

∥λ−T∥
(T ).

Proof. (i) If λ ∈ Σ
(2)
(P,Q)−ε(T ), then

λ ∈ σ
(2)
(P,Q)(T ) and ∥λ− T∥∥(λ− T )

(2)
(P,Q)∥ ≥ 1

ε
.

Hence,

λ ∈ σ
(2)
(P,Q)(T ) and ∥(λ− T )

(2)
(P,Q)∥ ≥ 1

ε∥λ− T∥
,

which implies that λ ∈ σ
(2)
(P,Q)−ε∥λ−T∥)(T ). The converse is similar.

(ii) Let λ ∈ σ
(2)
(P,Q)−ε(T ), then

λ ∈ σ
(2)
(P,Q)(T ) and ∥(λ− T )

(2)
(P,Q)∥ ≥ 1

ε
.

Hence it follows that

λ ∈ σ
(2)
(P,Q)(T ) and ∥λ− T∥∥(λ− T )

(2)
(P,Q)∥ ≥ ∥λ− T∥

ε
.

This proves that

λ ∈ Σ
(2)
(P,Q)− ε

∥λ−T∥
(T ).

The converse is similar.

3. Application for matrix 2× 2

In this article we will apply the results of the previous section to determine the

(P,Q)−ε-pseudo condition spectrum of 2×2 matrix operators by mean of measure

of non-strict-singularity. Let X and Y be tow Banach spaces and consider the 2×2

block operator matrix defined on X × Y by

T =

(
T1 0
0 T2

)
where, T1, T2 ∈ B(X). Defining the norm of the linear operator matrix T as

∥T∥ = max
{
∥T1∥, ∥T2∥

}
.

Now, we state an auxiliary result.

Lemma 3.1. [9, Lemma 3.1] Let P =

(
P1 0
0 P2

)
and Q =

(
Q1 0
0 Q2

)
. If

T
(2)
P,Q exist, then,

T
(2)
(P,Q) =

(
(T1)

(2)
(P1,Q1)

0

0 (T2)
(2)
(P2,Q2)

)
.

11
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Theorem 3.1. Let P =

(
P1 0
0 P2

)
and Q =

(
Q1 0
0 Q2

)
. If T (2)

P,Q exist, then,

Σ
(2)
(P1,Q1)−ε(T1)

⋃
Σ

(2)
(P2,Q2)−ε(T2) ⊂ Σ

(2)
(P,Q)−ε(T ).

Proof. Let λ ∈ Σ
(2)
(P1,Q1)−ε(T1)

⋃
Σ

(2)
(P2,Q2)−ε(T2). These imply

λ ̸∈ Σ
(2)
(P1,Q1)

(T1) or ∥(λ− T1)
(2)
(P1,Q1)

∥∥(λ− T1)∥ >
1

ε

or

λ ̸∈ Σ
(2)
(P2,Q2)

(T2) or ∥(λ− T2)
(2)
(P2,Q2)

∥∥(λ− T2)∥ >
1

ε
.

If either (λ−T1)
(2)
(P1,Q1)

or (λ−T2)
(2)
(P2,Q2)

does not exists, by Lemma 3.1, it follows:

(λ− T )
(2)
(P,Q) =

(
(λ− T1)

(2)
(P1,Q1)

0

0 (λ− T2)
(2)
(P2,Q2)

)
does not exists, then we have λ ∈ Σ

(2)
(P,Q)−ε(T ).

On the other hand, if (λ− T1)
(2)
(P1,Q1)

and (λ− T2)
(2)
(P2,Q2)

exists, it holds either

∥(λ− T1)
(2)
(P1,Q1)

∥∥(λ− T1)∥ >
1

ε
or ∥(λ− T2)

(2)
(P2,Q2)

∥∥(λ− T2)∥ >
1

ε
.

Without loss of generality, assume that ∥(λ− T1)
(2)
(P1,Q1)

∥∥(λ− T1)∥ >
1

ε
holds.

Therefore,

∥(λ− T )
(2)
(P,Q)∥∥(λ− T )∥ =

= max
{
∥(λ− T1)

(2)
(P1,Q1)

∥, ∥(λ− T2)
(2)
(P2,Q2)

∥
}

max {∥(λ− T1)∥, ∥(λ− T2)∥}

⩾ ∥(λ− T1)
(2)
(P1,Q1)

∥∥(λ− T1)∥ >
1

ε
.

This proves that λ ∈ Σ
(2)
(P,Q)−ε(T ).
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