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1. Introduction and main results

At the outset, we assume that by an L-function we always mean an L-function L
in the Selberg class which includes the Riemann zeta function ζ(s) =

∞∑
n=1

n−s and

essentially those Dirichlet series where one might expect a Riemann hypothesis.

Such an L-function is defined [18, 19] to be a Dirichelet series

(1.1) L(s) =
∞∑

n=1

a(n)

n−s

satisfying the following axioms:

• (i) Ramanujan hypothesis : a(n) ≪ nε for every ε > 0;

• (ii) Analytic continuation : There is a non-negative integer m such that

(s− 1)mL(s) is an entire function of finite order;

• (iii) Functional equation: L satisfies a functional equation of type

(1.2) ΛL(s) = ωΛL(1− s),

where

(1.3) ΛL(s) = L(s)Qs
k∏

j=1

Γ(λjs+ νj),

1Sanjay Mallick is thankful to “Science and Engineering Research Board, Department of Science
and Technology, Government of India” for financial support to pursue this research work under
the Project File No. EEQ/2021/000316.
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with positive real numbers Q,λj and complex numbers νj , ω with Re(νj) ≥
0 and |ω| = 1;

• (iv) Euler product hypothesis : logL(s) =
∞∑

n=1

b(n)
ns , where b(n) = 0 unless n

is a positive power of a prime and b(n) ≪ nθ for some θ < 1
2 .

Also, throughout the paper by any meromorphic function we always mean a

meromorphic function defined in C. We denote C = C ∪ {∞}. By N we mean the

set of all natural numbers. Though for standard definitions used in this paper we

refer our readers to follow [9], yet for the sake of our convenience we denote the

order of f by ρ(f), where

(1.4) ρ(f) =
log(T (r, f))

log r
.

By S(r, f) we mean any quantity satisfying S(r, f) = O(log(rT (r, f))) for all r

possibly outside a set of finite linear measure. If f is a function of finite order, then

S(r, f) = O(log r) for all r.

The importance of L-functions in number theory is needless to say and an L-

function can be analytically continued to a meromorphic function in C. Hence

like the value distribution of meromorphic functions, the value distribution of L-

functions is a natural consequence. In this respect, during the last few years an

extensive study for the distribution of zeros of L-functions have been done by various

researchers [11, 14, 22, 10, 18, 19]. In due course of time, the study have been

confined to the direction of uniquely determining an L-function via the shared

values or sets. Hence let us recall these basic definitions of value and set sharing.

Definition 1.1. [6] For a non-constant meromorphic function f and a ∈ C, let

Ef (a) = {(z, p) ∈ C× N : f(z) = a with multiplicity p}(
Ef (a) = {(z, 1) ∈ C× N : f(z) = a}

)
,

then we say f , g share the value a CM(IM) if Ef (a) = Eg(a)
(
Ef (a) = Eg(a)

)
. For

a = ∞, we define Ef (∞) := E1/f (0)
(
Ef (∞) := E1/f (0)

)
.

Definition 1.2. [6] For a non-constant meromorphic function f and S ⊂ C, let

Ef (S) =
⋃

a∈S{(z, p) ∈ C× N : f(z) = a with multiplicity p}(
Ef (S) =

⋃
a∈S

{(z, 1) ∈ C× N : f(z) = a}

)
,

then we say f , g share the set S CM(IM) if Ef (S) = Eg(S)
(
Ef (S) = Eg(S)

)
.

Definition 1.3. [12, 13] Let k be a non-negative integer or infinity. For a ∈ C we

denote by Ek(a; f) the set of all a-points of f, where an a-point of multiplicity m is
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counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say

that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.

Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)

respectively.

Definition 1.4. [12] For S ⊂ C we define Ef (S, k) = ∪a∈SEk(a; f), where k is

a non-negative integer a ∈ S or infinity. Clearly Ef (S) = Ef (S,∞) and Ef (S) =

Ef (S, 0). If Ef (S, k) = Eg(S, k), then we say that f and g share the set S with

weight k.

Obviously Definition 1.3 and Definition 1.4 are the refined notions of Definition

1.1 and Definition 1.2 respectively. However, now we recall the first result in this

direction due to Steuding.

Theorem A. [19] If two L-functions L1 and L2 with a(1) = 1 share a complex

value c ̸= ∞ CM, then L1 = L2.

Since every L-function have meromorphic continuation in C, so natural quest

for the uniqueness of a meromorphic function and an L-function enters into the

course of uniqueness theory vis-a-vis value distribution theory. Since an L-function

can have at most one pole in C, so it is reasonable to study the uniqueness of

L-functions with meromorphic functions having finitely many poles. Pertinent to

that, in 2010 Li proved the following uniqueness theorem.

Theorem B. [14] Let a and b be two distinct finite values, and let f be a meromorphic

function in the complex plane such that f has finitely many poles in the complex

plane. If f and a non-constant L-function L share a CM and b IM, then L = f .

After that in 2018, taking the famous Gross Problem [8] into account, Yuan, Li

and Yi [22] proposed an analogous version of the same for L-functions as follows.

Question 1.1. [22] What can be said about the relationship between a meromorphic

function f and an L-function L if f and L share one or two sets?

Apropos of Question 1.1, in the same paper Yuan, Li and Yi provided the

following result.

Theorem D. [22] Let Q(z) = zn+azm+ b, where a, b are non-zero constants with

gcd(m,n) = 1 and n ≥ 2m+ 5. Further suppose f is a non-constant meromorphic
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function having finitely many poles and L is a non-constant L-function such that

Ef (S,∞) = EL(S,∞), where S = {z : Q(z) = 0}. Then f = L.

Later on with the aid of weighted sharing Sahoo-Sarkar [17] improved Theorem

D as follows.

Theorem E. [17] Let S be defined same as in Theorem D and n ≥ 2m+5. Suppose

f is a non-constant meromorphic function having finitely many poles in C and L
is a non-constant L-function. If f and L share (S, 2), then f = L.

Considering the ignoring multiplicities of the shared set Sahoo-Halder proved

the following theorem.

Theorem F. [16] Let S be defined same as in Theorem D and n ≥ max{2m +

5, 4q + 9}, where q = n −m ≥ 1. Let f be a non-constant meromorphic function

having finitely many poles in C and L be a non-constant L-function. If f and L
share (S, 0), then f = L.

Pertinent to Theorem E and Theorem F, Banerjee-Kundu [4] found out some

gaps in these theorems and they provided the following theorem rectifying these

gaps.

Theorem G. [4] Let S be defined as in Theorem D, f be a non-constant meromorphic

function having finitely many poles in C and L be a non-constant L-function such

that Ef (S, t) = EL(S, t). If

(i) t ≥ 2 and n ≥ 2m+ 5, or

(ii) t = 1 and n ≥ 2m+ 6, or

(iii) t = 0 and n ≥ 2m+ 11,

then f = L.

In the same paper Banerjee-Kundu proved another result analogous to Theorem

G which is as follows.

Theorem H. [4] Let S = {z : zn + azn−m + b = 0}, where a, b are non-zero

constants and gcd(n,m) = 1. Let f be a non-constant meromorphic function having

finitely many poles in C and L be a non-constant L-function such that Ef (S, t) =

EL(S, t). If

(i) t ≥ 2 and n ≥ 2m+ 5, or

(ii) t = 1 and n ≥ 2m+ 6, or

(iii) t = 0 and n ≥ 2m+ 11,

then f = L.
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Note that the set S used in Theorem D-H are generated from the zeros of the

polynomial

(1.5) P (z) = zn + azm + b or P (z) = zn + azn−m + b,

where a, b are non-zero constants and gcd(n,m) = 1. In [4, see Lemma 4], authors

proved that these polynomials are critically injective and they may have multiple

zero but that must be one in number. On this occasion let us invoke the definition

of critically injective polynomial.

Definition 1.5. Let P (z) be a polynomial such that P
′
(z) has mutually r distinct

zeros given by d1, d2, . . . , dr with multiplicities q1, q2, . . . , qr respectively. Then P (z)

is said to be a critically injective polynomial if P (di) ̸= P (dj) for i ̸= j, where

i, j ∈ {1, 2, · · ·, r}.

Any polynomial which is not critically injective is called a non-critically injective

polynomial.

Observe that the following points come out of the above discussions.

(i) All the authors always used one of the polynomials given by (1.5).

(ii) The authors always used the set of zeros of critically injective polynomials

to show the uniqueness of f and L.

(iii) In the above theorems authors have improved the previous results by relaxing

the nature of sharing of the sets.

(iv) The authors also considered the set of zeros of the polynomials having

multiple zeros.

Apropos of observation (i) and (ii), One would naturally raise the following questions.

Question 1.2. Does there exist any other polynomial except the polynomials given

by (1.5) whose set of zeros provide uniqueness of f and L?

Question 1.3. Does there exist any non-critically injective polynomial whose set

of zeros provide the uniqueness of f and L?

Pertinent to observation (iii) the following questions become inevitable.

Question 1.4. Can we have the answer of Question 1.1 under more relaxed sharing

hypothesis than that obtained in the latest results Theorem G-H?

Question 1.5. Can we have a set with lesser cardinality than that obtained in the

latest results Theorem G-H for the uniqueness of f and L?

Finally with respect to observation (iv), we have the following note.
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Note 1.1. Recently in [5, see paragraph between Theorem H and Theorem I]

Banerjee-Kundu have clarified the fact that all the results obtained till date in this

direction of shared set problems for the uniqueness of f and L; i.e., Theorem D-H

(except Theorem F) have an analytical gap while considering multiple zero of the

polynomials and the sharing of the sets with some non-zero weight. Thus conclusion

of Theorem D-H (except Theorem F) become false when the multiple zero of the

generating polynomials are taken into account and the sharing of the sets with some

non-zero weight. But in the same scenario, the results obtained with IM sharing of

the sets are correct; i.e., conclusion (iii) of Theorem G-H and Theorem F. Though

Theorem F has a different flaw contradicting their own conclusion of cardinality

n ≥ max{2m+ 5, 4q+9} which is analysed in [4, Remark 3]. Another point is that

all these results are true when the polynomial has only simple zeros.

Hence in this paper, we shall solely concentrate on the polynomials having only

simple zeros and answer all the above questions from Question 1.2-1.5 affirmatively

which improve all the existing results from Theorem D-H. Moreover, we present

general criterions for any general polynomial so that the set of zeros of the same

would provide the uniqueness of f and L when shared by these functions. In a

nutshell, our results bring all the existing results under a single umbrella in a more

improved version with extent to the most general setting.

In the 4th section of this paper, that is in the “Application” section we have

proved all our claims to be true by exhibiting a number of examples showing the

wide-ranging applications of our results.

Before going to our main results, we make a short discussion on the structure of

a general polynomial as this will play an important role throughout the rest of this

paper.

Let us consider the following general polynomial P (z) of degree n having only

simple zeros.

P (z) = anz
n + an−1z

n−1 + . . .+ a1z + a0,(1.6)

where a0, a1, . . . , an are complex numbers with an, a0 ̸= 0, ai being the first non-

vanishing coefficient from an−1, an−2, . . . , a1. Let

(1.7) S = {z : P (z) = 0}.

Observe that (1.6) can be written in the form

(1.8) P (z) = an

p∏
i=1

(z − αi)
mi + a0,
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where p denotes the number of distinct zeros of P (z)− a0. Let us also denote by s

the number of distinct zeros of P
′
(z). Hence we would have

(1.9) P
′
(z) = nan

s∏
i=1

(z − ηi)
ri ,

where ri denotes the multiplicities of distinct zeros of P
′
(z).

Set

R(z) = − anz
n

an−1zn−1 + . . .+ a1z + a0
= − anz

n

ai
k∏

j=1

(z − βj)mj

= −anz
n

ϕ(z)
,(1.10)

where a0, a1, . . . , an are as defined in (1.6) and β1, β2, . . . , βk are the roots of the

equation

ϕ(z) = an−1z
n−1 + an−2z

n−2 + . . .+ a1z + a0 = 0,

with multiplicities m1,m2, . . . ,mk. Clearly

(1.11) R(z)− 1 = −P (z)
ϕ(z)

,

where P (z) is defined by (1.6) and obviously P (z) and ϕ(z) do not share any

common zero. Hence S as defined in (1.7) can be treated as

(1.12) S = {z : P (z) = 0} = {z : R(z)− 1 = 0}.

Let R
′
(z) has l distinct zeros say δ1, δ2, . . . , . . . , δl with multiplicities q1, q2, . . . , ql

respectively. Then From (1.10) we would have

R′(z) =

γ
l∏

j=1

(z − δj)
qj

k∏
j=1

(z − βj)pj

,(1.13)

where γ ∈ C− {0} and pj ∈ N for all j ∈ {1, 2, . . . , k}.

Remark 1.1. Observe that in the definition (1.6) of the general polynomial P (z),

the condition ai ̸= 0 for i = {1, 2, . . . , n − 1} is necessary. Because otherwise we

would find a non-constant L-function L and a non-constant meromorphic function

f which share the set S = {z : P (z) = 0} CM but f ̸= L.

For example, let ai = 0 for i = {1, 2, . . . , n− 1}. Then S = {z : anzn + a0 = 0}.
Consider a non-constant L-function L and a non-constant meromorphic function

f such that f = ζL, where ζ is the nth root of unity. Then clearly,

anf
n + a0 = anLn + a0;

i.e.,

n∏
i=1

(f − σi) =

n∏
i=1

(L − σi),
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where σi ∈ S for i = {1, 2, . . . , n}. That is f and L share S CM but f ̸= L.

Now we provide the following two theorems as the main results of this paper.

Theorem 1.1. Let P (z) be given by (1.8) with p ≥ 2 and S, s be defined by

(1.7), (1.9) respectively. Suppose f is a non-constant meromorphic function having

finitely many poles and L is a non-constant L-function sharing (S, t). Then for

n ≥ max {2p+ 1, 2s+ 3}, when t ≥ 1; and for n ≥ max {2p+ 1, 2s+ 6}, when

t = 0; the following are equivalent :

(i) P (f) = P (L) =⇒ f = L ;

(ii) Ef (S, t) = EL(S, t) =⇒ f = L.

Theorem 1.2. Let R(z) be defined by (1.10) with k ≥ 2 or k = 1 with n > 2m1 and

S, l be defined by (1.12), (1.13) respectively. Let f be a non-constant meromorphic

function having finitely many poles and L be a non-constant L-function sharing

(S, t). Then for n ≥ max {2k + 3, 2l + 3}, when t ≥ 1; and for n ≥ max {2k + 3, 2l + 6},
when t = 0; the following are equivalent :

(i) R(f) = R(L) =⇒ f = L ;

(ii) Ef (S, t) = EL(S, t) =⇒ f = L.

Remark 1.2. Obviously Theorem G-H are the latest results in this direction for

simple zeros of the polynomials given by (1.5). In the application section (Example

4.5 and Example 4.2), we shall show that the conclusions of Theorem G-H are true

for n ≥ 7 when Ef (S, 1) = EL(S, 1), whereas the same is true in Theorem G-H for

n ≥ 8. Thus our result directly improves Theorem G-H by reducing the cardinality

of the set S when shared by the functions with weight 1. We also find that weight

2 in Theorem G-H can be relaxed to weight 1 keeping the carinality of the set fixed

as an application of our result. Hence the answer of Question 1.4 is also obtained

with improvement. Moreover, in Theorem G-H the least cardinality of the sets when

shared IM is 13 whereas the same result can be obtained when the cardinalities of the

sets are 10, which is a significant improvement of Theorem G-H. Thus we obtain a

threefold improvement of Theorem G-H by the application of our main results and

obtain the answer of Question 1.4-1.5.

We shall also obtain similar results in the application section for other polynomials

including critically injective polynomials, non-critically injective polynomials and

even those polynomials which are still uncertain to be critically injective or non-

critically injective (see Example 4.1, Example 4.3 and Example 4.4). These results
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provide us the answers of Question 1.2-1.3 with improvements in the nature of

sharing of the sets as well as the least cardinalities of the sets.

Remark 1.3. The reason behind proving two similar but different theorems are

clarified in the first two paragraphs of section 5 named “Conclusion and an Open

Question” .

For standard definitions and notations we have already suggested our readers

to follow [9]. Furthermore, we explain the following notations which will be used

throughout the paper for the proof of the Theorem 1.1 and Theorem 1.2.

Definition 1.6. [21] Let f and g be two non-constant meromorphic functions such

that f and g share (1, 0). Let z0 be a 1-point of f with multiplicity p, a 1-point

of g with multiplicity q. We denote by NL(r, 1; f) the reduced counting function of

those 1-points of f and g where p > q, by N1)
E (r, 1; f) the counting function of those

1-points of f and g where p = q = 1. In the same way we can define NL(r, 1; g),

N
1)
E (r, 1; g). In a similar manner we can define NL(r, a; f) and NL(r, a; g) for a ∈

C.

Definition 1.7. [12, 13] Let f , g share (a, 0). We denote by N∗(r, a; f, g) the

reduced counting function of those a-points of f whose multiplicities differ from

the multiplicities of the corresponding a-points of g.

ClearlyN∗(r, a; f, g) ≡ N∗(r, a; g, f) andN∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).

Definition 1.8. [13] For a ∈ C ∪ {∞}we denote by N(r, a; f |= 1) the counting

function of simple a-points of f . For a positive integer m we denote by N(r, a; f |≤
m)(N(r, a; f |≥ m)) the counting function of those a-points of f whose multiplicities

are not greater(less) than m where each a-point is counted according to its multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the

a-points of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are

defined analogously.

Definition 1.9. [2] Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f | g ̸=
b1, b2, . . . , bq) the counting function of those a-points of f , counted according to

multiplicity, which are not the bi-points of g for i = 1, 2, . . . , q.
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2. Lemmas

For two non-constant meromorphic functions F and G, set

(2.1) H =

(
F

′′

F ′ − 2F
′

F − 1

)
−

(
G

′′

G′ − 2G
′

G− 1

)
.

Lemma 2.1. [21] Let F , G share (1, 0) and H ̸≡ 0. Then

N
1)
E (r, 1;F ) = N

1)
E (r, 1;G) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. [2] Let F , G share (1, t), where t ∈ N ∪ {0}. Then

N(r, 1;F )+N(r, 1;G)−N1)
E (r, 1;F )+

(
t− 1

2

)
N∗(r, 1;F,G) ≤

1

2
[N(r, 1;F )+N(r, 1;G)].

Lemma 2.3. Let f be a non-constant meromorphic function having finite number

of poles and L be an non-constant L-function sharing a set S IM, where |S| ≥ 3.

Then ρ(f) = ρ(L) = 1. Furthermore, N(r,∞; f) = O(log r) = N(r,∞;L) and

S(r, f) = O(log r) = S(r,L).

Proof. Proceeding in a similar method as done in the proof of Theorem 5, [16,

p. 6] we can obtain ρ(f) = ρ(L) = 1. So we omit it.

Since f has finitely many poles and L has at most one pole in C, so obviously

(2.2) N(r,∞; f) = O(log r) = N(r,∞;L).

Since ρ(f) = ρ(L) = 1, so from the definition of S(r, f) we get S(r, f) = O(log r) =

S(r,L). □

Lemma 2.4. Let F ∗−1 =

an
n∏

i=1

(f − wi)

ψ(f)
and G∗−1 =

an
n∏

i=1

(L − wi)

ψ(L)
, where f be

a non-constant meromorphic function having finite number of poles, L be an non-

constant L-function, an, wi ∈ C− {0}; ∀i ∈ {1, 2, . . . , n} and ψ(z) be a polynomial

of degree less than n with ψ(wi) ̸= 0; ∀i ∈ {1, 2, . . . , n}. Further suppose that F ∗

and G∗ share (1, t), where t ∈ N ∪ {0}. Then

NL(r, 1;F
∗) ≤ 1

t+ 1

[
N(r, 0; f)−N1(r, 0; f

′)
]
+O(log r),(2.3)

where N1(r, 0; f
′) = N(r, 0; f ′|f ̸= 0, w1, w2, ..., wn). Similar expression also holds

for NL(r, 1;G
∗).
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Proof. Since F ∗ and G∗ share (1, t), so in view of Lemma 2.3 using the first

fundamental theorem we find that

NL(r, 1;F
∗) ≤ N(r, 1;F ∗| ≥ t+ 2) ≤ 1

t+ 1

[
N(r, 1;F ∗)−N(r, 1;F ∗)

]
≤ 1

t+ 1

[
n∑

i=1

(
N(r, wi; f)−N(r, wi; f)

)]

≤ 1

t+ 1
[N(r, 0; f ′|f ̸= 0)−N1(r, 0; f

′)]

≤ 1

t+ 1

[
N(r, 0;

f ′

f
)−N1(r, 0; f

′)

]
≤ 1

t+ 1

[
N(r,∞;

f

f ′ )−N1(r, 0; f
′)

]
+O(log r)

≤ 1

t+ 1

[
N(r,∞;

f
′

f
)−N1(r, 0; f

′)

]
+O(log r)

≤ 1

t+ 1

[
N(r,∞; f) +N(r, 0; f)−N1(r, 0; f

′)
]
+O(log r)

≤ 1

t+ 1

[
N(r, 0; f)−N1(r, 0; f

′)
]
+O(log r).

This proves the lemma. □

Lemma 2.5. Let P (z), S and s as defined by (1.6), (1.7) and (1.9) respectively.

Suppose that f , L share (S, t), where t ∈ N ∪ {0} and f , L be a non-constant

meromorphic function and an L-function respectively. Further suppose that

(2.4)

F =
P (f)− a0

−a0
= −an

a0

p∏
i=1

(f − αi)
mi and G =

P (L)− a0
−a0

= −an
a0

p∏
i=1

(L − αi)
mi .

Then for n ≥ 2s+3, when t ≥ 1 and for n ≥ 2s+6, when t = 0 we get the following.
1

F − 1
=

A

G − 1
+B,

where A(̸= 0), B ∈ C.

Proof. According to the assumptions of the lemma we clearly have F , G share

(1, t) and

F
′
= −nan

a0

s∏
i=1

(f − ηi)
rif

′
; G

′
= −nan

a0

s∏
i=1

(L − ηi)
riL

′
,

where
s∑

i=1

ri = n− 1. Now consider H as given by (2.1) for F and G.

Case-I: Suppose H ̸≡ 0. Then, it can be easily verified that H has only simple

poles and these poles come from the following points.

(i) αi-points of f and L.
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(ii) Poles of f and L.

(iii) 1-points of F and G having different multiplicities.

(iv) Those zeros of f
′

and L′
which are not zeros of

s∏
i=1

(f − ηi)(F − 1) and
s∏

i=1

(L − ηi)(G − 1) respectively.

Therefore we obtain

N(r,H) ≤
s∑

i=1

[
N(r, ηi; f) +N(r, ηi;L)

]
+N(r,∞; f) +N(r,∞;L)(2.5)

+N∗(r, 1;F ,G) +N0(r, 0; f
′
) +N0(r, 0;L

′
),

where N0(r, 0; f
′
) and N0(r, 0;L

′
) denotes the reduced counting functions of those

zeros of f
′
and L′

which are not zeros of
s∏

i=1

(f − ηi)(F − 1) and
s∏

i=1

(L− ηi)(G − 1)

respectively. Using the second fundamental theorem we get

(2.6)

(n+ s−1)T (r, f) ≤ N(r, 1;F)+

s∑
i=1

N(r, ηi; f)+N(r,∞; f)−N0(r, 0; f
′
)+S(r, f),

(2.7)

(n+s−1)T (r,L) ≤ N(r, 1;G)+
s∑

i=1

N(r, ηi;L)+N(r,∞;L)−N0(r, 0;L
′
)+S(r,L).

For the sake of our convenience let us denote by T (r) = T (r, f) + T (r,L). Now

combining (2.6) and (2.7) with the help of Lemma 2.2, Lemma 2.1 and then (2.5)

we get

(n+ s− 1)T (r) ≤ N(r, 1;F) +N(r, 1;G)(2.8)

+

s∑
i=1

[
N(r, ηi; f) +N(r, ηi;L)

]
+
[
N(r,∞; f) +N(r,∞;L)

]
−N0(r, 0; f

′
)−N0(r, 0;L

′
)

+S(r, f) + S(r,L)

≤ n

2
T (r) + 2

s∑
i=1

[
N(r, ηi; f) +N(r, ηi;L)

]
+2
[
N(r,∞; f) +N(r,∞;L)

]
+

(
3

2
− t

)
N∗(r, 1;F ,G)

+S(r, f) + S(r,L).

Hence in view of Lemma 2.3, for t ≥ 2; (2.8) reduces to

(
n

2
− s− 1)T (r) ≤ O(log r),

which is a contradiction for n ≥ 2s+ 3 as ρ(f) = 1 = ρ(L).
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We know that N∗(r, 1;F ,G) = NL(r, 1;F) + NL(r, 1;G). Hence for 0 ≤ t ≤ 1;

using Lemma 2.4 and Lemma 2.3 we get from (2.8) that

(
n

2
− s− 1)T (r) ≤

(
3
2 − t

)
t+ 1

[
N(r, 0; f) +N(r, 0;L)

]
+O(log r).(2.9)

Now for t = 1; from (2.9) we get

(
n

2
− s− 5

4
)T (r) ≤ O(log r),

which is a contradiction for n ≥ 2s+ 3.

For t = 0; from (2.9) we get

(
n

2
− s− 5

2
)T (r) ≤ O(log r),

which is a contradiction for n ≥ 2s+ 6.

Case-II: Suppose H ≡ 0. Hence on integration, we obtain
1

F − 1
=

A

G − 1
+B,

where A(̸= 0), B ∈ C. □

Lemma 2.6. Let R(z), S and l as defined by (1.10), (1.12) and (1.13) respectively.

Suppose that f , L share (S, t), where t ∈ N ∪ {0} and f , L be a non-constant

meromorphic function and an L-function respectively. Further suppose that

(2.10) F = R(f) and G = R(L).

Then for n ≥ 2l+3, when t ≥ 1 and for n ≥ 2l+6, when t = 0 we get the following.

1

F− 1
=

A

G− 1
+B,

where A(̸= 0), B ∈ C.

Proof. Clearly F,G share (1, t) and in view of (1.13) we have

(2.11) F
′
=

γ
l∏

j=1

(f − δj)
qj

k∏
j=1

(f − βj)pj

f ′, G
′
=

γ
l∏

j=1

(L − δj)
qj

k∏
j=1

(L − βj)pj

L′.

Now consider H as given by (2.1) for F and G.

Case-I: Suppose H ̸≡ 0. Since H has only simple poles and in this case these

poles come from the following points.

(i) δj -points of f and L.

(ii) Poles of f and L.

(iii) 1-points of F and G having different multiplicities.
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(iv) Those zeros of f
′

and L′
which are not zeros of

l∏
j=1

(f − δj)(F − 1) and

l∏
j=1

(L − δj)(G− 1) respectively.

Therefore we obtain

N(r,H) ≤ N(r,∞; f) +

l∑
j=1

N(r, δj ; f) +N0(r, 0; f
′) +N(r,∞;L)(2.12)

+

l∑
j=1

N(r, δj ;L) +N0(r, 0;L′) +N∗(r, 1;F,G) + S(r, f) + S(r,L),

where we write N0(r, 0; f
′) for the reduced counting function of the zeros of f ′ that

are not zeros of (F− 1)
l∏

j=1

(f − δj)
qj and N0(r, 0;L′) is similarly defined. By using

Lemma 2.1 , Lemma 2.2 and (2.12) we observe that

N(r, 1;F) +N(r, 1;G) ≤ N(r,H) +
1

2
[N(r, 1;F) +N(r, 1;G)](2.13)

−(t− 1

2
)N∗(r, 1;F,G) ≤ N(r,∞; f) +

l∑
j=1

N(r, δj ; f) +N(r,∞;L) +
l∑

j=1

N(r, δj ;L)

+
n

2
{T (r, f) + T (r,L)}+

(
3

2
− t

)
N∗(r, 1;F,G)+N0(r, 0; f

′)+N0(r, 0;L′)+S(r, f)+S(r,L).

Set T (r, f)+T (r,L) = T (r). Hence in view of (2.13), using the second fundamental

theorem we have

(n+ l − 1)T (r) ≤ N(r,∞; f) +N(r, 1;F) +
l∑

j=1

N(r, δj ; f)(2.14)

+N(r,∞;L) +N(r, 1;G) +

l∑
j=1

N(r, δj ;L)−N0(r, 0; f
′)−N0(r, 0;L′)

+S(r, f) + S(r,L) ≤ 2

l∑
j=1

N(r, δj ; f) + 2

l∑
j=1

N(r, δj ;L)

+2
[
N(r,∞; f) +N(r,∞;L)

]
+
n

2
T (r) +

(
3

2
− t

)
N∗(r, 1;F,G)

+S(r, f) + S(r,L) ≤ (2l +
n

2
)T (r) + 2

[
N(r,∞; f) +N(r,∞;L)

]
+

(
3

2
− t

)
N∗(r, 1;F,G) + S(r, f) + S(r,L).

Hence in view of Lemma 2.3, for t ≥ 2; (2.14) reduces to(n
2
− l − 1

)
T (r) ≤ O(log r),

which is a contradiction for n ≥ 2l + 3.
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For 0 ≤ t ≤ 1; using N∗(r, 1;F,G) = NL(r, 1;F) +NL(r, 1;G), Lemma 2.4 and

Lemma 2.3 we get from (2.14) that(n
2
− l − 1

)
T (r) ≤

(
3
2 − t

)
t+ 1

[
N(r, 0; f) +N(r, 0;L)

]
+O(log r).(2.15)

Now for t = 1; from (2.15) we get(
n

2
− l − 5

4

)
T (r) ≤ O(log r),

which is a contradiction for n ≥ 2l + 3.

For t = 0; from (2.15) we get(
n

2
− l − 5

2

)
T (r) ≤ O(log r),

which is a contradiction for n ≥ 2l + 6.

Case-II: Suppose H ≡ 0. Now integrating (2.1), we find that

1

F− 1
=

A

G− 1
+B, where A( ̸= 0), B ∈ C.(2.16)

Lemma 2.7. [20] Let F and G be two non-constant meromorphic functions such

that

1

F − 1
=

A

G− 1
+B,

where A(̸= 0), B ∈ C. If

N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G) +N(r,∞;G) < T (r),

where T (r) = max{T (r, F ), T (r,G)}. Then either FG = 1 or F = G.

Lemma 2.8. Let F , G be defined by (2.4) with p ≥ 2 and they share (1, t) for

t ∈ N ∪ {0}. Then FG ̸= a, where a is non-zero complex constant.

Proof. On the contrary, suppose that FG = a. Then

(2.17)
p∏

i=1

(f − αi)
mi

p∏
i=1

(L − αi)
mi = a

(
a0
an

)2

= a1(say).

It is clear from (2.17 ) that each αi-point of f is a pole of L and vice-versa. Now

let us consider the following cases.

Case-1: Let p ≥ 4. Since an L- function has at most one pole, then in view of

(2.17) we can say that f has at least three αi-points which are picard exeptional

values. That is, the meromorphic function f omits at least 3 values, so f must be

constant. This contradicts our assumption.
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Case-2: Let p = 3. Again like the arguments made above we can say that f

omits two values say α1, α2. Hence using the second fundamental theorem in view

of Lemma 2.3, we obtain

T (r, f) ≤
2∑

i=1

N(r, αi; f) +N(r,∞; f) +O(log r)

≤ O(log r),

which is a contradiction.

Case-3: Let p = 2. Note that applying similar argument as made in Case-1 we

get f omits at-least one of the αi’s say α1. On the other hand, f cannot omit both

the αi’s. For if, f omits both the αi’s, then we again arrive at a contradiction like

Case-2. Hence let us assume α2 points of f are the poles of L. Again as z = 1 is

the only pole of L, so let z = 1 be α2 point of f of multiplicity r and the pole of L
of multiplicity s. Then m2r = ns, which implies m2r ≥ n; i.e., 1

r ≤ m2

n . Now using

the second fundamental theorem in view of Lemma 2.3 we get

T (r, f) ≤ N(r, α1; f) +N(r, α2; f) +N(r,∞; f) +O(log r)

≤ m2

n
T (r, f) +O(log r),

which is a contradiction as n > m2. □

Lemma 2.9. Let F,G as defined by (2.10). Then for

(i) k ≥ 2; or

(ii) k = 1 with n > 2m1;

FG ̸= a, where a is non-zero complex constant.

Proof. On the contrary suppose that FG ≡ a. Then

fn

k∏
j=1

(f − βj)mj

.
Ln

k∏
j=1

(L − βj)mj

≡ a

(
ai
an

)2

= a
′
(say)(2.18)

It is clear from (2.18) that βj point of f is a zero of L and vice-versa and

(2.19) T (r, f) = T (r,L) +O(1).

Now we deal with the following cases.

Case I: Let k ≥ 2. If z0 be a zero of f − βj with multiplicity p, then z0 is a zero

of g with multiplicity q such that mjp = nq i.e., p ≥ n

mj
. Therefore N(r, βj ; f) ≤

mj

n
N(r, βj ; f).
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So, in view of Lemma 2.3 using the the second fundamental theorem, we get

(k − 1)T (r, f) ≤
k∑

j=1

N(r, βj ; f) +N(r,∞; f) +O(log r)

≤
k∑

j=1

mj

n
T (r, f) +O(log r)

≤ (1− 1

n
)T (r, f) +O(log r),(2.20)

which contradicts k ≥ 2.

Case-II: For k = 1, from (2.18) we have

Ln

(L − β1)m1
=
a

′
(f − β1)

m1

fn
.(2.21)

From (2.21) we see that N(r, 0; f) = N(r, β1;L) + N(r,∞;L) = N(r, β1;L) +
O(log r). Also by similar calculation as in Case-I we haveN(r, β1; f) =

m1

n
N(r, β1; f)

and N(r, β1;L) =
m1

n
N(r, β1;L). Again using the second fundamental theorem in

view of Lemma 2.3 and (2.19) we have

T (r, f) ≤ N(r, β1; f) +N(r, 0; f) +N(r,∞; f) +O(log r).

≤ 2m1

n
T (r, f) +O(log r),(2.22)

which is a contadiction as n > 2m1. □

3. Proof Of the theorems

Proof Of the theorem 1.1. We prove the theorem step by step as follows.

(i) =⇒ (ii) : Suppose f is a non-constant meromorphic function and L is a non-

constant L-function such that Ef (S, t) = EL(S, t), where t ∈ N ∪ {0}. Consider F
and G as defined by (2.4). Then for

(i) t ≥ 1 and n ≥ 2s+ 3, or

(ii) t = 0 and n ≥ 2s+ 6,

in view of the Lemma 2.5 we get
1

F − 1
=

A

G − 1
+B, where A(̸= 0), B ∈ C. Hence

we have

(3.1) T (r,F) = T (r,G) +O(1).

Since

(3.2) T (r,F) = nT (r, f) +O(1) and T (r,G) = nT (r,L) +O(1).

So (3.1) implies that

(3.3) T (r, f) = T (r,L) +O(1).
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Now in view of Lemma 2.3 using (3.2) and (3.3) we get

N(r, 0;F) +N(r,∞;F) +N(r, 0;G) +N(r,∞;G)

≤ pT (r, f) + pT (r,L) +N(r,∞; f) +N(r,∞;L)

= 2pT (r, f) +O(log r) <
2p+ 1

n
T (r,F)

≤ T (r,F) [∵ n ≥ 2p+ 1].

So in view of Lemma 2.7, we have either FG = 1 or F = G. Since p ≥ 2, so in view

of Lemma 2.6 we have FG ̸= 1. Hence F = G. That is, we get

(3.4) P (f) = P (L),

which by condition (i) implies f = L.

(ii) =⇒ (i) : Let P (f) = P (L). That is,
p∏

i=1

(f − αi)
mi =

p∏
i=1

(L − αi)
mi ,

which implies f and L share (S,∞). Therefore, obviously f and L share (S, t) for

t ∈ N ∪ {0}. Hence by condition (ii), we have f = L.

Proof of the theorem 1.2. Let us consider F and G as defined by (2.10). Let f

be a non-constant meromorphic function and L be a non-constant L-function such

that Ef (S, t) = EL(S, t), where t ∈ N ∪ {0}. Then F, G share (1, t). Now for

(i) t ≥ 1 and n ≥ 2l + 3, or

(ii) t = 0 and n ≥ 2l + 6,

in view of Lemma 2.6 we have
1

F− 1
=

A

G− 1
+B,(3.5)

where A(̸= 0), B ∈ C.

From (3.5) we easily obtain

T (r, f) = T (r,L) + S(r, f).(3.6)

Now in view of Lemma 2.3, (3.6) and from the construction of F and G we get

N(r, 0;F) +N(r,∞;F) +N(r, 0;G) +N(r,∞;G)

≤ N(r, 0; f) +

k∑
j=1

N(r, βj ; f) +N(r,∞; f) +N(r, 0;L) +
k∑

j=1

N(r, βj ;L) +N(r,∞;L)

≤ (1 + k)T (r, f) + (1 + k)T (r,L) +O(log r) = 2(1 + k)T (r, f) +O(log r)

<
2k + 3

n
T (r,F) ≤ T (r,F) [∵ n ≥ 2k + 3].
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So in view of Lemma 2.7, we have either FG ≡ 1 or F ≡ G. Again in view of Lemma

2.9 we have FG ̸≡ 1. Thus F ≡ G; i.e., R(f) = R(L).
Therefore we find that Ef (S, t) = EL(S, t) =⇒ f = L, whenever R(f) =

R(L) =⇒ f = L. That is (i) =⇒ (ii).

To show (ii) =⇒ (i), suppose that Ef (S, t) = EL(S, t) =⇒ f = L. Let

R(f) = R(L), then we have R(f)− 1 = R(L)− 1; i.e.,
P (f)

ϕ(f)
=
P (L)
ϕ(L)

. Therefore f

and L share (S,∞) and which implies Ef (S, t) = EL(S, t), hence f = L.

4. Applications

In this section, we prove that all the existing results can be improved as an

application of our results. Moreover, there exist other polynomials providing better

results than the existing ones including those polynomials which are still uncertain

to be critically injective or non-critically injective. Furthermore, in this section we

have also exhibited a similar result for non-critically injective polynomials which is

yet not considered in this literature. In a word, by executing the following examples

we prove the far reaching applications of Theorem 1.1 and Theorem 1.2 .

First of all we exhibit examples of critically injective polynomials as the applications

of Theorem 1.1.

Example 4.1. Let us consider the following polynomial.

P (z) = zn + azn−m + bzn−2m + c,(4.1)

where a, b, c ∈ C∗ be such that P (z) has no multiple root, gcd(m,n) = 1 and a2

4b =
n(n−2m)
(n−m)2 , c ̸= βiβj

βi+βj
. Here βi = −(cni + acn−m

i + bcn−2m
i ), where ci are the roots of

the equation nz2m + (n−m)azm + b(n− 2m) = 0, for i = 1, 2, . . . , 2m. Suppose S

denotes the set of zeros of (4.1).

Obviously, P (z) has only simple zeroes and it is critically injective [6, see Lemma

2.7]. From (4.1) we have

P ′(z) = zn−2m−1[nz2m + a(n−m)zm + b(n− 2m)](4.2)

= nzn−2m−1

(
zm +

n(n−m)

2n

)2

.(4.3)

From (4.1) and (4.2) we find that

p = 2m+ 1 and s = m+ 1.

In [6, see proof of Theorem 1.1] it is also proved that P (f) = P (g) implies f = g for

n ≥ 2m+4, where fand g are non-constant meromorphic functions. Hence for a non-

constant meromorphic function f having finitely many poles and an L-function L we
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have P (f) = P (L) =⇒ f = L when n ≥ 2m+4. Thus P (z) satisfies the condition

(i) of Theorem 1.1 of the present paper and hence Ef (S, t) = EL(S, t) =⇒ f = L
for

(1) n ≥ max{4m+ 3, 2m+ 5} ≥ 7 when t ≥ 1, and

(2) n ≥ max{4m+ 3, 2m+ 8} ≥ 10 when t = 0.

Remark 4.1. Note that the polynomial

(4.4)

P (z) =
(n− 1)(n− 2)

2
zn−n(n−2)zn−1+

n(n− 1)

2
zn−2−c, where n ≥ 6, c ̸= 0, 1.

introduced by Frank-Reinders [7] comes as the special case of (4.1) for m = 1, a =

− 2n

n− 1
, b =

n

n− 2
and c ∈ C−{0, −1

(n− 1)(n− 2)
}. Hence Ef (S, t) = EL(S, t) =⇒

f = L as n ≥ 7 when t ≥ 1 and n ≥ 10 when t = 0, where S denotes the set of zeros

of (4.4) and f , L are non-constant meromorphic function having finitely many poles

and a non-constant L-function respectively.

Example 4.2. Consider the polynomial

(4.5) P (z) = zn + azn−m + b = zn−m(zm + a) + b,

where n,m are relatively prime inegers and a, b are non-zero constants such that

the polynomial has no multiple zero. Suppose S = {z : P (z) = 0}. Here

p = m+ 1 ≥ 2

and

(4.6) P ′(z) = zn−m−1(nzm + a(n−m));

i.e., s = m+ 1.

Suppose that P (f) = P (L), for any non-constant meromorphic function f having

finitely many poles and a non-constant L-function L, then we have

(4.7) fn − Ln = −a(fn−m − Ln−m).

If fn ̸≡ Ln, then we can rewrite (4.7) as

(4.8) Lm = −a (h− v)(h− v2)...(h− vn−m−1)

(h− u)(h− u2)...(h− un−1)
,

where h =
f

L
, u = exp(2πi/n) and v = exp(2πi/(n−m)). Noting that n and (n−m)

are relatively prime positive integers, then the numerator and denominator of (4.8)

have no common factors. Since L has atmost one pole at z = 1 in the complex

plane, and whenever n ≥ 5 we can see that there exists at least three distinct roots
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of hn = 1 such that they are Picard exceptional values of h, and so it follows by

(4.8) that h and thus L are constants, which is impossible.

Therefore, we must have fn = Ln. Then by (4.7) we also have fn−m = Ln−m.

Since n and (n −m) are relatively prime positive integers, we deduce that f = L.

Thus we see that P (f) = P (L) =⇒ f = L, when n ≥ 5.

Now we apply Theorem 1.1 to find the minimum value of n for which we can say

that Ef (S, t) = EL(S, t) =⇒ f = L.

Therefore, Ef (S, t) = EL(S, t) =⇒ f = L for

(1) n ≥ max{2m+ 3, 2m+ 5} = 2m+ 5 when t ≥ 1, and

(2) n ≥ max{2m+ 3, 2m+ 8} = 2m+ 8 when t = 0.

In the next example we explore a non-critically injective polynomial in the

direction of Theorem 1.1.

Example 4.3. Let

(4.9) P (z) = zn + 2zn−1 + zn−2 + c,

where n(≥ 5) is odd, c ∈ C such that P (z) does not have any multiple zero. Also

we have

P ′(z) = zn−3
(
nz2 + 2(n− 1)z + (n− 2)

)
.(4.10)

Here P (z) is a non-critically injective polynomial and we see that

p = 2, s = 3.

Suppose S = {z : P (z) = 0}. Let f and L be two non-constant meromorphic and

L-function respectively such that

P (f) = P (L).

Since L has at most one pole in C, hence proceeding in the same line of proof of as

done in Example 4.4 of [15] for uniqueness polynomial of entire function we also

get here f = L.

Therefore P (z) satisfies condition (i) of Theorem 1.1. Hence we conclude that

Ef (S, t) = EL(S, t) =⇒ f = L when

(1) n ≥ max{2.2 + 1, 2.3 + 3} = 9 for t ≥ 1, and

(2) n ≥ max{2.2 + 1, 2.3 + 6} = 13 for t = 0.

Now we apply Theorem 1.2 for rest of the examples where in the first example

we have considered a polynomial which is still uncertain to be critically injective
76



ON THE UNIQUENESS OF L-FUNCTIONS ...

or non-critically injective [3, see section 5] and the polynomial used in the second

example is critically injective.

Example 4.4. Consider the polynomial

P (z) = azn − n(n− 1)z2 + 2n(n− 2)bz − (n− 1)(n− 2)b2,

where n(≥ 6) is an integer and a, b are two non-zero complex numbers satisfying

abn−2 ̸= 1, 2. Suppose S = {z : P (z) = 0}. It is obvious that n(n − 1)z2 − 2n(n −
2)bz + (n− 1)(n− 2)b2 = 0; has two distinct roots, say α1 and α2. Here

R(z) =
azn

n(n− 1)(z − α1)(z − α2)
.(4.11)

Hence S = {z : R(z)− 1 = 0}. From (4.11) we have

R′(z) =
(n− 2)azn−1(z − b)2

n(n− 1)(z − α1)2(z − α2)2
.(4.12)

Let f a non-constnat meromorphic function having finitely many poles and L be

a non-constant L-function. Since every L-function is meromorphic in C, so R(f) =

R(L) =⇒ f = L for n ≥ 6 directly follows from [1, see page 67].

We also find that in this case l = 2, k = 2. Since P (z) satisfies condition (i) of

Theorem 1.2. Hence we obtain Ef (S, t) = EL(S, t) =⇒ f = L for

(1) n ≥ max{2k + 3, 2l + 3} = 7 when t ≥ 1, and

(2) for n ≥ max{2k + 3, 2l + 6} = 10 when t = 0.

Example 4.5. Consider the polynomial

P (z) = zn + azm + b,(4.13)

where m and n are positive integers such that n ≥ m+4, a and b are finite non-zero

complex numbers with
bn−m

am
̸= (−1)nmm(n−m)n−m

nn
. Then P (z) has only simple

zeros. Let S denotes the set of zeros of P (z). Suppose

R(z) = − zn

azm + b
.(4.14)

Then we find that S = {z : R(z)− 1 = 0}. From (4.14) we have

R′(z) = −z
n−1[a(n−m)zm + bn]

(azm + b)2
.(4.15)

Now for a non-constant meromorphic function f and a non-constant L-function

L consider R(f) = R(L). Then we have

fn

afm + b
=

Ln

aLm + b
=⇒ a(fnLm − fmLn)− b(Ln − fn) = 0.(4.16)
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Let h =
f

L
. Suppose that h is a non-constant meromorphic function. Then from

(4.16) we have

ahmLn+m(hn−m − 1) + bLn(hn − 1) = 0(4.17)

=⇒ Lm = − b(hn − 1)

ahm(hn−m − 1)
= − b

a

(h− u)(h− u2)...(h− un−1)

hm(h− v)(h− v2)...(h− vn−m−1)
,

where u = exp(2πi/n), and v = exp(2πi/(n−m)). Since n and m are co-prime, so

is n and (n−m). Hence the numerator and denominator of (4.17) have no common

factors. Further, the function L has atmost one pole in the complex plane, it follows

that h has atleast (n−m−1) picard exceptional values among {0, v, v2, ..., vn−m−1}.
Clearly this is a contradiction as n ≥ m + 4. Hence h is constant. Thus from

(4.17) we must have hn = 1 = hn−m, which in turn implies h = 1; i.e., f = L.

Therefore we obtain that R(z) satisfies condition (i) of Theorem 1.2.

Now we count the cardinality of the set S for which Ef (S, t) = EL(S, t) =⇒
f = L. In this case, for R(z) we have

l = m+ 1, k = m.

Therefore the condition (ii) of the Theorem 1.2 is satisfied if

(1) n ≥ max{2m+ 3, 2m+ 5} = 2m+ 5 for t ≥ 1 and

(2) n ≥ max{2m+ 3, 2m+ 8} = 2m+ 8 for t = 0.

Remark 4.2. Observe that Example 4.5 and Example 4.2 answer Question 1.4 and

Question 1.5 with threefold improvement to Theorem G-H as discussed in Remark

1.2 which inturn improve Theorem D-H by relaxing the nature of sharing of the sets

or reducing the least cardinalities of the sets or both.

Remark 4.3. Further note that Example 4.1, Example 4.3 and Example 4.4 answer

Question 1.2 and Question 1.3 affirmatively. Moreover, Example 4.1 and Example

4.4 improves Theorem D-H either by relaxing the nature of sharing of the sets or

reducing the least cardinalities of the sets or both.

5. Conclusion and an open question

Observe that if we consider Example 4.2 in the direction of Theorem 1.1, then

we would obtain the same conclusion for n ≥ max{2(n−m)+3, 2(n−m+1)+3} =

max{2n− 2m+ 3, 2n− 2m+ 5}; i.e., m ≥ n+5
2 , which is absurd. So, Theorem 1.2

is not applicable for Example 4.2, whereas Theorem 1.1 is applicable for the same.

Similarly we would have problems in counting the cardinality of the set if we apply

Theorem 1.2 in case of Example 4.1 and Example 4.3.
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Conversely the conclusion of Example 4.4 and Example 4.5 can not be obtained as

the application of Theorem 1.1 but Theorem 1.2. That is why, we have have proved

two theorems in this paper in the most general setting to justify all the existing

results as well as to include all the variants of polynomials for the uniqueness of f

and L.

Last but not the least, observing Theorem 1.1-1.2 and Example 4.1-4.5 carefully,

it is obvious that for any polynomial if one can find P (f) = P (L) or R(f) = R(L)
implies f = L, then at instant we would be able to find out the set with least

possible cardinality and sharing condition. Hence under this circumstances, the

following question become indispensable for the uniqueness of f and L.

Question 5.1. Can one find general criterion(s) for any general polynomial given

by (1.6) so that P (f) = P (L) or R(f) = R(L) implies f = L ?
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