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Abstract. We describe transcendental entire solutions of certain nonlinear difference-differential
equations of the forms:
F)? + f(2)[af'(2) + bf (2 + 0)] + q(2)e?F) f(z + ¢) = u(2)e"),
and
FE™ + £ af! (2) + b (2 + O] + q(2)e? P f(z + ) = pre™? + pae’2?,

where ¢(2), Q(z),u(z), v(z) are non-zero polynomials, a, b, ¢, p;, A\i(i = 1, 2) are non-zero constants
such that A1 # A2. Our results are improvements and complements of Li et al. ([§]). Some examples

are given to illustrate our results are accurate.
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1. INTRODUCTION AND MAIN RESULTS

Considering a meromorphic function f in the complex plane C, we assume
that the reader is familiar with the fundamental results and standard notation
of Nevanlinna theory, such as the proximity function m(r, f), the counting function
N(r, f), and the characteristic function T'(r, f), see, e.g., [3 [6, [I8]. We denote
by S(r, f) any real function of growth o(T'(r, f)) as  — oo outside of a possible
exceptional set of finite logarithmic measure. A meromorphic function « is said to
be a small function of f, if T'(r,a) = S(r, f).

In 1964, Hayman [3] considered the following non-linear differential equation

(1.1) f(2)"+Qu(f(2) = 9(2),

where Qq(f) is a differential polynomial in f with degree d and obtained the

following result.
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The work of authors were partially supported by and The Fundamental Research Funds of
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Theorem 1.1. ([3]) Suppose that f(z) is a non-constant meromorphic function,
d <n-—1, and f,g satisfy N(r, f) + N(r,é) = S(r,f) in (LI)). Then we have
9(z) = (f(2) + v(2)", where y(z) is meromorphic and a small function of f(z).

Nowadays, there has been recent interest in connections between the Nevanlinna
theory and the difference operator, as well as meromorphic solutions of difference
and functional equations. Yang and Laine[16] then investigated finite order entire

solutions f of non-linear differential-difference equations of the form

f(2)" + L(z, f) = h(z),

where L(z, f) is a linear differential-difference polynomial in f with meromorphic
coefficients of growth S(r, f), h(z) is meromorphic, and n > 2 is an integer. Many
authors have investigated this question by utilizing the Nevanlinna value distribution
theory and its difference counterparts, see, e.g., |5l 9} 10} [TT], 13} [15].

In 2016, Liu [I2] investigated and classified the finite order entire solutions of

the equation
(1.2) F(2)" +4(2)e?F f P (z 4 ¢) = P(2),

where ¢(z2), Q(z), P(z) are polynomials, n > 2,k > 1 are integers and ¢ € C\{0}.
Later, Chen [2] replaced P(z) in by p1e* + pae??, where pi, pa, A1, Ao are
non-zero constants, and studied its finite order entire solutions when n > 3.

By observing all the above equations, it is easy to see that the left side of these
equations have only one dominant term f". It is nature to ask what can we get if
the left side of these equations have two dominant terms. In 2021, Li [8] investigated
non-linear differential-difference equations which may have two dominated terms on

the left-hand side with the same degree:

(1.3) FE" +wf()" 7 (2) + a(2)e?P [z + ) = P(2),

they replaced P(z) in (T.3)) by u(z)e"®) or pye* + poe?? respectively, and obtained

the following results.

Theorem 1.2. (|8]) Let ¢, # 0 be constants, q,Q,u,v be polynomials such that
Q,v are not constants and q,u % 0. Suppose that f is a transcendental entire

solution with finite order of

(1.4) F2)? +Bf()f(2) + a(2)e?D f(z + ¢) = u(z)e",

satisfying A(f) < p(f), then deg Q@ = degv, and one of the following relations holds:
(1) p(f) < deg@Q = degw, and f = Ce™

(2) p(f) = deg @ = degv.
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Theorem 1.3. ([8]) Suppose that n is a positive integer, w is a constant and
¢, A1, A2, p1,p2 are non-zero constants, q,Q are polynomials such that Q is not a

constant and q £ 0. If f is a transcendental entire solution with finite order of
(1.5) FE™ +wf ()" (2) + q(2)e? D f(z + ¢) = pre™ + pae?,
where Ao # +A1, then the following conclusions hold:

(1) If n > 4 for w # 0 and n > 3 for w = 0, then every solution [ satisfies
p(f) =degQ =1.

(2) If n > 1 and f is a solution of (1.5)) with A\(f) < p(f), then

f(z) = <ni23)\2)nekﬁza Q(z) = (Al - )\nQ) z+ by,

or

3=

n+ wA;

10 = (20 R Q= (-2 rn,

A

1
n Agc c
where by,by € C satisfy p1 = q (nf;;z) et and py = g <nﬁdn)\1> e w o2

3=

respectively.

In the following, inspired by the ideas of [§], we will investigate non-linear
differential-difference equations which may have three dominated terms on the left-
hand side of (1.4) and (1.5) and obtain the following results.

Theorem 1.4. Let a,b, c be non-zero constants, q,Q,u,v be polynomials such that

q,u Z 0. Suppose that f is a transcendental entire solution with finite order of
(1.6) F2)? 4 f(2)af'(2) +bf (2 + ) + a(2)e?P) f(z + ¢) = u(z)e"®),

satisfying A(f) < p(f), then one of the following relations holds:

(1) If p(f) > degQ, then p(f) = degv = 1, Q reduces to a constant, and
f(z) = d(z)e™*, where d(z) = gﬁg:g, here Cy = e9FT4e Cy = €%, ay,vy are
constants satisfying 1 + aay + be®¢ = 0.

(2) If p(f) = deg @ > degwv, then p(f) = deg@ = 1, v reduces to a constant,
and f(z) = d(2)e**, where d(z) = %, here C3 = ePot®ic Cy = e?, ay, by are
constants satisfying 1 + aay + be®¢ = 0.

(3) If p(f) < degQ, then p(f) = 1,degv = deg Q, f(2) = d(2)e™*, where d(>)
is an entire function with p(d) < 1, a1 is a non-zero constant satisfying 1 + aa; +
be®1¢ = 0.

We exhibit some examples to show the existence of solutions in Theorem
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Example 1.1. f(z) = ze* is a transcendental entire solution of the following

differential-difference equation

orssalfa st (o Yo () - (et
Here a = 1,0 = —26_%,1}(2) =z+ %, and 0 = A(f) < p(f) = 1. Then we have

degv =p(f) =1>deg@Q =0, and a1 =1 satisfy 1 + aaj + be®¢ = 0.

Example 1.2. f(z) = ze* is a transcendental entire solution of the following

differential-difference equation

f(Z)Q +f(z) |:f/(z> — 26_%f (Z+ ;>:| +6_zf (Z+ ;) _ (z+ ;) 6%.
Here a = 1,b = —26_%,62(2) = —z, and 0 = A(f) < p(f) = 1. Then we have
deg Q@ = p(f) =1>degv =0, and a1 =1 satisfy 1 + aaj + be® ¢ = 0.

Example 1.3. f(z) = ze* is a transcendental entire solution of the following

differential-difference equation

F22 + 1(2) [f’<z> —oc by ( ; ;)} ey ( i ;) _ ( i ;) (et

Here a = 1,b = —2e72,Q(2) = 22, v(2) = 22 + 2z + 1.and 0 = X\(f) < p(f) = L.
Then we have 2 = deg @ = degv > p(f) =1, and a1 = 1 satisfy 1+aa; +be*c = 0.

Theorem 1.5. Let n is a positive integer, a,b,c,\;,p;(i = 1,2) are non-zero
constants, q,Q are polynomials such that @ is not a constant and q % 0. If f

is a transcendental entire solution with finite order of
(1.7) f(2)" + f(2)" " [af'(2) + bf (2 + 0)] + q(2)e® P f(z + ¢) = pre™® 4 pae?,

satisfying A(f) < p(f), then

n A A
fz) = P2 ) % Q)= (M — 22)z+ By,
n -+ aly +nbex © n

or

3=

f(z) = ( L > 6%2’ Q2) = (A2 — A )z + Bo,

n—+ai + nbe e n
where Bg € C satisfy

1
A1

pan T pin !
p=q s | et or py= ol B
n+ aly + nbew © n+ al; +nbew ¢

respectively.
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2. SOME LEMMAS

In order to prove results above, we need the following lemmas.

Lemma 2.1 ([I8], Theorem 1.51). Let f;(z)(j = 1,---,n)(n > 2) be meromorphic
functions, and let g;(2)(j =1,--- ,n) be entire functions satisfying

YT, £i(2)en ) = 0;

(i1) when 1 < j < k < n, then g;(z) — gr(2) is not a constant;

(#ii) when 1 < j <n,1 < h<k<mn, then

T(r, f;) = O{T (r, egh*gk)} (r = oo,r ¢ E),

where E C (1,00) is of finite linear measure or logarithmic measure.
Then, fi(z)=0(j=1,---,n).

Lemma 2.2 ([I8|, Theorem 1.62). Let f1, fa, -+ , fn be non-constant meromorphic
functions, and let fny1 Z 0 be a meromorphic function such that Z;Lill =1
Suppose that there exists a subset I € RT with linear measure mesl = oo, such

that:

n+1 1 n+1
ZN (7‘, f) +n Z N(r, fi) < (c+o(O)T(r, f;), j=1,2,--+,n,
i=1 v i=1,i#j

as r € I and r — oo, where o is a real number satisfying 0 < o < 1. Then,
fn+1 =1

Lemma 2.3 (7], Theorem 3.1). Let f(z) be a meromorphic function with the
hyper-order less than one, and ¢ € C\{0}. Then we have

T(r, f(z+c)) = T(r, f(2)) + S(r, f).

Lemma 2.4 ([I8], Theorem 1.21). Suppose that f(z) is meromorphic in the complex

plane and n is a positive integer. Then f(2) and " (z) have the same order.

Lemma 2.5 ([I], Lemma 3.3). Let g be a transcendental meromorphic function of
order less than 1, and let h be a positive constant. Then there exists an e-set E such
that as C\E 3 z — o0, one has
gltn) | 0. g(z+mn)
9(z+n) 9(2)
uniformly in n for | n |< h. Further, the e-set E may be chosen so that for large z

—1

not in E, the function g has no zeros or poles in | ( — z |< h.

Lemma 2.6 ([I7], Lemma 1). Let fi and f2 be two meromorphic functions, and let
a, by, ba be small functions of f1 and fo satisfying abibs Z£ 0 and by f1 + bafo = a.
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Then one has

T(r f) < N(r fi) + N (n 1) iy (r, 1) + S0 ).

1 2

Lemma 2.7 ([I8], Theorem 1.57). Let f;(2),j = 1,2,3 be meromorphic functions
and f1(z) is not a constant. If Zj?:l fi(z) =1, and

3

ZN (7“, f:é) + ZZW(r, i) <A+o(1)T(r), rel,

where A < 1, T(r) = maxi<,;<3{T(r, f;)} and I represents a set of r € (0, 00) with

infinite linear measure. Then fo =1 or f3=1.

Lemma 2.8 ([18], Theorem 1.42, Theorem 1.44). Let f(z) be a non-constant
meromorphic function in the complex plane. If 0,00 are Picard exceptional values
of f(2), then f(z) = e"*) where h(z) is a non-constant entire function. Moreover,
f(2) is of normal growth, and

(i) if h is a polynomial of degree p, then p(f) = p;

(i) if h is a transcendental entire function, then p(f) = oo.
Lemma 2.9 ([I8], Theorem 1.22). Suppose f(z) is a non-constant meromorphic
function in the complex plane and k is a positive integer, and let U(z) = Zk: a;i(2)f(2),

i=0
where a1(z),az2(z),- - ,ar(z) are small functions of f(z). Then

T(r,®) <T(r,f) +kN(r, f)+ S(r, f).

3. PrROOF oF THEOREM [L.4]

Let f be a transcendental entire solution with finite order of equation (|1.6))
satisfying A(f) < p(f). Then, by the Hadamard factorization theorem, we can

factorize f(z) as
(3.1) f(z) = d(z)e"?,

where h is a polynomial with degh = p(f), d is the canonical product formed by
zeros of f with p(d) = A(f) < p(f). Obviously, h is a non-constant polynomial.
In fact, if h is a constant, then from (3.1)), we will have p(f) = p(d) = A(f), a
contradiction. Thus we have that degh > 1. Let degh = m(> 1), and h(z) =

A 2™ + @p_12™ " + - -+, where a,, # 0.
We rewrite (1.6)) as
(3.2) P+ flaf +bf) +qef = ue’,

where f = f(z + c), for simplicity.
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Obviously, we have p(f) = p(f) = p(f’) by Lemma [2.3|and Lemma So from
, by the order property, we get
degv = p(ue”) < max{p(f") = p(f) = p(f), p(e?), p(q)}
= max{degh, deg Q}.
By substituting into , we get
(3.4) [ + ad(d' + dB)] € + bdde" " + qde@*" = ue.

(3.3)

Case 1. p(f) > deg @, then we have degh > deg @, and degv < degh from (3.3).
Subcase 1.1. degh > degv. From (3.4) we have
(3.5) {[d* + ad(d’ + dn’)] eh 4 bdﬁe’”} e2am=" 4 qdeetm*” = ye?,
where hy = 20, 12"+ -+, ho = (2am_1 + amme)z™ 4 - and hy = Q +
(@mme + apm—1)2™"1 + -+ are all polynomials with degree at most m — 1. So,
combining with p(d') = p(d) = p(d) < m, by using Lemma to (3.5)), we have
qd = 0, which yields a contradiction. Thus deg h > degv can not hold.
Subcase 1.2. degh = degv. Let v(2) = v, 2™ + Uy _12™ 1+ - -, where v, # 0.
From (3.4) we have
(3.6)  {[d® +ad(d + dh')] " + bdde} €@ 4 qdehz et = yetietmi
where hy = v, 12™ 1+ .-+ is a polynomial with degree at most m — 1, hy, ho and

hs are defined as in Subcase 1.1.

If vy # 20y, and vy, # am,, combining with p(d') = p(d) = p(d) < m, by using
Lemma 2.1] to (3.6), we get u = 0, a contradiction.
If v, = 2a4,, then (3.6) can be reduced to

{[d® + ad(d' + dW')] e" + bdde" — ue"} e**m=" + qdezetm*" =0,
by using Lemma we have ¢d = 0, a contradiction. Thus, we have
(3.7) U, = Q-
Rewriting (3.6) as
{[d® + ad(d' + dW')] e" + bdde"} ***" + (qde" — ue)e " = 0.
Similarly as above, by Lemma [2.1] we get
[d? + ad(d’ + dh')]e™ + bdde™ = 0,
qaem —ueM =0.
By observing the expressions of hy and ho, we have ho = hy + hs, where hs =
ammez™ ! + ... Noting that d # 0, then above equations can be rewrote as
d+ a(d' + dh') + bde™ =0,
qaehS —ueM =0.
95
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By the second equation of (3.8)), we get

(3.9) d= geh4_h3.

Subcase 1.2.1. degh > 2. Firstly, we claim that hy — hs is a non-constant
polynomial. In fact, if hy — hs is a constant, then d reduces to a rational function,
by the first equation of (3.8]) and Lemma we have d = 0, a contradiction.

Secondly, we claim that hy — hs 4 hs is a non-constant polynomial. Substituting

(3.9) into the first equation of (3.8)), we get

/ _
(u) + E(hil _ hé)‘| } eha—hs o bgeﬂ—his-&-his =0.
q q

(3.10) {(1+ah’)q+a p

If hy — hs + hs is a constant, say ¢;. Then ([3.10) becomes

! —
(£) + 20t~ h@] } Folen =0

{(1 +al)L +a
q q

that gives uw = 0, a contradiction.

Thus, we get hy — hg and hy — hz + hs are non-constant polynomials. If hy —
hs3 + hs — (hg — h3) is not a constant, by and Lemma we have u =0, a
contradiction. If hy — hs + hs — (hy — h3) is a constant, say co, then reduces

to
I —
—u U U u
l+ah)=+a () + —(hy — h3)| +b=e* =0,
( )q . q( 4 —hs) 7
that is,
(3.11) (1+ ah\uqq + ag[u'q — ¢'v + uq(hly — hj)] + bug*e® = 0,

then it can be verified that the term ah’uqg would have a higher degree of z than
all the other terms in , we obtain a = 0, which is impossible.

Subcase 1.2.2. degh = 1.

Noting that degv = deg h, so we have degv = 1. Suppose that h(z) = a1z + ao,
v(z) = v1z + vg, from and (3.7)), we have
(3.12)

{[d® + ad(d’ + day)]e® + bdde®*t*1¢} 2912 + {qde@T@1eta0 — et} e = (.

Since 1 = degh > deg @, we have @ is a non-zero constant, by Lemma we get

d+ a(d + day) + bde™“ = 0,
(3.13) _
qdcs —ucy =0,

where ¢z = e@tactao ¢, — ¢ by the second equation of (3.13)), we get d = 4 % is

c3 q
a rational function, then by the first equation of (3.13)), we have 1+ aaj +be® ¢ =0
as z — 00.
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Thus, we get f(z) = d(z)e®#, where d(2) = & Z((z:g , ag, a1 (# 0) are constants
satisfying 1 + aa; + be® ¢ = 0.

Case 2. p(f) = degQ > degv. Suppose that Q(2) = by, 2™ + by_12™ L+ -0+ |
where by, # 0. From (3.4)) we have

(3.14) {[d® + ad(d + dW)]e" + bdde" } e2am=" 4 gdels elamTom)z™ — yev

where hg = (a;mc+ am—1 +bp_1)2™ 1+ is a polynomial with degree at most
m — 1, and hq, ho are defined as in Subcase 1.1.

If b,, # +a,,, combining with p(d') = p(d) = p(d) < m, by using Lemmato
, we get u = 0, which yields a contradiction.

If b,, = a,,, then can be reduced to

{[d* + ad(d' + dh')]e™ + bdde"* + qde" } 24" = ye?,

by using Lemma we have v = 0, a contradiction.

Thus, we have

(3.15) b, = —ap,.
Rewriting (3.14) as
(3.16) {[d* + ad(d’ + dh')]e™ + bdde">} e***" = ue® — qde™.

Similarly as above, by Lemma [2.1] we get
d® 4 ad(d’ + dh') + bdde™ = 0,
qde"s — ue’ = 0.

By the second equation of (3.17)), we get

(3.17)

(3.18) d= gehﬁ—”.

Subcase 2.1. degh > 2.

Firstly, we claim that hg — v is a non-constant polynomial. Otherwise, if hg — v
is a constant, then d reduces to a rational function, by the first equation of
and Lemma we have d = 0, a contradiction.

Secondly, we claim that hg — U + hs is a non-constant polynomial. Substituting

(3.18) into the first equation of (3.17), we get

! ] 27 — —
(3.19) {(1 + aﬁ)B +a (u> + g(hg —') } eho—v 4 pLhe—ths _ .
q q q q

If hg — U + hs is a constant, say c5. Then ([3.19) becomes

/ —
<u> + E(h% —u)| petTv 4 b et = 0,
\a) "4 ] q

{(1—|—ah’)z +a

that gives uw = 0, a contradiction.
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Thus, we get hg —v and hg — T+ hs are non-constant polynomials. If hg — T+ hs —
(he — v) is not a constant, by (3.19) and Lemmal[2.1} we have 7 = 0, a contradiction.
If h¢ — ¥+ hs — (hg — v) is a constant, say cg, by (3.19), we get

(5) v

(3.20) (1+ ah’)uqq + ag [u'q — q'u+ uq (hg — v')] + bug®e® =0,

(1+aﬁ)g+a +b%666 =0,

that is,

then it can be verified that the term ah’/uqg would have a higher degree of z than
all the other terms in , we obtain a = 0, which is impossible.

Subcase 2.2. degh = 1.

Noting that deg @ = p(f) = degh, so we have deg@ = degh = 1. Suppose that

h(z) = a1z + ag, Q(z) = b1z + by, from (3.4) and (3.15)), we have
(3.21) {[d® + ad(d’ + day)]e*® + bdde®*+*1¢} 2912 4+ gde e To0Tbo = yev.

Since 1 = degh > degwv, we have v is a non-zero constant, by Lemma [2.1] we get

d+ a(d + day) + bde® ¢ =0,
(3.22) _
qdcr — ucg =0,

where c; = e®1¢t@0+bo co — ¢V by the second equation of (3.22), we get d = <% is

c7 q
a rational function, then by the first equation of (3.22)), we have 1+ aa; +be® ¢ =0
as z — 0.

Thus f(z) = d(z)e™*T%  where d(z) = %28:3, ap,a1(# 0) are constants

satisfying 1 + aa; + be* ¢ = 0.
Case 3. p(f) < degQ, then we have T(r, f) = S(r,e?). Thus we get T(r, f') =
S(r,e?) from Lemma and T(r, f) = S(r,e?) from Lemma Therefore, by

, we have
T(r,e?) + S(r,e?) = T(r, f> + flaf +bf) + qfe?)
=T(r,ue’) =T(r,e") + S(r,e").
Therefore, deg @@ = degv. Differentiating yields
(3.23) 2ff + f'(af' +bf) + flaf” +bF) + Ae? = (u' + uv')e”,
with A =¢'f +qf +qfQ".
Eliminating e from and to get
(3.24) B1e® + By =0,
where

By = uA — qf (u' + w'),
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By =2uff +uf'(af +bf) +uflaf’+bf") — (u' +ud)[f* + f(af +bf)].

Noticing that p(f) = p(f) < deg@, and p(f") = p(f') = p(f) < deg@Q from
Lemma[2.4] thus by Lemma we get By = By = 0. It follows from B; = 0 that

q/ f /_ul ’
q+?+Q_u+v’

by integrating, we have qfe? = cque?, where c¢g is a non-zero constant.
Subcase 3.1. ¢y = 1. By substituting ¢fe? = ue’ into (3.2)), we see that

(3.25) f+af +bf=0.

Subcase 3.1.1. degh > 2. Then degv = deg@ > p(f) = degh > 2. By
substituting f = %e”_Q into (3.25]), we can get

(u)/ + y(v' - Q’)] } e’ 4 b%eﬂ_a =0.

q q

(3.26) {u ta

q

If v — Q — (v — Q) is a constant, say c10. Then (3.26]) becomes

!/ —
“ha (u) + 20 = Q)| +bzeto =0,
q q q q
that is,
(3.27) uqq + aglu'q — q'u+uq(v' — Q)] + biig”e = 0,

we claim that v/ — Q' is not a constant, otherwise v — () is linear, then degh =
o(f) = p(f) = p(e’=%) = 1, which contradicts with degh > 2. It can be verified
that the term augq(v’' — Q') would have a higher degree of z than all the other terms
in 7 we obtain a = 0, which is impossible.

If v — Q — (v — Q) is not a constant, by and Lemma we have u = 0,

a contradiction.
Subcase 3.1.2. degh = 1.
By substituting f = de” into (3.25)), we can get

(3.28) [d+ a(d + di')]e" + bde" =0,

substituting h(z) = a1z + ao into (3.28)), we have

d d
Noting that p(d) < p(f) = degh = 1, by Lemma 2.5, we have 1 + aa; + be™¢ = 0
as z — 00.
Thus f(z) = d(z)e** T where d(z) is an entire function with p(d) < 1, ag, a1 (#
O) are constants satisfying 1 + aa; + be*¢ = 0.
Subcase 3.2. ¢g # 1.

d’ d
1+a < +a1> + bh—e®¢ =0.
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In this case, we have f = co%e’~ . By substituting it into (3.2), we get

2 /
{63112 + acgy [(u) _1_2(1)/ _ Q/):| } 62(1J—Q)

we can easily get v — @ is not a constant because f is transcendental, and so
7 — @+ v — Q is not a constant.
If v — Q — (v— Q) is a constant, say c1;. Then (3.29) becomes

2 /!
QU QU (u> uw,, ,
G— tacg— (=] + =" -Q
9q2 9(][ q (]( )

Since deg Q = degv > p(f) = deg(v — @), we can easily deduce a contradiction by
the fact that cg # 1 and w # 0.

If 1—Q — (v—Q) is not a constant, note that deg Q@ = degv > p(f) = deg(v—Q),
50 T—2(v—Q) and v — Q — Q are not constants, by Lemma we can also deduce
a contradiction by the fact that cg # 1 and @ # 0.

The proof of Theorem is now completed.

+ begert 32 = (1 — co)ue’2v=Q),
q4q

4. PROOF OF THEOREM

Suppose that f is a transcendental entire solution with finite order of equation
(1.7) with A(f) < p(f). Then, by the Hadamard factorization theorem, we can

factorize f(z) as
(4.1) f(2) = d(2)e"®),

where h is a polynomial with degh = p(f), d is the canonical products formed by
zeros of f with p(d) = A(f) < p(f). Similarly as in the proof of Theorem [1.4] we
have p(f) = degh > 1.

We rewrite ([1.7) as
(4.2) F A PN af + bF) 4 qef = pret 4 pae??,

where f = f(z + c), for simplicity.
By substituting (4.1]) into (4.2)), we get
(4.3)  d"d + a(d + dh)]e™ + bdd" eI 4 gqdeQth — p Mz 4 pyetez,

Case 1. degh > 2.
Subcase 1.1. deg(Q + h) < 1. Rewriting (4.3) as:

(4.4)  d"d + a(d + dW)]e™ + bdd"Le(m DAt — g eME y poerez g deQth
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Denote that o = pie*? + pge*?® — quQ+E, since p(f) = degh > 2, we have
T(r,a) = S(r,e"). Next, we claim that a # 0. Otherwise, (4.4)) reduces to

d+ a(d + dh') + bde" " = 0,
it implies d = 0 because deg h > 2, a contradiction.
From (4.4)), we have
. “ld+a(d + e +bdd" el O
(4.5) d"d + a(d + dh')]e"" + bdd" el DR

Obviously, d"~1[d+a(d' +dh')] # 0. Otherwise, if d*~*[d+ a(d’' +dh’)] = 0, we will
have d = Cie” =", so p(d) = degh = p(f), which contradicts with the fact that
p(d) < p(f). Then from (4.5) and Lemma we get

— 1 — 1
nh nh nhy __ nh
T(r,e"™) < N(r.e )+N(T, e”h) +N(T, e(nl)h+h> +8(r, ™) = S(r,e™),

a contradiction.

Subcase 1.2. deg(Q + h) > 2. Dividing both sides of (4.3 by p2e*2?, we obtain

4
(4.6) S fi=
j=1
where
fl — dn_l[d+ a(d/ + dh‘/)]enh—)\gz7 f2 — badn_le(n—l)h—i—ﬁ—)\gz7
P2 P2
f3 — ﬂeQ-ﬁ-E—)\zz’ f4 _ _]ﬂe/hz—)\zz.
b2 p2
Since deg(nh — Agz) > 2, deg((n — 1)h + h — X22) > 2, deg(Q + h — Ag2) > 2
A1 # Ag, it is obvious to see f;(j = 1,2,3,4) are not constants. Thus, we deduce:

-

()20l () () o

)+ O(lOg’I“) = 0( (7", fj))7 (] = 13273)7

J

and
4
Y N(r,f;) < Ologr) = o(T(r, f;)),(j = 1,2,3),
j=1
asr € I and r — oc.
Thus by and Lemma we deduce f; = g; eM#=A22 = 1 which is
impossible.
Case 2. degh = 1. In this case, we claim that deg @ = 1. Otherwise, suppose

that deg @ > 2, by (1.7)), we obtain ¢fe® = H, where

H = p1eM* + pae*?® — f* — " Haf' +bf).
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Note that p(f) = p(f") = p(f) = degh = 1 < deg@, then by combining with

Lemma we get ¢f = H =0, a contradiction. So we have deg Q = degh = 1.
Set h(z) = A1z + B1, Q(z) = Agz + By, where A;(# 0), A3(# 0) and By, By are

constants. By substituting these into and dividing both sides by p.e*2?, we

have

(4.7) hi+f+fz=1,
where
fi= —Pleu-rz
P2
by o e"Brd"d + a(d + dh') + bde?1°] e(nAI=A2)z.
D2
S, Aic+B1+B
fs= gdeAretBit 26(A1+A2_/\2)z.
P2

Obviously, fi is not a constant since A\; # Ay. We set
T(’F) = maX{T(r7 fl)a T(’f’, f2)7 T('F, f&)} = T(T, ez).

Since p(d) < 1, then we have
N ( J}) N ( 1) N ( 1) < O(T(r.d)) + O(logr) = o(T(r),
1 2 3

and
N(T, fl) +N(T7 f2) + N(T’ f3) < O(logr) = O(T(T))a

as r — 0o. Therefore, by using Lemma [2.7] we can deduce that fo =1 or f3 = 1. If
fo =1, that is

(4.8) e"Bra" =t [d + a(d + dh') + bder€] e TA)E = .

We assert that 4; = % Otherwise, suppose that A; # %, then from p(d’') =
p(d) < 1 = deg[(nA; — A2)z], by using Lemma to (4.8), we get po = 0, a

contradiction. Thus h = ’)72,2 + B;. By substituting it into (4.8)), we have
n—1 / >\2 — A2, —nB
(4.9) d d+al|d +d— | +bden | =pre "7t
n

Next, we assert that d is a constant. Otherwise, if d is a non-constant entire
function, then from (4.9) we get that 0 is a Picard exceptional value of d. Thus

«

by Lemma [2.8] we have d = e, where a is a non-constant polynomial, which

contradicts with the assumption that p(d) < 1. So we have that d is a non-zero
constant, and (4.9)) reduces to
by A
dmen P (1 +a22 4+ ben26> = pa.
n
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Therefore,

f(z) = de"®) = dePres = P2 e,

Ao
n 4+ aly + nbew ©

Moreover, from f, = 1 and (4.7)), we also have f; + f3 = 0. That is

53 Aic+B1+B A1+A2)z A1z
qde 1 1 26( 1 2) = pie 17

which implies that

where By satisfies p; = ¢ (

AQZ)\lfAl:/\l*%, ie. Q(Z): <>\1>7;2>Z+B2,

1
n n Az B
D2 e ctB2,

c

A2
n+ais+nbe n

If f3 =1, by using the similar methods as in the case fo =1, we get

npi A
f(z) = - e,
n+ aly + nben €

then from (4.7) we have f; + fo = 0. This gives that

Qz) = (M - );Ll) z + Bo,

1

. oAy
where By satisfies ps = ¢ (m) en ¢tB2,
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