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Abstract. We describe transcendental entire solutions of certain nonlinear difference-differential
equations of the forms:

f(z)2 + f(z)[af ′(z) + bf(z + c)] + q(z)eQ(z)f(z + c) = u(z)ev(z),

and
f(z)n + f(z)n−1[af ′(z) + bf(z + c)] + q(z)eQ(z)f(z + c) = p1e

λ1z + p2e
λ2z ,

where q(z), Q(z), u(z), v(z) are non-zero polynomials, a, b, c, pi, λi(i = 1, 2) are non-zero constants
such that λ1 ̸= λ2. Our results are improvements and complements of Li et al. ([8]). Some examples
are given to illustrate our results are accurate.
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1. Introduction and main results

Considering a meromorphic function f in the complex plane C, we assume

that the reader is familiar with the fundamental results and standard notation

of Nevanlinna theory, such as the proximity function m(r, f), the counting function

N(r, f), and the characteristic function T (r, f), see, e.g., [3, 6, 18]. We denote

by S(r, f) any real function of growth o(T (r, f)) as r → ∞ outside of a possible

exceptional set of finite logarithmic measure. A meromorphic function α is said to

be a small function of f , if T (r, α) = S(r, f).

In 1964, Hayman [3] considered the following non-linear differential equation

(1.1) f(z)n +Qd(f(z)) = g(z),

where Qd(f) is a differential polynomial in f with degree d and obtained the

following result.
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(No. IRT1264) and The Fundamental Research Funds of Shandong University (No.2017JC019).
The work of authors were partially supported by and The Fundamental Research Funds of
Shandong University (No.2017JC019), PCSIRT (No. IRT1264).
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Theorem 1.1. ([3]) Suppose that f(z) is a non-constant meromorphic function,

d ≤ n − 1, and f, g satisfy N(r, f) + N(r, 1
g ) = S(r, f) in (1.1). Then we have

g(z) = (f(z) + γ(z))n, where γ(z) is meromorphic and a small function of f(z).

Nowadays, there has been recent interest in connections between the Nevanlinna

theory and the difference operator, as well as meromorphic solutions of difference

and functional equations. Yang and Laine[16] then investigated finite order entire

solutions f of non-linear differential-difference equations of the form

f(z)n + L(z, f) = h(z),

where L(z, f) is a linear differential-difference polynomial in f with meromorphic

coefficients of growth S(r, f), h(z) is meromorphic, and n ≥ 2 is an integer. Many

authors have investigated this question by utilizing the Nevanlinna value distribution

theory and its difference counterparts, see, e.g., [5, 9, 10, 11, 13, 15].

In 2016, Liu [12] investigated and classified the finite order entire solutions of

the equation

(1.2) f(z)n + q(z)eQ(z)f (k)(z + c) = P (z),

where q(z), Q(z), P (z) are polynomials, n ≥ 2, k ≥ 1 are integers and c ∈ C\{0}.
Later, Chen [2] replaced P (z) in (1.2) by p1e

λ1 + p2e
λ2 , where p1, p2, λ1, λ2 are

non-zero constants, and studied its finite order entire solutions when n ≥ 3.

By observing all the above equations, it is easy to see that the left side of these

equations have only one dominant term fn. It is nature to ask what can we get if

the left side of these equations have two dominant terms. In 2021, Li [8] investigated

non-linear differential-difference equations which may have two dominated terms on

the left-hand side with the same degree:

(1.3) f(z)n + ωf(z)n−1f ′(z) + q(z)eQ(z)f(z + c) = P (z),

they replaced P (z) in (1.3) by u(z)ev(z) or p1eλ1 + p2e
λ2 respectively, and obtained

the following results.

Theorem 1.2. ([8]) Let c, ω̃ ̸= 0 be constants, q,Q, u, v be polynomials such that

Q, v are not constants and q, u ̸≡ 0. Suppose that f is a transcendental entire

solution with finite order of

(1.4) f(z)2 + ω̃f(z)f ′(z) + q(z)eQ(z)f(z + c) = u(z)ev(z),

satisfying λ(f) < ρ(f), then degQ = deg v, and one of the following relations holds:

(1) ρ(f) < degQ = deg v, and f = Ce
−z
ω̃

(2) ρ(f) = degQ = deg v.
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Theorem 1.3. ([8]) Suppose that n is a positive integer, ω is a constant and

c, λ1, λ2, p1, p2 are non-zero constants, q,Q are polynomials such that Q is not a

constant and q ̸≡ 0. If f is a transcendental entire solution with finite order of

(1.5) f(z)n + ωf(z)n−1f ′(z) + q(z)eQ(z)f(z + c) = p1e
λ1z + p2e

λ2z,

where λ2 ̸= ±λ1, then the following conclusions hold:

(1) If n ≥ 4 for ω ̸= 0 and n ≥ 3 for ω = 0, then every solution f satisfies

ρ(f) = degQ = 1.

(2) If n ≥ 1 and f is a solution of (1.5) with λ(f) < ρ(f), then

f(z) =

(
p2n

n+ ωλ2

) 1
n

e
λ2z
n , Q(z) =

(
λ1 −

λ2

n

)
z + b1,

or

f(z) =

(
p1n

n+ ωλ1

) 1
n

e
λ1z
n , Q(z) =

(
λ2 −

λ1

n

)
z + b2,

where b1, b2 ∈ C satisfy p1 = q
(

p2n
n+ωλ2

) 1
n

e
λ2c
n +b1 and p2 = q

(
p1n

n+ωλ1

) 1
n

e
λ1c
n +b2 ,

respectively.

In the following, inspired by the ideas of [8], we will investigate non-linear

differential-difference equations which may have three dominated terms on the left-

hand side of (1.4) and (1.5) and obtain the following results.

Theorem 1.4. Let a, b, c be non-zero constants, q,Q, u, v be polynomials such that

q, u ̸≡ 0. Suppose that f is a transcendental entire solution with finite order of

(1.6) f(z)2 + f(z)[af ′(z) + bf(z + c)] + q(z)eQ(z)f(z + c) = u(z)ev(z),

satisfying λ(f) < ρ(f), then one of the following relations holds:

(1) If ρ(f) > degQ, then ρ(f) = deg v = 1, Q reduces to a constant, and

f(z) = d(z)ea1z, where d(z) = C2u(z−c)
C1q(z−c) , here C1 = eQ+a1c, C2 = ev0 , a1, v0 are

constants satisfying 1 + aa1 + bea1c = 0.

(2) If ρ(f) = degQ > deg v, then ρ(f) = degQ = 1, v reduces to a constant,

and f(z) = d(z)ea1z, where d(z) = C4u(z−c)
C3q(z−c) , here C3 = eb0+a1c, C4 = ev, a1, b0 are

constants satisfying 1 + aa1 + bea1c = 0.

(3) If ρ(f) < degQ, then ρ(f) = 1,deg v = degQ, f(z) = d(z)ea1z, where d(z)

is an entire function with ρ(d) < 1, a1 is a non-zero constant satisfying 1 + aa1 +

bea1c = 0.

We exhibit some examples to show the existence of solutions in Theorem 1.4.
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Example 1.1. f(z) = zez is a transcendental entire solution of the following

differential-difference equation

f(z)2 + f(z)

[
f ′(z)− 2e−

1
2 f

(
z +

1

2

)]
+ f

(
z +

1

2

)
=

(
z +

1

2

)
ez+

1
2 .

Here a = 1, b = −2e−
1
2 , v(z) = z + 1

2 , and 0 = λ(f) < ρ(f) = 1. Then we have

deg v = ρ(f) = 1 > degQ = 0, and a1 = 1 satisfy 1 + aa1 + bea1c = 0.

Example 1.2. f(z) = zez is a transcendental entire solution of the following

differential-difference equation

f(z)2 + f(z)

[
f ′(z)− 2e−

1
2 f

(
z +

1

2

)]
+ e−zf

(
z +

1

2

)
=

(
z +

1

2

)
e

1
2 .

Here a = 1, b = −2e−
1
2 , Q(z) = −z, and 0 = λ(f) < ρ(f) = 1. Then we have

degQ = ρ(f) = 1 > deg v = 0, and a1 = 1 satisfy 1 + aa1 + bea1c = 0.

Example 1.3. f(z) = zez is a transcendental entire solution of the following

differential-difference equation

f(z)2 + f(z)

[
f ′(z)− 2e−

1
2 f

(
z +

1

2

)]
+ ez

2

f

(
z +

1

2

)
=

(
z +

1

2

)
ez

2+z+ 1
2 .

Here a = 1, b = −2e−
1
2 , Q(z) = z2, v(z) = z2 + z + 1

2 , and 0 = λ(f) < ρ(f) = 1.

Then we have 2 = degQ = deg v > ρ(f) = 1, and a1 = 1 satisfy 1+aa1+bea1c = 0.

Theorem 1.5. Let n is a positive integer, a, b, c, λi, pi(i = 1, 2) are non-zero

constants, q,Q are polynomials such that Q is not a constant and q ̸≡ 0. If f

is a transcendental entire solution with finite order of

(1.7) f(z)n + f(z)n−1 [af ′(z) + bf(z + c)] + q(z)eQ(z)f(z + c) = p1e
λ1z + p2e

λ2z,

satisfying λ(f) < ρ(f), then

f(z) =

(
p2n

n+ aλ2 + nbe
λ2
n c

) 1
n

e
λ2
n z, Q(z) = (λ1 −

λ2

n
)z +B2,

or

f(z) =

(
p1n

n+ aλ1 + nbe
λ1
n c

) 1
n

e
λ1
n z, Q(z) = (λ2 −

λ1

n
)z +B2,

where B2 ∈ C satisfy

p1 = q

(
p2n

n+ aλ2 + nbe
λ2
n c

) 1
n

e
λ2
n c+B2 or p2 =

(
p1n

n+ aλ1 + nbe
λ1
n c

) 1
n

e
λ1
n c+B2 ,

respectively.
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2. Some Lemmas

In order to prove results above, we need the following lemmas.

Lemma 2.1 ([18], Theorem 1.51). Let fj(z)(j = 1, · · · , n)(n ≥ 2) be meromorphic

functions, and let gj(z)(j = 1, · · · , n) be entire functions satisfying

(i)
∑n

j=1 fj(z)e
gj(z) ≡ 0;

(ii) when 1 ≤ j < k ≤ n, then gj(z)− gk(z) is not a constant;

(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, then

T (r, fj) = o
{
T
(
r, egh−gk

)}
(r → ∞, r ̸∈ E),

where E ⊂ (1,∞) is of finite linear measure or logarithmic measure.

Then, fj(z) ≡ 0 (j = 1, · · · , n).

Lemma 2.2 ([18], Theorem 1.62). Let f1, f2, · · · , fn be non-constant meromorphic

functions, and let fn+1 ̸≡ 0 be a meromorphic function such that
∑n+1

j=1 fj ≡ 1.

Suppose that there exists a subset I ∈ R+ with linear measure mesI = ∞, such

that:
n+1∑
i=1

N

(
r,

1

fi

)
+ n

n+1∑
i=1,i̸=j

N(r, fi) < (σ + o(1))T (r, fj), j = 1, 2, · · · , n,

as r ∈ I and r → ∞, where σ is a real number satisfying 0 ≤ σ < 1. Then,

fn+1 = 1.

Lemma 2.3 ([7], Theorem 3.1). Let f(z) be a meromorphic function with the

hyper-order less than one, and c ∈ C\{0}. Then we have

T (r, f(z + c)) = T (r, f(z)) + S(r, f).

Lemma 2.4 ([18], Theorem 1.21). Suppose that f(z) is meromorphic in the complex

plane and n is a positive integer. Then f(z) and f (n)(z) have the same order.

Lemma 2.5 ([1], Lemma 3.3). Let g be a transcendental meromorphic function of

order less than 1, and let h be a positive constant. Then there exists an ε-set E such

that as C\E ∋ z → ∞, one has

g′(z + η)

g(z + η)
→ 0,

g(z + η)

g(z)
→ 1

uniformly in η for | η |≤ h. Further, the ε-set E may be chosen so that for large z

not in E, the function g has no zeros or poles in | ζ − z |≤ h.

Lemma 2.6 ([17], Lemma 1). Let f1 and f2 be two meromorphic functions, and let

a, b1, b2 be small functions of f1 and f2 satisfying ab1b2 ̸≡ 0 and b1f1 + b2f2 = a.
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Then one has

T (r, f1) ≤ N(r, f1) +N

(
r,

1

f1

)
+N

(
r,

1

f2

)
+ S(r, f1).

Lemma 2.7 ([18], Theorem 1.57). Let fj(z), j = 1, 2, 3 be meromorphic functions

and f1(z) is not a constant. If
∑3

j=1 fj(z) ≡ 1, and

3∑
j=1

N

(
r,

1

fj

)
+ 2

3∑
j=1

N(r, fj) < (λ+ o(1))T (r), r ∈ I,

where λ < 1, T (r) = max1≤j≤3{T (r, fj)} and I represents a set of r ∈ (0,∞) with

infinite linear measure. Then f2 ≡ 1 or f3 ≡ 1.

Lemma 2.8 ([18], Theorem 1.42, Theorem 1.44). Let f(z) be a non-constant

meromorphic function in the complex plane. If 0,∞ are Picard exceptional values

of f(z), then f(z) = eh(z), where h(z) is a non-constant entire function. Moreover,

f(z) is of normal growth, and

(i) if h is a polynomial of degree p, then ρ(f) = p;

(ii) if h is a transcendental entire function, then ρ(f) = ∞.

Lemma 2.9 ([18], Theorem 1.22). Suppose f(z) is a non-constant meromorphic

function in the complex plane and k is a positive integer, and let Ψ(z) =
k∑

i=0

ai(z)f
(i)(z),

where a1(z), a2(z), · · · , ak(z) are small functions of f(z). Then

T (r,Ψ) ≤ T (r, f) + kN(r, f) + S(r, f).

3. Proof of Theorem 1.4

Let f be a transcendental entire solution with finite order of equation (1.6)

satisfying λ(f) < ρ(f). Then, by the Hadamard factorization theorem, we can

factorize f(z) as

(3.1) f(z) = d(z)eh(z),

where h is a polynomial with deg h = ρ(f), d is the canonical product formed by

zeros of f with ρ(d) = λ(f) < ρ(f). Obviously, h is a non-constant polynomial.

In fact, if h is a constant, then from (3.1), we will have ρ(f) = ρ(d) = λ(f), a

contradiction. Thus we have that deg h ≥ 1. Let deg h = m(≥ 1), and h(z) =

amzm + am−1z
m−1 + · · · , where am ̸= 0.

We rewrite (1.6) as

(3.2) f2 + f(af ′ + bf) + qeQf = uev,

where f = f(z + c), for simplicity.
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Obviously, we have ρ(f) = ρ(f) = ρ(f ′) by Lemma 2.3 and Lemma 2.4. So from

(3.2), by the order property, we get

(3.3)
deg v = ρ(uev) ≤ max{ρ(f ′) = ρ(f) = ρ(f), ρ(eQ), ρ(q)}

= max{deg h,degQ}.
By substituting (3.1) into (3.2), we get

(3.4)
[
d2 + ad(d′ + dh′)

]
e2h + bddeh+h + qdeQ+h = uev.

Case 1. ρ(f) > degQ, then we have deg h > degQ, and deg v ≤ deg h from (3.3).

Subcase 1.1. deg h > deg v. From (3.4) we have

(3.5)
{[
d2 + ad(d′ + dh′)

]
eh1 + bddeh2

}
e2amzm

+ qdeh3eamzm

= uev,

where h1 = 2am−1z
m−1 + · · · , h2 = (2am−1 + ammc)zm−1 + · · · and h3 = Q +

(ammc + am−1)z
m−1 + · · · are all polynomials with degree at most m − 1. So,

combining with ρ(d′) = ρ(d) = ρ(d) < m, by using Lemma 2.1 to (3.5), we have

qd ≡ 0, which yields a contradiction. Thus deg h > deg v can not hold.

Subcase 1.2. deg h = deg v. Let v(z) = vmzm+vm−1z
m−1+ · · · , where vm ̸= 0.

From (3.4) we have

(3.6)
{[
d2 + ad(d′ + dh′)

]
eh1 + bddeh2

}
e2amzm

+ qdeh3eamzm

= ueh4evmzm

,

where h4 = vm−1z
m−1 + · · · is a polynomial with degree at most m− 1, h1, h2 and

h3 are defined as in Subcase 1.1.

If vm ̸= 2am and vm ̸= am, combining with ρ(d′) = ρ(d) = ρ(d) < m, by using

Lemma 2.1 to (3.6), we get u ≡ 0, a contradiction.

If vm = 2am, then (3.6) can be reduced to{[
d2 + ad(d′ + dh′)

]
eh1 + bddeh2 − ueh4

}
e2amzm

+ qdeh3eamzm

= 0,

by using Lemma 2.1, we have qd ≡ 0, a contradiction. Thus, we have

(3.7) vm = am.

Rewriting (3.6) as{[
d2 + ad(d′ + dh′)

]
eh1 + bddeh2

}
e2amzm

+ (qdeh3 − ueh4)eamzm

= 0.

Similarly as above, by Lemma 2.1, we get{
[d2 + ad(d′ + dh′)]eh1 + bddeh2 ≡ 0,

qdeh3 − ueh4 ≡ 0.

By observing the expressions of h1 and h2, we have h2 = h1 + h5, where h5 =

ammczm−1 + · · · . Noting that d ̸≡ 0, then above equations can be rewrote as

(3.8)

{
d+ a(d′ + dh′) + bdeh5 ≡ 0,

qdeh3 − ueh4 ≡ 0.
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By the second equation of (3.8), we get

(3.9) d =
u

q
eh4−h3 .

Subcase 1.2.1. deg h ≥ 2. Firstly, we claim that h4 − h3 is a non-constant

polynomial. In fact, if h4 − h3 is a constant, then d reduces to a rational function,

by the first equation of (3.8) and Lemma 2.1, we have d ≡ 0, a contradiction.

Secondly, we claim that h4 − h3 + h5 is a non-constant polynomial. Substituting

(3.9) into the first equation of (3.8), we get

(3.10)

{(
1 + ah′

) u
q
+ a

[(
u

q

)′

+
u

q
(h′

4 − h′
3)

]}
eh4−h3 + b

u

q
eh4−h3+h5 = 0.

If h4 − h3 + h5 is a constant, say c1. Then (3.10) becomes{
(1 + ah′)

u

q
+ a

[(
u

q

)′

+
u

q
(h′

4 − h′
3)

]}
eh4−h3 + b

u

q
ec1 = 0,

that gives u ≡ 0, a contradiction.

Thus, we get h4 − h3 and h4 − h3 + h5 are non-constant polynomials. If h4 −
h3 + h5 − (h4 − h3) is not a constant, by (3.10) and Lemma 2.1, we have u ≡ 0, a

contradiction. If h4 − h3 + h5 − (h4 − h3) is a constant, say c2, then (3.10) reduces

to

(1 + ah′)
u

q
+ a

[(
u

q

)′

+
u

q
(h′

4 − h′
3)

]
+ b

u

q
ec2 = 0,

that is,

(3.11) (1 + ah′)uqq + aq[u′q − q′u+ uq(h′
4 − h′

3)] + buq2ec2 = 0,

then it can be verified that the term ah′uqq would have a higher degree of z than

all the other terms in (3.11), we obtain a = 0, which is impossible.

Subcase 1.2.2. deg h = 1.

Noting that deg v = deg h, so we have deg v = 1. Suppose that h(z) = a1z + a0,

v(z) = v1z + v0, from (3.4) and (3.7), we have

(3.12){
[d2 + ad(d′ + da1)]e

2a0 + bdde2a0+a1c
}
e2a1z +

{
qdeQ+a1c+a0 − uev0

}
ea1z = 0.

Since 1 = deg h > degQ, we have Q is a non-zero constant, by Lemma 2.1, we get

(3.13)

{
d+ a(d′ + da1) + bdea1c ≡ 0,

qdc3 − uc4 ≡ 0,

where c3 = eQ+a1c+a0 , c4 = ev0 , by the second equation of (3.13), we get d = c4
c3

u
q is

a rational function, then by the first equation of (3.13), we have 1+aa1+ bea1c = 0

as z → ∞.
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Thus, we get f(z) = d(z)ea1z+a0 , where d(z) = c4
c3

u(z−c)
q(z−c) , a0, a1(̸= 0) are constants

satisfying 1 + aa1 + bea1c = 0.

Case 2. ρ(f) = degQ > deg v. Suppose that Q(z) = bmzm + bm−1z
m−1 + · · · ,

where bm ̸= 0. From (3.4) we have

(3.14)
{
[d2 + ad(d′ + dh′)]eh1 + bddeh2

}
e2amzm

+ qdeh6e(am+bm)zm

= uev,

where h6 = (ammc+ am−1 + bm−1)z
m−1 + · · · is a polynomial with degree at most

m− 1, and h1, h2 are defined as in Subcase 1.1.

If bm ̸= ±am, combining with ρ(d′) = ρ(d) = ρ(d) < m, by using Lemma 2.1 to

(3.14), we get u ≡ 0, which yields a contradiction.

If bm = am, then (3.14) can be reduced to{
[d2 + ad(d′ + dh′)]eh1 + bddeh2 + qdeh6

}
e2amzm

= uev,

by using Lemma 2.1, we have u ≡ 0, a contradiction.

Thus, we have

(3.15) bm = −am.

Rewriting (3.14) as

(3.16)
{
[d2 + ad(d′ + dh′)]eh1 + bddeh2

}
e2amzm

= uev − qdeh6 .

Similarly as above, by Lemma 2.1, we get

(3.17)

{
d2 + ad(d′ + dh′) + bddeh5 ≡ 0,

qdeh6 − uev ≡ 0.

By the second equation of (3.17), we get

(3.18) d =
u

q
eh6−v.

Subcase 2.1. deg h ≥ 2.

Firstly, we claim that h6 − v is a non-constant polynomial. Otherwise, if h6 − v

is a constant, then d reduces to a rational function, by the first equation of (3.17)

and Lemma 2.1, we have d ≡ 0, a contradiction.

Secondly, we claim that h6 − v + h5 is a non-constant polynomial. Substituting

(3.18) into the first equation of (3.17), we get

(3.19)

{
(1 + ah′)

u

q
+ a

[(
u

q

)′

+
u

q
(h′

6 − v′)

]}
eh6−v + b

u

q
eh6−v+h5 = 0.

If h6 − v + h5 is a constant, say c5. Then (3.19) becomes{
(1 + ah′)

u

q
+ a

[(
u

q

)′

+
u

q
(h′

6 − v′)

]}
eh6−v + b

u

q
ec5 = 0,

that gives u ≡ 0, a contradiction.
97



L. L. WU, M. L. LIU, P. C. HU

Thus, we get h6−v and h6−v+h5 are non-constant polynomials. If h6−v+h5−
(h6 − v) is not a constant, by (3.19) and Lemma 2.1, we have u ≡ 0, a contradiction.

If h6 − v + h5 − (h6 − v) is a constant, say c6, by (3.19), we get

(1 + ah′)
u

q
+ a

[(
u

q

)′

+
u

q
(h′

6 − v′)

]
+ b

u

q
ec6 = 0,

that is,

(3.20) (1 + ah′)uqq + aq [u′q − q′u+ uq (h′
6 − v′)] + buq2ec6 = 0,

then it can be verified that the term ah′uqq would have a higher degree of z than

all the other terms in (3.20), we obtain a = 0, which is impossible.

Subcase 2.2. deg h = 1.

Noting that degQ = ρ(f) = deg h, so we have degQ = deg h = 1. Suppose that

h(z) = a1z + a0, Q(z) = b1z + b0, from (3.4) and (3.15), we have

(3.21)
{
[d2 + ad(d′ + da1)]e

2a0 + bdde2a0+a1c
}
e2a1z + qdea1c+a0+b0 = uev.

Since 1 = deg h > deg v, we have v is a non-zero constant, by Lemma 2.1, we get

(3.22)

{
d+ a(d′ + da1) + bdea1c ≡ 0,

qdc7 − uc8 ≡ 0,

where c7 = ea1c+a0+b0 , c8 = ev, by the second equation of (3.22), we get d = c8
c7

u
q is

a rational function, then by the first equation of (3.22), we have 1+aa1+ bea1c = 0

as z → ∞.

Thus f(z) = d(z)ea1z+a0 , where d(z) = c8
c7

u(z−c)
q(z−c) , a0, a1(̸= 0) are constants

satisfying 1 + aa1 + bea1c = 0.

Case 3. ρ(f) < degQ, then we have T (r, f) = S(r, eQ). Thus we get T (r, f ′) =

S(r, eQ) from Lemma 2.9 and T (r, f) = S(r, eQ) from Lemma 2.3. Therefore, by

(3.2), we have

T (r, eQ) + S(r, eQ) = T (r, f2 + f(af ′ + bf) + qfeQ)

= T (r, uev) = T (r, ev) + S(r, ev).

Therefore, degQ = deg v. Differentiating (3.2) yields

(3.23) 2ff ′ + f ′(af ′ + bf) + f(af ′′ + bf ′) +AeQ = (u′ + uv′)ev,

with A = q′f + qf ′ + qfQ′.

Eliminating ev from (3.2) and (3.23) to get

(3.24) B1e
Q +B2 = 0,

where

B1 = uA− qf(u′ + uv′),

98



SOME RESULTS ON NONLINEAR DIFFERENCE- ...

B2 = 2uff ′ + uf ′(af ′ + bf) + uf(af ′′ + bf ′)− (u′ + uv′)[f2 + f(af ′ + bf)].

Noticing that ρ(f) = ρ(f) < degQ, and ρ(f ′′) = ρ(f ′) = ρ(f) < degQ from

Lemma 2.4, thus by Lemma 2.1, we get B1 ≡ B2 ≡ 0. It follows from B1 ≡ 0 that

q′

q
+

f ′

f
+Q′ =

u′

u
+ v′,

by integrating, we have qfeQ = c9ue
v, where c9 is a non-zero constant.

Subcase 3.1. c9 = 1. By substituting qfeQ = uev into (3.2), we see that

(3.25) f + af ′ + bf = 0.

Subcase 3.1.1. deg h ≥ 2. Then deg v = degQ > ρ(f) = deg h ≥ 2. By

substituting f = u
q e

v−Q into (3.25), we can get

(3.26)

{
u

q
+ a

[(
u

q

)′

+
u

q
(v′ −Q′)

]}
ev−Q + b

u

q
ev−Q = 0.

If v −Q− (v −Q) is a constant, say c10. Then (3.26) becomes

u

q
+ a

[(
u

q

)′

+
u

q
(v′ −Q′)

]
+ b

u

q
ec10 = 0,

that is,

(3.27) uqq + aq[u′q − q′u+ uq(v′ −Q′)] + buq2ec10 = 0,

we claim that v′ − Q′ is not a constant, otherwise v − Q is linear, then deg h =

ρ(f) = ρ(f) = ρ(ev−Q) = 1, which contradicts with deg h ≥ 2. It can be verified

that the term auqq(v′−Q′) would have a higher degree of z than all the other terms

in (3.27), we obtain a = 0, which is impossible.

If v −Q− (v −Q) is not a constant, by (3.26) and Lemma 2.1, we have u ≡ 0,

a contradiction.

Subcase 3.1.2. deg h = 1.

By substituting f = deh into (3.25), we can get

(3.28) [d+ a(d′ + dh′)]eh + bdeh = 0,

substituting h(z) = a1z + a0 into (3.28), we have

1 + a

(
d′

d
+ a1

)
+ b

d

d
ea1c = 0.

Noting that ρ(d) < ρ(f) = deg h = 1, by Lemma 2.5, we have 1 + aa1 + bea1c = 0

as z → ∞.

Thus f(z) = d(z)ea1z+a0 , where d(z) is an entire function with ρ(d) < 1, a0, a1( ̸=
0) are constants satisfying 1 + aa1 + bea1c = 0.

Subcase 3.2. c9 ̸= 1.
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In this case, we have f = c9
u
q e

v−Q . By substituting it into (3.2), we get

(3.29)

{
c29

u2

q2
+ ac29

u

q

[(
u

q

)′

+
u

q
(v′ −Q′)

]}
e2(v−Q)

+bc29
u

q

u

q
ev−Q+v−Q = (1− c9)ue

v,

we can easily get v − Q is not a constant because f is transcendental, and so

v −Q+ v −Q is not a constant.

If v −Q− (v −Q) is a constant, say c11. Then (3.29) becomes

c29
u2

q2
+ ac29

u

q

[(
u

q

)′

+
u

q
(v′ −Q′)

]
+ bc29e

c11
u

q

u

q
= (1− c9)ue

v−2(v−Q).

Since degQ = deg v > ρ(f) = deg(v −Q), we can easily deduce a contradiction by

the fact that c9 ̸= 1 and u ̸≡ 0.

If v−Q−(v−Q) is not a constant, note that degQ = deg v > ρ(f) = deg(v−Q),

so v−2(v−Q) and v−Q−Q are not constants, by Lemma 2.1, we can also deduce

a contradiction by the fact that c9 ̸= 1 and u ̸≡ 0.

The proof of Theorem 1.4 is now completed.

4. Proof of Theorem 1.5

Suppose that f is a transcendental entire solution with finite order of equation

(1.7) with λ(f) < ρ(f). Then, by the Hadamard factorization theorem, we can

factorize f(z) as

(4.1) f(z) = d(z)eh(z),

where h is a polynomial with deg h = ρ(f), d is the canonical products formed by

zeros of f with ρ(d) = λ(f) < ρ(f). Similarly as in the proof of Theorem 1.4, we

have ρ(f) = deg h ≥ 1.

We rewrite (1.7) as

(4.2) fn + fn−1(af ′ + bf) + qeQf = p1e
λ1z + p2e

λ2z,

where f = f(z + c), for simplicity.

By substituting (4.1) into (4.2), we get

(4.3) dn−1[d+ a(d′ + dh′)]enh + bddn−1e(n−1)h+h + qdeQ+h = p1e
λ1z + p2e

λ2z.

Case 1. deg h ≥ 2.

Subcase 1.1. deg(Q+ h) ≤ 1. Rewriting (4.3) as:

(4.4) dn−1[d+ a(d′ + dh′)]enh + bddn−1e(n−1)h+h = p1e
λ1z + p2e

λ2z − qdeQ+h.
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Denote that α = p1e
λ1z + p2e

λ2z − qdeQ+h, since ρ(f) = deg h ≥ 2, we have

T (r, α) = S(r, eh). Next, we claim that α ̸≡ 0. Otherwise, (4.4) reduces to

d+ a(d′ + dh′) + bdeh−h ≡ 0,

it implies d ≡ 0 because deg h ≥ 2, a contradiction.

From (4.4), we have

(4.5) dn−1[d+ a(d′ + dh′)]enh + bddn−1e(n−1)h+h = α.

Obviously, dn−1[d+a(d′+dh′)] ̸≡ 0. Otherwise, if dn−1[d+a(d′+dh′)] ≡ 0, we will

have d = C1e
− z

a−h, so ρ(d) = deg h = ρ(f), which contradicts with the fact that

ρ(d) < ρ(f). Then from (4.5) and Lemma 2.6, we get

T (r, enh) ≤ N(r, enh) +N

(
r,

1

enh

)
+N

(
r,

1

e(n−1)h+h

)
+ S(r, enh) = S(r, enh),

a contradiction.

Subcase 1.2. deg(Q+h) ≥ 2. Dividing both sides of (4.3) by p2e
λ2z, we obtain

(4.6)
4∑

j=1

fj = 1,

where

f1 =
dn−1[d+ a(d′ + dh′)]

p2
enh−λ2z, f2 =

bddn−1

p2
e(n−1)h+h−λ2z,

f3 =
qd

p2
eQ+h−λ2z, f4 = −p1

p2
eλ1z−λ2z.

Since deg(nh − λ2z) ≥ 2, deg((n − 1)h + h − λ2z) ≥ 2, deg(Q + h − λ2z) ≥ 2,

λ1 ̸= λ2, it is obvious to see fj(j = 1, 2, 3, 4) are not constants. Thus, we deduce:

4∑
j=1

N

(
r,

1

fj

)
≤ O

(
N

(
r,
1

d

))
+O

(
N

(
r,
1

d

))
+O(log r)

≤ O(T (r, d)) +O(log r) = o(T (r, fj)), (j = 1, 2, 3),

and
4∑

j=1

N(r, fj) ≤ O(log r) = o(T (r, fj)), (j = 1, 2, 3),

as r ∈ I and r → ∞.

Thus by (4.6) and Lemma 2.2, we deduce f4 = p1

p2
eλ1z−λ2z ≡ 1, which is

impossible.

Case 2. deg h = 1. In this case, we claim that degQ = 1. Otherwise, suppose

that degQ ≥ 2, by (1.7), we obtain qfeQ = H, where

H = p1e
λ1z + p2e

λ2z − fn − fn−1(af ′ + bf).
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Note that ρ(f) = ρ(f ′) = ρ(f) = deg h = 1 < degQ, then by combining with

Lemma 2.1, we get qf ≡ H ≡ 0, a contradiction. So we have degQ = deg h = 1.

Set h(z) = A1z +B1, Q(z) = A2z +B2, where A1(̸= 0), A2( ̸= 0) and B1, B2 are

constants. By substituting these into (4.3) and dividing both sides by p2e
λ2z, we

have

(4.7) f1 + f2 + f3 = 1,

where
f1 = −p1

p2
e(λ1−λ2)z,

f2 =
enB1dn−1[d+ a(d′ + dh′) + bdeA1c]

p2
e(nA1−λ2)z,

f3 =
qdeA1c+B1+B2

p2
e(A1+A2−λ2)z.

Obviously, f1 is not a constant since λ1 ̸= λ2. We set

T (r) = max{T (r, f1), T (r, f2), T (r, f3)} = T (r, ez).

Since ρ(d) < 1, then we have

N

(
r,

1

f1

)
+N

(
r,

1

f2

)
+N

(
r,

1

f3

)
≤ O(T (r, d)) +O(log r) = o(T (r)),

and

N(r, f1) +N(r, f2) +N(r, f3) ≤ O(log r) = o(T (r)),

as r → ∞. Therefore, by using Lemma 2.7, we can deduce that f2 ≡ 1 or f3 ≡ 1. If

f2 ≡ 1, that is

(4.8) enB1dn−1
[
d+ a(d′ + dh′) + bdeA1c

]
e(nA1−λ2)z = p2.

We assert that A1 = λ2

n . Otherwise, suppose that A1 ̸= λ2

n , then from ρ(d′) =

ρ(d) < 1 = deg[(nA1 − λ2)z], by using Lemma 2.1 to (4.8), we get p2 = 0, a

contradiction. Thus h = λ2

n z +B1. By substituting it into (4.8), we have

(4.9) dn−1

[
d+ a

(
d′ + d

λ2

n

)
+ bde

λ2
n c

]
= p2e

−nB1 .

Next, we assert that d is a constant. Otherwise, if d is a non-constant entire

function, then from (4.9) we get that 0 is a Picard exceptional value of d. Thus

by Lemma 2.8, we have d = eα, where α is a non-constant polynomial, which

contradicts with the assumption that ρ(d) < 1. So we have that d is a non-zero

constant, and (4.9) reduces to

dnenB1

(
1 + a

λ2

n
+ be

λ2
n c

)
= p2.
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Therefore,

f(z) = deh(z) = deB1e
λ2
n z =

(
np2

n+ aλ2 + nbe
λ2
n c

) 1
n

e
λ2
n z.

Moreover, from f2 ≡ 1 and (4.7), we also have f1 + f3 ≡ 0. That is

qdeA1c+B1+B2e(A1+A2)z = p1e
λ1z,

which implies that

A2 = λ1 −A1 = λ1 −
λ2

n
, i.e. Q(z) =

(
λ1 −

λ2

n

)
z +B2,

where B2 satisfies p1 = q

(
np2

n+aλ2+nbe
λ2
n

c

) 1
n

e
λ2
n c+B2 .

If f3 ≡ 1, by using the similar methods as in the case f2 ≡ 1, we get

f(z) =

(
np1

n+ aλ1 + nbe
λ1
n c

) 1
n

e
λ1
n z,

then from (4.7) we have f1 + f2 = 0. This gives that

Q(z) =

(
λ2 −

λ1

n

)
z +B2,

where B2 satisfies p2 = q

(
np1

n+aλ1+nbe
λ1
n

c

) 1
n

e
λ1
n c+B2 .
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