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Abstract. We consider polynomials of the form P (z) = zs
(
a0+

n−s∑
v=t

avzv
)
, t ≥ 1, 0 ≤ s ≤ n−1

and prove some results for the estimate of the polar derivative DαP (z) := nP (z) + (α− z)P ′(z)

and generalize the results due to Aziz and Shah [Indian J. Pure Appl. Math., 29(1998), 163-173],
Govil [J. Approx. Theory, 66(1991), 29-35] and others.
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1. Introduction

For each positive integer n, let Pn denote the linear space of all polynomials

P (z) :=

n∑
j=0

ajz
j of degree atmost n over the field C of complex numbers.

If P ∈ Pn and P ′ be its derivative, then concerning the estimate |P ′(z)|, in terms

of |P (z)| on |z| = 1, we have the following famous sharp result due to Bernstein [7].

(1.1) max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|.

Since equality holds in (1.1) if and only if P has all its zeros at the origin, it stands

natural to ask what happens to inequality (1.1), if we impose restrictions on the

location of zeros of P. In this connection the following inequalities are the earliest

belonging to this domain of ideas which have a clear impact on the subsequent work

carried forward since then.

If P ∈ Pn has all zeros in |z| ≥ 1, then

(1.2) max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|,

and if it has all zeros in |z| ≤ 1, then

(1.3) max
|z|=1

|P ′(z)| ≥ n

2
max
|z|=1

|P (z)|.

1The first and third authors are highly thankful to the funding agency DST- INSPIRE and
DST-Matrices programme for their financial support.
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Inequality (1.2) was conjectured by Erdös and latter verified by Lax [14], whereas

inequality (1.3) is due to Turán [16]. Inequality (1.2) was generalized by Malik [15]

to read as:

Theorem A. If P (z) is a polynomial of degree n, which does not vanish in

|z| < k, where k ≥ 1, then

max
|z|=1

|P ′(z)| ≤ n

1 + k
max
|z|=1

|P (z)|.

Govil [13] also generalized inequality (1.2) in a different way. More precisely he

proved the following.

Theorem B. If P (z) is a polynomial of degree n, such that P (z) ̸= 0 in |z| < k,

k ≤ 1, then

max
|z|=1

|P ′(z)| ≤ n

1 + kn
max
|z|=1

|P (z)|,

provided |P ′(z)| and |Q′(z)| attain their maxima at the same point on the unit

circle, where Q(z) = znP
(1
z

)
.

It is worth mentioning that the Bernstein inequality has been generalized in

different forms by replacing the underlying polynomial with more general class of

functions. These inequalities have their own importance in the theory of approximation.

The results we prove provide extensions, generalizations and refinements of various

differential inequalities for polynomials. Before proceeding for the main results, we

first define the polar derivative of a polynomial.

For a polynomial P (z) of degree n, the polar derivative of P (z) denoted by

DαP (z), is defined as

DαP (z) = nP (z) + (α− z)P ′(z).

It is to be observed that

lim
|α|→∞

∣∣∣∣∣DαP (z)

α

∣∣∣∣∣ = P ′(z).

Aziz [2] extended Theorem A to the polar derivative of a polynomial and proved

the following.

Theorem C. If P (z) is a polynomial of degree n, such that P (z) does not vanish

in |z| < k, k ≥ 1, then for every real or complex number α with |α| ≥ 1,

(1.4) max
|z|=1

|DαP (z)| ≤ n

(
k + |α|
1 + k

)
max
|z|=1

|P (z)|.

In this paper we prove.

Theorem 1.1. If P (z) is a polynomial of degree n, such that all zeros of P (z) lie

in |z| > k, k ≥ 1 with s-fold zero at the origin, 0 ≤ s < n, then for every real or
82
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complex number α with |α| ≥ 1,

(1.5) max
|z|=1

|DαP (z)| ≤

(
n(|α|+ k)

1 + k
+

sk(|α| − 1)

1 + k

)
max
|z|=1

|P (z)|.

The result is sharp for s = 0 and equality holds for the polynomial P (z) =

(z+ k)n. For s = 0, inequality (1.5) reduces to a result due to Aziz [2, Theorem 3]

whereas for s = n− 1, we have the following.

Corollary 1.1. If P (z) is a polynomial of degree n having all n − 1 zeros at the

origin and one zero in |z| > k, k ≥ 1, then for every α with |α| ≥ 1, we have

max
|z|=1

|DαP (z)| ≤ 1

1 + k

{(
n(1 + k)− k

)
|α|+ k

}
max
|z|=1

|P (z)|.

On dividing both sides of above inequality by |α| and letting |α| → ∞, we get

max
|z|=1

|P ′(z)| ≤

(
n− k

1 + k

)
max
|z|=1

|P (z)|.

Remark 1.1. Divide the two sides of inequality (1.5) by |α| and letting |α| → ∞,

we get a result due to Aziz and Shah [5].

Theorem 1.2. Let P (z) be a polynomial of degree n, such that all zeros of P (z)

lie in |z| > k, k ≤ 1 with s-fold zeros at the origin, then for every real or complex

number α with |α| ≥ 1

(1.6) max
|z|=1

|DαP (z)| ≤

(
n(|α|+ kn−s)

1 + kn−s
+

skn−s(|α| − 1)

1 + kn−s

)
max
|z|=1

|P (z)|,

provided |P ′(z)| and |Q′(z)| attain their maxima at the same point on the unit

circle, where Q(z) = znP
(1
z

)
.

The result is sharp for s = 0 and equality holds for the polynomial P (z) = zn+kn.

On dividing both sides of inequality (1.6) by |α| and letting |α| → ∞, it reduces

to a following result.

Corollary 1.2. Let P (z) be a polynomial of degree n, such that all zeros of P (z)

lie in |z| > k, k ≤ 1 with s-fold zeros at the origin, then for every real or complex

number α with |α| ≥ 1, then

max
|z|=1

|P ′(z)| ≤ n+ skn−s

1 + kn−s
max
|z|=1

|P (z)|,

provided |P ′(z)| and |nP (z)− zP ′(z)| attain their maximum at the same points on

|z| = 1.
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Remark 1.2. For s = 0, Theorem 1.2 reduces to a result due to Chanam [6,

Theorem 1].

Remark 1.3. By taking s = 0 and letting |α| → ∞ in (1.6), we get a result due

to Govil [13].

Theorem 1.3. If P (z) is a polynomial of degree n, such that all zeros of P (z) lie

in |z| < k, k ≤ 1, with s-fold zeros at the origin. Then for every real or complex

number α with |α| ≤ 1 and |z| = 1

(1.7)

max
|z|=1

|DαP (z)| ≤

(
n(k + |α|)

1 + k
+
sk(|α| − 1)

1 + k

)
max
|z|=1

|P (z)|−(n−s)
1− |α|

kn−1(1 + k)
min
|z|=k

|P (z)|.

The result is sharp for s = 0 and equality holds for the polynomial P (z) =

(z + k)n.

Remark 1.4. A result of Aziz and Shah [4, Theorem 3] follows from Theorem 1.3,

if we take s = 0.

Corollary 1.3. For α = 0, we get from (1.7),

|nP (z)− zP ′(z)| ≤ nk − sk

1 + k
max
|z|=1

|P (z)| − (n− s)
1

kn−1(1 + k)
min
|z|=k

|P (z)|.

If max
|z|=1

|P (z)| = |P (eiϕ)|, then from above inequality, we get the following improvement

of a result due to Aziz and Shah [5]

(1.8) max
|z|=1

|P ′(z)| ≥ n+ sk

1 + k
max
|z|=1

|P (z)|+ (n− s)

kn−1(1 + k)
min
|z|=k

|P (z)|.

We also prove the following results concerning the growth of polynomials.

Theorem 1.4. If P (z) = anz
n+

n∑
v=η

an−vz
n−v, 1 ≤ η < n is a polynomial of degree

n, having all zeros on |z| = k, k ≤ 1, then for every positive integer s

{
M(P, ρ)

}s ≤ kn−2η+1 + kn−η+1 + ρns − 1

kn−2η+1 + kn−η+1

{
M(P, 1)

}s
, ρ ≥ 1.

Remark 1.5. For η = 1, we get a result due to Dewan et .al [9, Theorem 1].

Also if we take η = s = k = 1, then Theorem 4 reduces to a result due to Ankeny

and Rivlin [1].
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Theorem 1.5. If P (z) = anz
n+

n∑
v=η

an−vz
n−v, 1 ≤ η < n is a polynomial of degree

n, having all zeros on |z| = k, k ≤ 1, then for every positive integer s{
M(P, ρ)

}s ≤ 1

kn−η+1
(
η|an−η|(1 + kη−1) + n|an|kη−1(1 + kη+1)

){
kn−η+1

(
η|an−η|(1 + kη−1) + n|an|kη−1(1 + kη+1)

)
+ (ρns − 1)

(
n|an|k2η + η|an−η|kη−1

)}{
M(P, 1)

}s
,

where ρ ≥ 1.

Remark 1.6. For η = 1, we get a result due to Dewan et al [9, Theorem 2].

2. Lemmas

Lemma 2.1. If P (z) = anz
n +

n∑
v=η

an−vz
n−v, 1 ≤ η < n is a polynomial of degree

n, having all zeros on |z| = k, k ≤ 1, then

max
|z|=1

|P ′(z)| ≤ n

kn−2η+1 + kn−η+1
max
|z|=1

|P (z)|.

The above Lemma is due to Dewan et al. [11].

Lemma 2.2. If P (z) = anz
n +

n∑
v=η

an−vz
n−v, 1 ≤ η < n is a polynomial of degree

n, having all zeros on |z| = k, k ≤ 1, then

max
|z|=1

|P ′(z)| ≤ n

kn−η+1

(
n|an|k2η + η|an−η|kη−1

η|an−η|(1 + kη−1) + n|an|kη−1(1 + kη+1)

)
max
|z|=1

|P (z)|.

Lemma 2.2 is due to Dewan and Hans [10].

We also need the following lemma which is a simple consequence of maximum

modulus principle.

Lemma 2.3. If P (z) is a polynomial of degree n, then for some ρ ≥ 1, we have

M(P, ρ) ≤ ρnM(P, 1),

where M(P, ρ) = max
|z|=ρ

|P (z)|.

Lemma 2.4. (see [6]). If P (z) is a polynomial of degree n, such that P (z) ̸= 0 in

|z| < k, k ≤ 1, then for every real or complex number α with |α| ≥ 1

max
|z|=1

|DαP (z)| ≤ n

(
kn + |α|
1 + kn

)
max
|z|=1

|P (z)|,

provided |P ′(z)| and |Q′(z)| attain their maxima at the same point on the unit

circle, where Q(z) = znP
(1
z

)
.
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Lemma 2.5. If P (z) is a polynomial of degree n, such that all zeros of P (z) lie in

|z| < k, k ≤ 1, then for every real or complex number α with |α| ≤ 1

max
|z|=1

|DαP (z)| ≤ n

{
k + |α|
1 + k

max
|z|=1

|P (z)| − 1− |α|
kn−1(1 + k)

min
|z|=k

|P (z)|

}
.

The above lemma is due to Aziz and Shah [4].

3. Proofs of theorems

Proof of Theorem 1.1. Since P (z) = zsϕ(z), where ϕ(z) is a polynomial of

degree n − s, which does not vanish in |z| < k. Applying inequality (1.4) to the

polynomial ϕ(z), we get

(3.1) max
|z|=1

|Dαϕ(z)| ≤ (n− s)

(
k + |α|
1 + k

)
max
|z|=1

|ϕ(z)|.

Since

DαP (z) = nP (z) + (α− z)P ′(z) = nzsϕ(z) + (α− z)(szs−1ϕ(z) + zsϕ′(z))

= zsDαϕ(z) + αszs−1ϕ(z),

where Dαϕ(z) = (n− s)ϕ(z) + (α− z)ϕ′(z).

Therefore,

zDαP (z) = zs+1Dαϕ(z) + αszsϕ(z).

Hence for |z| = 1, we have

max
|z|=1

|DαP (z)| ≤ max
|z|=1

|Dαϕ(z)|+ |α|smax
|z|=1

|ϕ(z)|.

Using max
|z|=1

|ϕ(z)| = max
|z|=1

|P (z)|, we get

(3.2) max
|z|=1

|DαP (z)| ≤ max
|z|=1

|Dαϕ(z)|+ |α|smax
|z|=1

|P (z)|.

Considering (3.1) in (3.2), we obtain

max
|z|=1

|DαP (z)| ≤ (n− s)

(
k + |α|
1 + k

)
max
|z|=1

|P (z)|+ |α|smax
|z|=1

|P (z)|.

Equivalently

max
|z|=1

|DαP (z)| ≤

(
n(|α|+ k)

1 + k
+

sk(|α| − 1)

1 + k

)
max
|z|=1

|P (z)|.

This completely proves Theorem 1.1. □

Proof of Theorem 1.2. Since P (z) = zsϕ(z). On applying Lemma 2.4 to ϕ(z),

the proof follows similarly as that of Theorem 1.1. □
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Proof of Theorem 1.3. Since P (z) is a polynomial with a zero of multiplicity

s at origin, therefore, we write it as P (z) = zsϕ(z), where ϕ(z) is a polynomial of

degree n− s. Applying Lemma 2.5 to ϕ(z), we get

(3.3) max
|z|=1

|Dαϕ(z)| ≤ (n− s)

{
k + |α|
1 + k

max
|z|=1

|ϕ(z)| − 1− |α|
kn−s−1(1 + k)

min
|z|=k

|ϕ(z)|

}
.

Using (3.3) in (3.2), we get

(3.4)

max
|z|=1

|DαP (z)| ≤ (n−s)

{
k + |α|
1 + k

max
|z|=1

|ϕ(z)|− 1− |α|
kn−s−1(1 + k)

min
|z|=k

|ϕ(z)|

}
+|α|smax

|z|=1
|P (z)|.

Since max
|z|=1

|P (z)| = max
|z|=1

|ϕ(z)| and min
|z|=k

|ϕ(z)| = 1

ks
min
|z|=k

|P (z)|. we have from (3.4)

max
|z|=1

|DαP (z)| ≤

(
n(k + |α|)

1 + k
+
sk(|α| − 1)

1 + k

)
max
|z|=1

|P (z)|−(n−s)
1− |α|

kn−1(1 + k)
min
|z|=k

|P (z)|.

This completely proves Theorem 1.3. □

Proof of Theorem 1.4. If we write max
|z|=1

|P (z)| = M(P, 1), where P (z) =

anz
n +

n∑
v=η

an−vz
n−v, 1 ≤ η < n is a polynomial of degree n having all zeros on

|z| = k, k ≤ 1, then by Lemma 2.1

(3.5) |P ′(z)| ≤ n

kn−2η+1 + kn−η+1
M(P, 1), for |z| = 1.

Since P ′(z) is a polynomial of degree n− 1, it follows from (3.5) by an application

of maximum modulus principle that for r ≥ 1 and 0 ≤ ϕ < 2π,

(3.6) |P ′(reiϕ)| ≤ nrn−1

kn−2η+1 + kn−η+1
M(P, 1).

Hence for some ρ ≥ 1 and for each ϕ, 0 ≤ ϕ < 2π{
P (ρeiϕ)

}s − {P (eiϕ)
}s

=

∫ ρ

1

d

du

{
P (ueiϕ)

}s
du

=

∫ ρ

1

s
{
P (ueiϕ)

}s−1
P ′(ueiϕ)eiϕdu.

This implies∣∣{P (ρeiϕ)
}s − {P (eiϕ)

}s∣∣ ≤ s

∫ ρ

1

∣∣P (ueiϕ)
∣∣s−1∣∣P ′(ueiϕ)

∣∣du.
Using (3.5) and Lemma 2.3, we get∣∣{P (ρeiϕ)

}s − {P (eiϕ)
}s∣∣ ≤ ns

kn−2η+1 + kn−η+1

{
M(P, 1)

}s ∫ ρ

1

uns−1du.
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Equivalently,∣∣{P (ρeiϕ)
}s∣∣ ≤ ∣∣{P (eiϕ)

}s∣∣+ ρns − 1

kn−2η+1 + kn−η+1

{
M(P, 1)

}s
≤
{
M(P, 1)

}s
+

ρns − 1

kn−2η+1 + kn−η+1

{
M(P, 1)

}s
.

This in particular gives,{
M(P, ρ)

}s ≤ kn−2η+1 + kn−η+1 + ρns − 1

kn−2η+1 + kn−η+1

{
M(P, 1)

}s
,

where M(P, ρ) = max
|z|=ρ

|P (z)|. This completely proves Theorem 1.4. □

Proof of Theorem 1.5. The proof of Theorem 1.5 follows on the same lines as

that of Theorem 1.4 by using Lemma 2.2 instead of Lemma 2.1. □
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his valuable suggestions.

Список литературы

[1] N. C. Ankeny and T. J. Rivlin, “On a Theorem of S. Bernstein”, Pacific J. Math, 5, 849 – 852
(1955).

[2] A. Aziz, “Inequalities for the polar derivative of a polynomial”, J. Approx. Theory, 55, 183 –
193 (1988).

[3] A. Aziz and Q. M. Dawood, “Inequalities for a polynomial and its derivative”, journal of appx.
theory, 54,306 – 313 (1988).

[4] A. Aziz and W. M. Shah, “Inequalities for the polar derivative of a polynomial”, Indian J. Pure
Appl. Math., 29, 163 – 173 (1998).

[5] A. Aziz and W. M. Shah, “Inequalities for a polynomial and its derivative”, Math. Inequal.
Appl., 7(3), 379 – 391 (2004).

[6] B. Chanam, “Bernstein type inequalities for polar derivative of polynomial”, European J. of
Mol. and Clinical Medicine, 8, 1650 – 1655 (2021).
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