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We propose analyzing structural changes in financial markets based
on portfolios constructed with minimal distance to normality. There are
several ways to check changes in one time series, but tracking structural
changes in many times series simultaneously should be based on some
functionality. Here we analyze possibilities of linear combinations of
returns of underlying securities. Utilizing techniques of Hellinger’s
probability metric, we construct the portfolio closest to Gaussian in
distribution with parameters found from efficient frontier of Markowitz’s
mean-variance portfolio. The Hellinger’s distance though cannot address
any change of the whole bunch of assets, such as momentary shift in
return; it is sensitive to changes within market dependencies. We display
the use of the method on an obvious example of exchange market, where
we detect the obvious structural change. Thus this diagnostic tool may be a
good invariant for structural change detection, or at least a good
approximation of one.

Keywords: Hellinger distance, market structural change, ForEx, distance
portfolio.
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[. Introduction and motivation

Lately we have proposed an alternative to classical Markowitz’s mean-
variance model, based on minimal Hellinger’s distance [1].

Distance based portfolios are vastly used in construction of tracking rival’s
portfolios when the risk measure or strategy they use are unknown [2]. We
proposed tracking distance from normal distributed portfolios with minimal
variance for all levels of desired expected return. Two reasons for this
construction are less sensitivity (variability) of that portfolio to small changes and
less corner solutions. (These are essential drawbacks of mean-variance
portfolios [3] [4] [5].)

However, the main purpose is to track possible reactions (changes in
portfolio weights) to extreme changes in market. For analyzing such extreme
changes in one time series, bunch of mechanisms already exist (most known one
being unit root tests). Yet, simultaneous changes in the whole market (like shifts
due to inflation) will keep the optimal portfolios unchanged.

This is a very desirable feature as only relative changes have specific effects
of portfolios managers’ decisions (or changes in subclass of securities).

Measures of non-gaussianity are internal in signal processing, especially in
disentangling many intertwined signals (time series) [6]. In independent
component analysis framework one seeks to maximize distance, here we stick to
an opposite direction. We try to linearly entangle the portfolio returns so as to
maximize the normality.

Obviously, the larger the number of securities, the closer their linear
combination will be normal in distribution, by central limit theorem. However,
during the optimization phase, we seek portfolios closer to specific normal
distribution. More exactly, we first solve the mean-variance optimization problem
for all levels of expected return, and then for each level we minimize the
Hellinger’s distance to normal distribution with that level mean and minimal
variance found.

Other metrics, the most famous ones based on Wasserstein metric and KL-
divergence, used to get less sensitive solution were also proposed, [7] [8], .

The paper is organized as follows. In the 2nd part, the minimal Hellinger’s
distance portfolio construction process is described. In the 3rd part, the method
is applied to ForEx market in Armenia (evaluating structural changes before and
after war in Nagorno-Karabagh). The paper ends with a conclusion.
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[I. Problem statement changes in optimal portfolio
The classical mean variance problem seeks the portfolio, i.e. vector of

weights by solving the following optimization problem
Var(X) - min
EX)=¢e

where

X; - represents return of i-th asset. Return can be calculated by either
subtracting previous price (value) of given asset and dividing by it, or dividing by
previous period price and taking natural logarithm (called log-return), which is
exactly our case.

w; — s are weighted sought. The optimization is exactly by weights. They
represent the part of the original money spent for buying i-th asset.

X - represent the portfolios return. It is linear combination of returns of
assets.

e- is the desired level of expected return.

n — number of considered assets (or number of types of assets).

For our purposes, we add one additional condition on weights, prohibiting
short selling: w; > 0.

One originally deals with price processes S;(t). Note that calculated returns

In (%) = X;(t), will generally depend on t. However, to make them usable in

Markowitz framework, one always assumes that X;(t) — s have same distributions
for each t [9].

While generally for short time horizon this can be regarded true, when
structural changes take place, the change should be notable by the change in
return distribution [10].

Thus, it is one of the problems of modeling in mean-variance framework.
One simple thing to do is exponential (or other form of) smoothing. While it
overall smooths out the differences between X;(t)-s at different t-s, it cannot be
used to account structural changes of jumps.
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Obviously, changes in best portfolios will indicate the structural changes in
a group of assets.

Generally, several drawbacks of Markowitz mean-variance portfolio are
mentioned in literature. One of them is its extreme sensitivity to change of initial
condition [5].

This sensitivity may lead to extreme changes in variance-minimizing
portfolio from one period to another. While this is quite natural, it means we
cannot take the minimum variance portfolio (portfolio with minimum variance
among all portfolios) as something stable over time and represent it for the
given market.

Hence, a less sensitive portfolio should be considered. We proposed the
following portfolio based on Hellinger’s distance optimization.

H? (X,N (5, a,fu-n(E))) - min
E(X) =2

{ X = Z:;lwiXi 2)

WL'=1

Where

H2(X,Y) - is squared Hellinger’s distance from random variable X to
random variable Y. We use random variables and their respective distributions
interchangeably, when used as argument of Hellinger’s distance.

More specifically, when we know respective densities we can rewrite
H%(X,Y) = H%(fy, fy), with f standing for density functions.

05in(€) — is the minimal variance found by solving (1), for given level of the
desired expected return.
And

N(a, o?) - for normal distribution with mean a and variance o2.
In case of absolutely continuous distributions

H2(fe ) = 1— j OF @z

We use exact Hellinger’s distance for two main reasons. First, for its simple
form, and second, for it being less sensitive than other statistical metrics. One
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additional reason is that it is indeed matric, while for example negentropy (see
[6]) uses KL-divergence which is not symmetric, and thus is pseudo-metric.

The problem (2) is generally a non-smooth problem for any given data.
While kernel methods of approximation can be used, they subtract useful
distortion presented in data.

We use the traditional binning mechanism to make continuous histogram
distribution out of discrete data, to be able to calculate squared Hellinger’s
distance.

[ll. Exposition of method with foreign exchange market

We took the data of Central Bank of Armenia on currency exchange rates
for 5 currencies: Chinese yuan (CNY), EURO (EUR), Japanese yen (JPY), Russian
ruble (RUB) and US dollar (USD), for a period from 26/07/2019 to 24/02/2022".

This period was chosen as the start day and end day are of the same
distance as to November 9th of 20202

We divided the data into two periods (26/07/2019-06/11/2020 and
09/11/2020-24/02/2022), and solved problems (1) and (2) for each period.

For details of construction solving portfolios, see original paper [1].

First, we solve mean-variance portfolio problem, determining minimal
variance and/or standard deviation (the square-root of variance). Obtaining
necessary parameters, we calculate squared Hellinger’s distance to Gaussian
distribution with those parameters and solve the minimization problem [2] for
each level of the desired expected return. To do so, we constructed histogram-
densities, taking the number of bins to be 10 (according to Sturges’ formula).
We determine the number of portfolio’s returns in each bin. Then, to determine
ten bin coefficients, we divide the count of each bin by the number of data
points. Then we determine Hellinger’s distance by using the averages found
above but changing weights and, accordingly, deviations.

We aim to calculate minimal squared Hellinger’s distances and find the
according portfolios.

' The end day was chosen the day of Russian intrusion into Ukraine.
2 This day was proclaimed as the end of Nagorno-Karabagh war, when the truce was established.
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Ultimately, we want to check, whether the structural changes can be
reported according to the portfolio providing the overall minimal squared
Hellinger.

More specifically, the portfolio weights with minimal Hellinger change
substantially from one period to another.

Two ways to conduct the process, is by first solving the (2) for the first
period (and this step is identical for both methods)

And next is either

To solve (2) for the second period and compare the optimal portfolio
weights.

Or to find Hellinger’s distance for optimal portfolio from the first period
with the second period data.

We got the following results.

Table 1. Minimum squared Hellinger’s distance, and respective portfolios for
26/07/2019-06/11/2020 data.
W
H* mean St.dev. | wi (CNY) | w; (EUR) | wy (JPY) | wy (RUB) | (USD)
0.026639 | -0.000504382 | 0.010407 | O 0 0 1 0
0.023976 | -0.000423109 | 0.009291 | 0.051205 | 0.035139 | 0.019605 | 0.894052 | 0
0.023857 | -0.000341836 | 0.008112 | 0.118461 | 0.039154 | 0.056908 | 0.785477 | 0
0.023154 | -0.000260564 | 0.007055 | 0.009026 | 0.178194 | 0.009053 | 0.665278 | 0.138449
0.02229 | -0.000179291 0.005802 | 0.24039 | 0.078994 | 0.010624 | 0.548156 | 0.121837
0.020428 | -9.80176*10° 0.004463 | 0.094266 | 0.076995 | 0.242433 | 0.440276 | 0.146029
0.021867 | -1.67447*10° 0.002737 | 0.015627 | 0.037572 | 0.080547 | 0.243433 | 0.622821
0.018182 | 6.45282*10° 0.001992 | 0.148056 | 0.020171 | 0.157278 | 0.149977 | 0.524518
0.016739 | 0.000145801 0.001761 | 0.27683 | 0.102833 | 0.110871 | 0.059215 | 0.450251
0.012382 | 0.000227074 0.002172 | 0.576477 | 0.130773 | 0.145174 | 0.003343 | 0.144233
0.010537 | 0.000308347 0.004428 | 0 1 0 0 0
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Table 2. Minimum squared Hellinger’s distance, and respective portfolios for
09/11/2020-24/02/2022 data.

HT mean St. dev. Wy [CNY) W (EUR) ws (JPY) Wy (R_U"B} Ws iU_Sﬁ_)_
0.009792 | -0.000399068 | 0.004562 | 0 0 1 0 0

0.01271 -0.000353284 | 0.004275 | 0.067402 | 0.010023 | 0.881002 | 0.000124 0.041449
0.01336 -0.0003075 0.00401 0.104651 | 0.309609 | 0.585595 | 0.000145 0
0.012596 | -0.000261716 0.003638 | 0.121618 | 0.119939 0.457377 | 0.138651 0.162415

0.014297 | -0.000215932 | 0.003431 | 0.139052 | 0.11113 0.328202 | 0.139576 | 0.282039
0.016957 | -0.000170148 | 0.003512 | 0.357526 | 0.238879 | 0.242254 | 0.087413 | 0.073928
0.01809 -0.000124363 0.003409 | 0.473943 | 0.173895 0.193334 0.077161 0.081667
0.019066 | -7.85793*10° | 0.003431 | 0.695153 | 0.00981 0.28526 | 0.009777 | O
(0.019705 | -3.27951710% | 0.003398 | 0.792802 | 7.25710° | 0.16872 | 0.038406 | O
0.018514 1.2989*10% | 0.003424 | 0.894114 7.25"10°* 0.074431 0.031382 | O
0.02073 | 5.87731*105 0.003484 | 1 0 0 0 o

Note that we do not see substantial changes in minimal Hellinger’s distance
(0.01054 vs 0.00979), but we see explicit change in respective portfolios
((0,0,0,1,0) vs (0,0,1,0,0)).

So in the first period closer to normality was ruble, and in the second
period - Japanese yen. This kind of corner solutions are not widespread (for
example, we got a different result for a bigger period in [1]); however, they
demonstrate our point explicitly.

IV. Conclusion

We found that Hellinger’s distance did account for structural changes
within the market, so it can reasonably be used as a market invariant specific for
each market, and sensitive to extreme changes in pairwise distributions.

Further questions to investigate here are exact bounds on sensitivity and
investigation of (squared) Hellinger’s distance averaged over some period of
time both for given portfolio or for overall minimal Hellinger’s distance.
Moreover, we conjecture that more extreme changes in market structure would
change the value of minimal Hellinger’s distance substantially, rather than
changing portfolio weights only, and will try to establish this in our future works.
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UusurnmM3uL usurnm

6M<L, 3-nn Ynipup nwwbinn,

dwpbdwphluyh b dbpuwtipuyp pulnyipbi,

wlhipnuwpwlwt b pptwbvwywt Jwpbtdwiphljugh wdphnt
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PUMMURL2A3UL YUMIUL

bhghljwdwpbdwinhuwlwb ghipnysinibblinh pbhtuwsont,

6M< nwuwpunu, dwpbdwiphuyh U J6luwuhluygh pwlynyintp,
wlhipnuwpwlwt b pptwbvwywt Jwpbtdwiphljugh wdphnt
Eithnuwpn' vardan.bardakchyan@ysu.am

<nnyjwdnud wnweowpynid tup nuntduwuhpt| $huwtuuwywu onlyuubiph Yw-
nnigwoépwihtu (wlwu) thnihnfunyeniuutpp unpdw] pwofudwup wdbuwdnun
pwofunwing wnpundbiubph dhongny: “wu pwgnud bnwuwlubp' deYy dwdwuw-
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Yuwjhtu swppnd Ywnnigwdpwihtu thnihnfunieyniuubpp uwwnbine bW uwnnigbnt,
pwyg Jh pwup dwdwuwwjhu swppbph' dhdjuug ujuwnwdp Yunnigwdpwjhu
thnihnfunigyniuutipp uinnigbiine hwdwp wbinp £ ogquwagnpdytiu niulyghnuwg
wnbiuptip: Wuwbin dbup nhunwpynd Gup gnpdhpubiph Glwdwwpbipnyeniuutiph
géwihu Yndphuwghwutiph huwpwynpnipiniuutpp: Udpnnowwbu oqunwgnnpdtiiny
<hyhugbiph hwywuwlwuwjhu danpphlwih huwpwynpniejniuubpp' deup Ywnni-
gnud Gup wynpundb]' Fwnwjwt pwotudwup wdbuwdnun pwotunidng, uwfuopnp p-
unpjwd wwpwdbnpbpny: Ybpohuubpu quugnd B jndbingd Uwpyngh dhohu-
Jwphwgwjh wnpundbih fuunhpp: Qwjws <Ghugbiph hnwynpnugniup sh Yw-
pnn bywunb onywgh punhwunip thnthnfuneynwiubipp, huswyhupt &, ophtwy, pun-
hwunip Glwdinwpbpnigwt wuyndp, wju 2wwn qquinit £ wnwudhu gnpdhpubiph
Ywhujwdniejnwuutph ujwwndwdp: Upinwpdnyeh 2nlywih ophtuwyny dkup gnyg
Gup wwihu dbpnnh nuwy (hubp: Uuwhund' hnyu nibup, np unwgywd hbnw-
ynpnyeyniup, |hubiny onyujwywu Ywnnigywdpwihtu thnihnfuniypjutu nhwqunu-
whY dGpnn, hGunwqund Yybpwdyh onyujulywu huquphwuwh Ywd Yihuph ybp-
ohuhu dnwnwnpynud:

Pwuwih pwnbp' <bjhugbph hbnwdnpneiniu, wpdbpnebph wwjnwwyh
owwnhdhqughw, hwjwuwwuwjht dGnphlywubp:

HAXOMJEHUE CTPYKTYPHbIX UBMEHEHMIA B PUHAHCOBbIX PbIHKAX C
MOMOLLLbIO METPUYECKUX MOPTHENEN

MECPONAH MECPOIN

Cmyodenm 3-20 kypca EIY

dakynbmem mamemamuKu u MeXaHuKU,

Kagpedpa akmyapHoli u ¢puHaHcosoli mamemamuku ETY,
37eKMpoHHAA noyma: mesropyanmesrop@list.ru
BAPOAXYAH BAPJAH

HKanoudam ¢busuro-mamemamu4ecKux Hayx,
lpenodasamens EIY

®bakynbmem mMamemMamuKku U MEXaHUKU,

KagpeOpa akmyapHoli u ¢puHaHcosoli mamemamuku EIY
anekmpoHHaa noyma: vardan.bardakchyan@ysu.am

B cratbe npepnaraem aHanu3vMpoBaTb CTPYKTYPHblE W3MEHeHWA (OUHaHCOBbIX
PbIHKOB Yepe3 nopTdenu ¢ pacrnpeneneHvem Hambonee 6IM3KUM K HOPMaNbHOMY.

CyuiecTByeT MHOMECTBO CMocob60B MPOBEPKM CTPYKTYPHbIX W3MEHEHWn B
€LMHUYHbIX BPEMEHHbIX PAAax, HO [ANA NPOBEPKMU CTPYKTYPHbIX U3MEHEHMI1 NO OTHO-
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LIeHUIO ApYr K APYry Mbl AOM¥HbI paccmMaTpuBaTb (PyHKLUMOHaNbHble ¢opmbl. B
LaHHOW CTaTbe Mbl pacCMaTpPVMBAEM KOHKPETHO NIMHEWHbIE KOMOMHALMN AOXOZHOCTEN
B noptdensax. B nonHoli mepe ncnonb3ya BO3MOMHOCTV BEPOATHOCTON MeTpUkM Xen-
NUHrepa, Bbl KOHCTPYyMpyeM MoAenb nopTdoena Hambonee Onuskoro no pacripe-
neneHuto K ['ayccoBckomy, € napameTpamu, NnosyYeHHbIMKU ¢ 3OPEKTUBHOrO (OPOHTa
pelleHna 3apayn noptdeny MapkoBuua. XoTa paccToAHue XenanHrepa He MOMeT
(puKcupoBaTb OfHOBpPEMEHHblE WM3MEHEHUA BCETO pblHKA, TakWe Kak, Hanpumep,
obLee M3MEHEHNE [OXOJHOCTU, OHa OYEHb YyBCTBUTENbHA K 3aBUCUMOCTAM MEKAY
OTAENbHbIMU akTUBamMu. Ha npumepe pbiHKa BantoT Mbl MOKa3blBaeM AeliCTBEHHOCTb
npegioMeHHoro Metoga. Takum o6pa3oM, Mbl HAAEEMCA, YTO [aHHbIA MeTof,
OMarHocTWKM B Ja/ibHelillleM MOMKeT nepepacti B MHBapuaHT AJ1A PbIHKOB pasHbIX
LleHHbIX Oymar, unu xoTa 6bl MoMeT ObITb NpUONMIEHNEM TaKOrO.

KnioueBble cnoBa: PacctoAHue XennuHrepa, CTPYKTypHble W3MEHEHUA B
pblHKax, ﬂOpT(t)EJ'II/I, OCHOBAHHbIE Ha METPUKE, BEPOATHOCTHbIE METPUKN.
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