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Abstract: This paper focuses on creation of a technique to derive systems with explicitly defined 

symmetry protected topological (SPT) phases on a triangular lattice, based on models featuring 

arbitrary symmetries. It results in emergence of effective edge models, which are massless in non-

trivial SPT phases. When applied on non-interacting systems, the technique results in models with 

a translational invariance, which ensures independence from the local geometry. 
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1. Introduction 

 

Symmetry protected topological (SPT) phases [1–3] have recently gained a huge research 

attention [4–10] both in terms of conceptual formulation and specific model studies. It is a 

relatively new concept for phase transitions strongly related to topological properties of the system, 

that is significantly different from classical Landau approach to the topic. 

Systems with STP order are remotely similar to models described by Landau theory of phase 

transitions. They both rely on explicitly or spontaneous breaking of the system’s symmetries as the 

inducer of different phases and are described by structure and properties of the symmetry groups. 

SPT ordered systems are also known [6, 11] to be short range entangled. However, SPT phases 

have topological origin, and the corresponding states are manifested on the edge of the system, 

similar to topologically ordered states. But the later are long-range entangled [12–17] unlike SPT.  

An important feature of SPT order is its support for symmetry-protected gapless boundary 

phases, meaning it is able to be a topological insulator or a trivial insulator in different phases. This 

behavior is fundamental for topological quantum computation. Other remarkable properties of SPT 

ordered systems are the non-standard excitation algebra that emerges for edge states, sensitivity of 

the system to symmetry-breaking perturbations and others, that might later prove useful in some 

applications. 

In the meantime, a significant amount of research has been done on this topic. That revealed 

the explicit connection between the symmetry classes and the SPT phases, which happens to be [6–

10] a representation of the third group cohomology of the symmetry. This allows classification [1–

3] and deeper understanding of SPT models and their variety. However, none of these models 

provide precise pathway of formulating an SPT system model or modifying a known model to SPT 

phase capable. 

An outstanding example of explicitly written SPT model is presented in a paper [4], which is 

based on Ising paramagnet with  symmetry. The result is a model with two phases, one being a 

conventional insulator (with gapped spectrum), and the second being a topological insulator (with 

gapless spectrum created by edge states). Other such known models are [5, 18], which are basically 

extensions of [4] for  and  symmetries. This paper is inspired by those works, and is 

trying to apply the ideas proposed there to formulate a similar model that is based on a more 
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complex system (namely the ferromagnetic phase of  quantum Ising model), that initially 

contains interaction, meanwhile developing a universal technique for doing so. 

According to the conventional definition, SPT models have the following definitive 

properties. The system has to have a global symmetry  which is not spontaneously broken in any 

of the phases. There is the so-called "trivial" phase which, generally speaking, has a gapped 

spectrum, and frequently has the simplest form of the Hamiltonian (it is usually possible to write 

the ground state as a direct product of different subsystem states). The other phases are separated 

from the trivial one and from each other. The phase separation is implemented as impossibility of 

continuously connecting (with any parametrization) states of different phases without breaking at 

least one symmetry. So, the phases are protected by symmetry. The non-trivial phases of SPT 

models tend to have gapless edge spectrum. In fact, this might be the only objective way of 

distinguishing between the trivial and non-trivial phases. 

 
 

Fig. 1. Schematic representation of supposed SPT phase space. Double lines are continuous  

connections of Hamiltonians, and dashed lines are noncontinuous connections. 

 

A phase space is generally defined as a set of Hamiltonians which describe the state of the 

system in different conditions. In Ginsburg-Landau theory those Hamiltonians differ by some 

parameters (for example a parameter describing an external magnetic field or a coupling constant), 

called critical parameters. There is also a critical point: a value of the parameter where the phase 

transition occurs. 

In contrary, the phase space of SPT models can not be parametrized. For SPT models, the 

phase space is a set of Hamiltonians with some common symmetry  in the same representation for 

all Hamiltonians. Notice, that  is a symmetry in general, and might have multiple generators in 

given representation. Then a phase is defined as a "region" of those Hamiltonians, that can be 

continuously connected within the set (without breaking the symmetry), and two Hamiltonians, that 

don’t have such a connection are said to be in different phases. By the very definition it is 

demanded that there is no such thing as "critical point" in this theory, as existence of one would 

mean continuity of Hamiltonian transformation inside the set of phase space’s Hamiltonians, which 

are all symmetric. So, the "regions" of different phases don’t "touch", as portrayed in Fig. 1. 
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The concept of a phase suggests that the Hamiltonians in the same phase should have identical 

spectra. In other words, they should be unitarily equivalent. And obviously, the unitary 

transformations connecting those Hamiltonians should also be symmetric under . SPT principles 

suggest, that there should be no long-range interactions in the system, so the transformations should 

be local. Summing up, there is a set of continuously symmetric local unitary transformations that 

define a single phase. 

 

2. Mathematical apparatus 

 

The different phases occur as a result of the topology of the system: there would be no 

manifestation of different phases if the system didn’t have an edge. In that case all the Hamiltonians 

would be equivalent, and all of them would be connected through an even larger set of continuously 

symmetric local unitary transformations. Yet some of them are no longer applicable for edged 

systems, as their symmetry might be broken. This leads to assumption, that transitions between 

different phases are done via transformations which are related to the unitary transformations whose 

symmetry is broken on edge of the system. Our approach is to explicitly restore the symmetry of 

those transformations, on the expense of their unitarity, and thus generate the Hamiltonians for non-

trivial phases, as it is done in [4, 5, 18].  

The SPT phases are known [1–3] to be classified by cohomologies of their symmetry group, 

and the concept of group cohomologies is heavily used during the construction of a model with SPT 

phases [6–10]. 

 

2.1.  Group cohomologies 

 

Group cohomologies are defined on functions that map multiple parameters of a specified 

group  to some other group , and they are symmetric under the generators of  [19] . In other 

words 

 

   (1) 

 

Here  are any elements of group  in additive representation. We will call  a -cochain or a -

form. Let’s denote the space of all cochains by . 

We can define a so-called coboundary operator on cochains as 

 

    (2) 

 

where a "check" on the argument means that the argument is dropped. For example 

 because of the symmetric properties of cochains, or 

. As you can see, the coboundary operation maps  to  as 

the number of arguments has increased, but the symmetry is not broken. The functions that can be 

generated with  acting on  are called coboundaries or exact forms (we will see why in a minute). 

It can be easily shown, that alike the geometric boundary operator,  is trivial. Indeed, each 

term of the resulting function would be missing two arguments, namely  and . Moreover, there 

will be two terms with same missing , and depending on the order of their removal they will 

have opposite exponents. For term, where the greater index was removed first it will be , in 

other case it is , as when removing the argument with the grater index, it’s index is 

reduced by 1. 
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And of course, there is the set of cochains, for which . Those are called cocycles or 

closed forms. It is obvious, that all coboundaries are cocycles. The structure of action of  on  

spaces is schematically shown on Fig. 2. 

 

 

 
 

Fig. 2. Mapping by  between Ck-s. Each set of invested disks represent a cochain space with the cochain index 

specified above. The green disks are coboundaries (exact forms), the reds are cocycles (closed forms),  

and the blues are cochains (all forms). 

 

It is known, that -cocycle set can be factorized by -coboundary set. It will be easier to show 

in the physical implementation, so we skip a proof here. This Factor space is called -th 

cohomology of  mapping and is denoted as 

 

     (3) 

 

While studying this kind of functions it is useful to introduce functions 

 

   (4) 

 

The  have one less argument and no additional symmetry condition. One-to-one mapping 

between  and  (the whole symmetric equivalence class) is then guarantied. The downside of 

this is that the action of the coboundary operator becomes complicated. With straightforward 

calculations one can get 

 

  (5) 

 

The precise expressions for smaller values of  are 

 

  (6) 

 

 

2.2. Unitary transformations 
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SPT phases protected by symmetry group  are known [8-10] to be described by 

. Here we will explicitly show how the cohomology is involved in the Hamiltonian 

construction, to provide intuitive understanding od the situation. 

We will be working on a two-dimensional triangular lattice (this technique also works for -

dimensional lattices, such as a line in case , a tetrahedron lattice for , etc. Some insights 

about the differences will be provided alongside). Each node’s state is given by an element of 

additive representation  of group . 

Suppose we have our trivial Hamiltonian, that is just a sum of some commutative elements 

over the lattice. This Hamiltonian will be symmetric under any , that is a product of an arbitrary 

operator  from  over all the lattice. Now we need to look for the -symmetric local unitary 

transformations to construct the whole phase space. Let’s try to write  as a product of  

3-forms (or -forms for -dimensional case) over triangles as 

 

    (7) 

 

where  are states of particles on the triangle and  indicates the orientation of triangle 

based on the direction (clockwise or counterclockwise) of indexing. 

We will discuss two of the ways of indexing a lattice. The first one is fairly simple. You just 

divide the lattice into three larger sub-lattices, usually denoted with different colors, and all the 

nodes of that sub-lattice have the same index, as shown on Fig. 3a.  

In the other approach you first draw arrows on each link of the lattice (Fig. 3b) [7, 8]. The 

only restriction is that there should be no arrows making a cycle inside one triangle (or other 

structure block of the lattice, like tetrahedron in , etc.). Then the indexing is done for each 

triangle (or other structure block) independently, in a way that each arrow points from the smaller 

index to the larger. This is one-to-one mapping between arrows and indexing. Note, that the same 

node might have different indices in different triangles. 

 

 
 

Fig. 3. Indices of points and orientations of triangles for different ways of indexing the lattice. 

 

Generally speaking, these transformations are not symmetric, but the situation changes if we 

demand for  to be cocycles. This condition is written as 

 

 
 

this can be rewritten as 
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Using this, the symmetry of , and denoting , we will get 

 

 
 

So,  is not symmetric under  by itself, but their product over all the triangles is. Indeed, in 

case we do our indexation the color-based way (Fig. 3a) a term  will come from 

two neighboring triangles that have the  link in common. As those triangles always have 

opposite orientations, the term appears both in the numerator and the denominator, and thus 

vanishes. 

The case of arrow-based indexing (Fig. 3b) we also consider a link  and the two triangles 

that contain it. Suppose the arrow points from  to . The possible index pairs  of  and  are 

then ,  and  in both triangles (but not simultaneously). The triangle left to  will 

have orientations ,  and  correspondingly, if we denote clockwise by . For the triangle 

on the right it will be , , . It is worth mentioning once again, that this doesn’t mean 

always having opposite orientations in neighboring triangles as the index pair can be different in 

those triangles. One may notice, that for the right triangle the term  will always 

end up in the numerator, and similarly, for the left triangle it’s always in the denominator. Thus, 

those terms vanish. 

In both cases we didn’t take into account the links that are on the edge of the system thus 

don’t have their counterparts from a neighboring triangle, as the symmetry is broken on the edge 

and this is exactly what we need. This kind of transformations are the ones that will be generating 

our Hamiltonians. 

Notice, that in case of color-based indexing we are free to modify  by adding 

some terms to it that depend only on two of the -s as they vanish immediately. Let’s call those 

terms , indicating that formally they depend on three elements, but factually on two. So, we say 

the set of local symmetric -s is given by {3-cocycles} {non-cocycle -s}. Also notice, that in 

case of addition of such terms the action of symmetry on them wll no longer be given by (10) and 

should be calculated explicitly.  

The feature that we get from the arrow-based indexing is that by choosing the arrow 

configuration we can make all the links on the edge have the same direction along the traversal, 

make all the edge links to have index pairs  or  and consequently all the edge triangles 

will have the same orientation as shown in Fig. 3b. In this case the source of local symmetric  set 

is just {3-cocycles}. In case there are no thin regions (no edge nodes are connected via non edge 

link) we can even make all edge links to have the same index pair  or . 

When we say, that a Hamiltonian  is continuously connected to  without breaking 

symmetry (let’s call these Hamiltonians and the corresponding -s equivalent), this means, that 

there is a set of symmetric  continuous on  with  and . 

The -s that we have so far can not be parametrized that way. 

The solution is to take -s to be exact forms 

 

 
 

This has a structure similar to what we have seen in (9). Using a similar logic one can state, 

that only terms  will remain after in . The major advantage over closed forms is that 
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 has an intrinsic symmetry on , which means that any  is also symmetric under . 

In their turn,  generate a continuous set of symmetric , where  and . 

So, the set of -s equivalent to  (trivial -s) is given by {3-coboundaries}. In a similar way 

to what was suggested for just symmetric -s, in case of color-based indexing we get an additional 

 {non-cocycle -s} here as well. Any two -s that differ by a trivial  are also obviously 

equivalent. So, the same-phase space is defined by trivial -s, and the phases are 

 

 
 

In case of  dimensions it would have been . 

Derivation and usage of cohomology groups can be found in [8–10, 19, 20]. 

 

2.3. Finding a proper  

 

Now we need to find a closed but not exact 3-form which will be a source for a Hamiltonian 

from non-trivial phase. To this end we have to determine a basis for all possible functions. As it has 

been mentioned before, it’s the best to look for specific functions in -representation as there are 

no additional symmetry conditions on them. Also, it would be helpful if  takes the familiar 

integers as arguments instead of -elements (of course they should be a representation of S). 

If group  has  generators  and , then any element of  can be given 

as , where -s are some integers. If we define addition for  to be by 

, then  (or ) becomes an additive representation of  in integer numbers. Keep in mind, 

that  might be not a component-wise addition as there can be non-commutative generators 

in , which should be taken into account. For example if we suppose the permutation group  and 

take  as the generator of rotation and  as the generator of reflection, then for the vectors of 

additive representation we will have  but 

. 

The  functions basis (by saying basis we mean that any  can be given as a product of these 

functions) can be given in a way similar to simple Taylor series expansion. The basic monomial 

functions are 

 

  (13) 

 

where  indicates the component of vectors and  are some non-negative integers. As the -s here 

are integers with no restrictions, the factor  is there to ensure the equivalence of  and 

. There is only a finite number of these functions, as for any , there is some value of 

, starting from which , where . It is known as a simple 

consequence of Fermat-Euler theorem. For example, , , 

, etc. The terms of higher order are no new terms. 

Then the next step is to calculate the basis for all exact 3-forms. This is done by simply taking 

the whole basis of  and applying  as shown in (6) to it. The produced independent combinations 

as a whole are our basis.  

Afterwards we need the basis for the closed 3-forms. Similarly, here  should be applied to 

the whole basis of  and the combinations that produce  will be the basis. The part of this basis 

that is independent of exact 3-form basis is the basis for the factor space of 3-cocycles and 3-

coboundaries. Though finding the cohomology is a mathematical problem and we just need one 
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non-exact  to produce a non-trivial Hamiltonian, there will be no need in finding the whole basis, 

but rather a single element in it. 

For simplicity of writing, we will be using -s instead of -s. Notice that they are defined 

right up to . 

 

3. Construction of a Hamiltonian 

 

Once we have a non-trivial  and the corresponding  it needs to be applied to our trivial 

Hamiltonian , which is composed of local terms  symmetric under . The initial transformed 

Hamiltonian would then be written as 

 
 

where  runs through all the terms (there might be single-node terms, two-node terms defined on the 

links, etc.). 

From the previous section we know, that this transformed Hamiltonian is not symmetric under 

, particularly on the edge. In order to restore that symmetry, we can sum up all the possible 

symmetry transformations. 

 
 

with  taking all possible values from symmetry group  and  being the number of elements in it. 

Now this Hamiltonian is explicitly symmetric. What is left to do is to separate the edge part. 

As already mentioned,  is not symmetric on the edge of the system, and produces residual 

edge terms  under action of symmetry , as shown in (10) and the later 

interpretation. Here  and  and  are correspond to nodes of links on the edge. 

For any term  given on node set , all the -s that make up the  will be commutative to it 

except the ones that have a common node with . Let’s call this "non-commutative with " part of 

 a . The residual terms  produced of action of  on  will be defined on the links on 

border of triangles that are contained in . Only part of , that is defined on links which 

contain a node form  (we will call it ) is not commutative with . Those will be system’s edge 

links that contain a node from . All of this is illustrated on Fig. 4. In mathematical formulation 

 

      (16) 

 

where . Notice that we have done noting but canceling out terms. So, the  terms are 

exactly the ones shown in (10). Also, as it is clearly seen in Fig. 4,  will only have terms on 

links  on the edge  of the system, that contain a node from . So, the Hamiltonian can be 

written as 
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where  is the orientation of the triangle containing those points,  and  are the corresponding 

indices in that triangle, and the term  in the exponent indicates the initial position 

(numerator vs denominator) of the  in (10). 

It is obvious, that  is  for the  that are fully emerged in the bulk, which reduces the 

Hamiltonian to 

 
 

with  denoting the bulk. One can notice that each bulk term is commutative with any bulk or edge 

term, however the edge terms are not commutative to each other in general. So, we got a non-trivial 

edge model that is separated from the bulk. 

We might also want to have translational symmetry on the edge, i.e. ability to write all the 

components of  in (17) without dependence in the point indices. Let’s take a node  and its next 

node along the traversal . The  in (17) is the one with the smaller index of the two. In case of 

arrow-based indexing there is nothing further to be done as we will always have ,  

and .  

 

 
 

Fig. 4. The residual terms generated by action of s on . (In reality one is hardly going to have such a t, but it’s 

easier to see the principle of s’s action here). Nodes in  are marked red. Shaded triangles are ones with  

(  triangles). The produced residual terms are on the links marked red or blue (Rs,t links), and residual terms on blue 

links are commutative with t. So only the terms on red links remain (Vs,t links). 

 

In case of color-based indexing  is  if  and is  

otherwise.  if  and is  otherwise. So overall exponent is 

 if  and is  otherwise (if ). Our objective here is to make the expression 

under the product "antisymmetric" to permutation of the last two arguments as 

. This way the additional condition  under the 

product can be removed, because the  from the exponent and the  from anti-symmetry will 

cancel each other. Here the freedom to add -s proves helpful. The addition of a  to the  

adds a factor  to the right side of (10). In order not to break the existing symmetry for 

 case, three terms ,  and 

 should be added at a time. This way new factors 

 appear next to corresponding . We can interpret 

it as modifying  like 
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which has a chance to be anti-symmetrized. It should be possible, as set of -s has a basis of size 

, and there are only  conditions to be satisfied. Later we will mean the anti-

symmetrized version when we refer to , which will no longer have an intrinsic symmetry. 

Afterwards for both indexing techniques  can be written as 

 

 
 

The product runs through all edge terms that contain any point of . 

After choosing , we are now able to explicitly write the expression for an edge Hamiltonian 

from a non-trivial SPT phase. 

Summing up the information above, the steps for creating the model are: 

1. Choose a symmetry. 

2. Fix the multiplicative and corresponding additive representations of the symmetry. 

3. Find a non-exact 3-cocycle (and symmetrize it if needed). 

4. Write a symmetric trivial Hamiltonian (under the lattice product symmetry). 

5. Calculate the transformed edge elements. 

 

3.1. Specific example 

 

The simplest application of this algorithm can be seen on the simplest symmetry group  

with only generator , . We will be using a Hamiltonian that is symmetric under  in a 

representation where  is the  Pauli matrix. Then the corresponding additive representation is 

, . Mathematically we know that , so there should be 

an SPT phase here. 

We can first find the basis for exact forms by applying  from (6) on each 2-form represented 

as in (13). It can be done in a straightforward way, using that , and the fact that  are 

defined right up to . The same can be done for ’s applications on  to determine all the 

cocycles. It becomes clear, that the only non-exact 3-cocycle is given by  

which corresponds to . 

For the case of color-based indexing we want it to be antisymmetric on permutation of the last 

two arguments. It is to be done as mentioned in (19). -s that depend on single argument change 

nothing in terms of symmetry, and the only other basic  generates a term 

 next to . So, adding half (of the exponent) of it will do the trick. Thereby the 

expressions for  for arrow-based and color-based indexing will correspondingly be 

 

    (21) 

 

The  is trivial for . If the initial Hamiltonian just consists of elements  then each 

one of them on the edge will transform as 

 

       (22) 

 

where  is given by (20). The factor in front can be dropped, as it is some unimportant constant 

when we consider only the edge. 
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 will only contain terms of links  and  and after straightforward 

calculations one can get the final expression of transformed edge  

 

        (23) 

 

The bars explicitly indicate that the new operators satisfy Pauli matrix algebra just like the old 

ones, however they are given in a different representation. Here  is the same as , due to -s 

being commutative with  that makes the transformation to barred operators. Notice that we got the 

same Hamiltonian for both indexing techniques despite of having different -s. 

As it was supposed, we have obtained a translation-invariant edge Hamiltonian, which is 

written as just a sum of elements in (23) over the edge. The same Hamiltonian was derived by 

Levin and Gu using a very different approach in [4] through a rather complicated and arbitrary 

procedure. 

 

4. Conclusions 

 

We generalized the ideas used in [4, 5, 18] and presented a technique for creating SPT phase 

models as extensions on any two-dimensional systems with arbitrary non-trivial symmetry . The 

technique relies on explicit application of specially defined symmetry-restored quasi-unitary 

transformations on the initial Hamiltonian. The transformations are based on , and 

define the phase space of -symmetric SPT models, which is also given by  as 

suggested in [8]. The technique guaranties a creation of translation-invariant edge models once 

applied on non-interacting systems. An example of existing models was provided, to show the ease 

of use of the technique compared to their original derivation. 
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