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Abstract. The problem of an approximate description of the wave field of many sources is 

considered. It is shown that, if the problem is considered more comprehensively, the description of 

the interference and diffraction experiments can be given within the framework of a single scheme. 

It is shown that the character of wave amplification in these two classical experiments is different. 

In the case of an interference experiment, the field amplification is fixed at a point, while in the case 

of a diffraction experiment the field amplification is fixed in the observation direction. The problem 

of determining the intensity maximum of a diffraction grating in the Fresnel pattern is studied under 

the condition that the maximum is satisfied in the Fraunhofer pattern. A condition under which a 

diffraction grating behaves like a lens is obtained. 
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1. Introduction 

 

It is known that one of the central problems of wave theory is the problem of describing the 

wave field in regions far from sources and surfaces generating, re-emitting or absorbing this field [1, 

2]. Usually, in many problems of diffraction, the influence of the generated field on the process of 

wave generation by secondary sources is assumed to be small. In the general case, the solution of the 

diffraction problem is mathematically difficult, which, even in an approximate form, as a rule, must 

be performed numerically [3–12]. The most well-known method of approximate consideration of a 

diffracted field is the so-called Fresnel pattern, an important special case of which is the Fraunhofer 

pattern. 

The validity of the use of one or another approximation is usually commented on by the 

proximity or remoteness of the observation area from the area of sources and surfaces affecting the 

propagation of waves. At the same time, it is well known that such a comment must necessarily be 

connected with the radiation wavelength. If for one wavelength this observation distance falls, for 

example, in the middle observation zone, where the Fresnel pattern can be applied, then the same 

distance for another wavelength value can fall, for example, already in the near zone. Therefore, in 

the diffraction theory, besides the space parameters of the problem, also the so-called wave parameter 

is introduced. In addition to the restrictions imposed on the space parameters of the problem, the 

applicability condition for the approximate description of the field is also substantiated by the 

restriction imposed on the values of the wave parameter.  On the basis of these values of the wave 

parameter, the concepts of near, middle and far wave observation zones are introduced. 

Let us consider the above-mentioned in the context of two classical problems of wave theory, 

namely, the problem of interference and the problem of diffraction grating. It is known that the first 

of them is solved in the Fresnel pattern, and the second – in the Fraunhofer pattern (see Fig. 1). 
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In both problems, it is required to consider a superposition of spherical waves, however, in the 

case of interference the number of sources is two, and in the case of a diffraction grating the number 

of sources can reach several thousand. It is obvious that, in its essence, the problem of interference is 

a particular case of the diffraction grating problem, of course, if the latter is considered in the Fresnel 

pattern. 

 

 
 

Fig. 1. Interference of waves from two sources (near observation region) and diffraction of waves  

from 𝑁 sources (far observation region). 

 

At the same time, despite the fact that both experiments mentioned above represent a 

demonstration of the same phenomenon, even their approximate description traditionally is not given 

within the framework of a single mathematical approach. That is, patterns of interference and 

diffraction experiments seem to be presented to some extent in isolation from each other. For the 

most part, this very circumstance prompted the implementation of this work. As it will be shown 

below, the presentation of interference and diffraction experiments can be placed within the 

framework of one single scheme. 

Despite the widespread use, the above-mentioned Fraunhofer method for describing a 

superposition field based on the construction of parallel rays, in our opinion, requires a more detailed 

review [13]. This is primarily due to the fact that, according to Euclidean geometry, parallel lines do 

not have a point of intersection, i.e., parallel rays never converge. Obviously, it then follows that in 

Fraunhofer constructs the question of mutual amplification or weakening of waves at a point is 

generally meaningless. A meaning emerges only in the context of directions of observation, and it 

appears this fact is failed to be mentioned anywhere. In the framework of this work, this issue will 

also be a subject of discussion. 

It is important to note that in addition to the presence of a certain information content, the work 

presented below is mostly cognitive in nature, since the main emphasis here is on the importance of 

the generality of the description (integrity of perception) of these two experiences. So far, the 

interference and diffraction experiments, which are demonstrations of one phenomenon 

(superposition of waves), have been described separately. In the light of what has been said, within 

the framework of this work, we substantiate the expediency of introducing the concept of a viewing 

angle into the picture of an approximate description of a superposition field. 

 

2. Longitudinal and transverse spatial parameters for an approximate description of a 

spherical field 

 

At its core, the problem of diffraction (interference) is the problem of describing a superposition 

field of coherent spherical waves. It follows from this, inter alia, that the problem of an approximate 

description of a diffracted field is ultimately boiled down to the problem of an approximate 

description of a spherical field [13-15]. In this regard, some results related to the approximate 

description of a spherical field in the Fresnel and Fraunhofer patterns will be presented below. 
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Let the locations of the source and the observation point be indicated by the vectors 𝑟 and �⃗⃗� 

emanating from the point 𝑂  (see Fig. 2). Then, as it is known, for the case of a field harmonic in 

time, the wave field at the observation point is described by the expression 

 

𝑈(�⃗⃗�, 𝑡) =
𝑎

|�⃗⃗�−𝑟|
𝑐𝑜𝑠[𝜔𝑡 − 𝑘|�⃗⃗� − 𝑟|],     (1) 

 

where 𝑎 is the amplitude, 𝜔 is the frequency of the wave and 𝑘 is the wave number. 

Let us assume that the observations of the wave field (1) are carried out in the vicinity of some 

point 𝑂′, the position of which is determined by the vector �⃗⃗�0emanating from the point𝑂. 

Furthermore, we will call the direction of the vector �⃗⃗�0 the main direction of observation, the 𝑅0 =

|�⃗⃗�0| value – the main observation distance, and the 𝑂′ point – the central observation point. Let us 

assume that the description of the field (1) is done on a straight line 𝑙, passing through the point 𝑂′ 

and perpendicular to the vector �⃗⃗�0. We will refer to the line 𝑙 as the line of view. On Fig. 2 the 

observation point is indicated by the vector �⃗� emanating from the point𝑂′ 

 

�⃗⃗� = �⃗⃗�0 + �⃗�.        (2) 

 

 

 
Fig. 2. Longitudinal and transverse spatial parameters for approximate description of a spherical field. 

 

Dimensionless unit vectors 𝑒∥ and 𝑒⊥, respectively parallel and perpendicular to the vector �⃗⃗�0, 

are also shown оn Fig. 2 

𝑒∥ = �⃗⃗�0/𝑅0 and �⃗⃗�0 ⋅ 𝑒⊥ = 0.     (3) 

 

Vectors 𝑟∥, 𝑟⊥ are the vector 𝑟 components, respectively parallel and perpendicular to the vector 

�⃗⃗�0 

𝑟 = 𝑟⊥ + 𝑟∥.       (4) 

 

Using the definition (4), the vectors 𝑟∥ and 𝑟⊥  can be represented as 

 

𝑟∥ = 𝜂 ⋅ 𝑒∥ and 𝑟⊥ = 𝜉 ⋅ 𝑒⊥,     (5) 

 

where 𝜂 is the coordinate of the source on the axis in the direction of the vector �⃗⃗�0 with the origin at 

the point 𝑂, 𝜉 is the coordinate of the source defined by the straight line 𝑙 and the vector 𝑒⊥with the 

origin at the point 𝑂′. Further, for convenience, we will assume that the line of view 𝑙 is parallel to 

the vector 𝑒⊥, so the vector �⃗�can be written as 

 

�⃗� = 𝜌 ⋅ 𝑒⊥,       (6) 
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where 𝜌is the observation coordinate on the observation line. 

Using (2) - (6), let us rewrite the wave field (1) as 

 

𝑈(�⃗⃗�, 𝑡) =
𝑎⋅𝑐𝑜𝑠[𝜔𝑡−𝑘√(𝑅0−𝜂)2+(𝜌−𝜉)2]

√(𝑅0−𝜂)2+(𝜌−𝜉)2
     (7) 

and consider the following values 

𝜎 =
(𝜌−𝜉)2

𝑅0
𝑘,     𝜏 = (

𝜌−𝜉

𝑅0
)

2

.      (8) 

 

Following the terminology adopted in the theory of diffraction, the dimensionless value 𝜎 will be 

called the wave parameter. At the same time, the dimensionless value 𝜏 will be referred to herein as 

the observation ratio. The spherical field (1) rewritten in the form (7) corresponds to its representation 

by means of spatial parameters of the problem, longitudinal 𝑅0, 𝜂 and transverse 𝜌, 𝜉 to the main 

direction of observation. 

As the shown by analysis in [13-15], if the values of the parameters (8) are such that 

 

𝜎 ∼ 2𝜋,     𝜏 << 1         (9) 

and in a way that 

𝜎 ⋅ 𝜏2 << 1,        (10) 

 

then the wave field (1) (see also (7)) can be presented in the following form 

 

𝑈(�⃗⃗�, 𝑡) =
𝑎

𝑅0
𝑐𝑜𝑠 [𝜔𝑡 − 𝑘 ((𝑅0 − 𝜂) +

(𝜌−𝜉)2

2𝑅0
)],   (11) 

 

which, taking into account (8), can also be written as 

 

𝑈(�⃗⃗�, 𝑡) =
𝑎

𝑅0
𝑐𝑜𝑠 [𝜔𝑡 − 𝑘(𝑅0 − 𝜂) −

𝜎

2
].    (12) 

 

This expression is nothing else than the form of a spherical field in the Fresnel pattern. 

Further, the first condition (9) will be called the necessary, and relation (10) – the sufficient 

condition for applying the Fresnel pattern 

 

𝜏 << 1,  𝜎 ⋅ 𝜏2 << 2𝜋.      (13) 

 

Obviously, the necessary condition 𝜏 << 1 imposes quite definite restrictions on the spatial 

parameters of problem 

𝜌2 << 𝑅0
2, 𝜂2 << 𝑅0

2 and 𝜉2 << 𝑅0
2.     (14) 

 

Note, that the from two last conditions it follows that |𝑟|2 << 𝑅0
2. 

If the necessary condition imposes restrictions on the spatial parameters of the problem, then 

the sufficient condition limits the wavelength. Using the relation 𝑘 = 2𝜋/𝜆 and also taking into 

account (8), let is consider the value of 

 

𝛿 =
(𝜌−𝜉)4

𝜆𝑅0
3 =

𝜎⋅𝜏2

2𝜋
,       (15) 

 

which we will call the approximation parameter. Taking into account 

Error! Reference source not found., Error! Reference source not found. the following can be 

derived 
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(𝜌−𝜉)4

𝜆𝑅0
3 << 1.        (16) 

 

As it can be seen from (16), for the fixed values of the problem’s spatial parameters under which 

the condition (14) holds, an increase in the wavelength leads to a definite improvement in the 

sufficient condition for applying the Fresnel pattern. 

Since the values 𝜌, 𝜉 are parameters independent on each other, it is clear that condition (16) 

breaks down into two independent conditions 

 
𝜌4

𝑅0
3 𝑘 << 2𝜋, 

𝜉4

𝑅0
3 𝑘 << 2𝜋.      (17) 

Introducing the values 

𝜎𝜌 =
𝜌2

𝑅0
𝑘, 𝜎𝜉 =

𝜉2

𝑅0
𝑘,       (18) 

 

and also taking into account (8) the conditions (17) can be rewritten as 

 

𝜎𝜌 ⋅ 𝜏2 << 2𝜋,  𝜎𝜉 ⋅ 𝜏2 << 2𝜋.    (19) 

 

Further, the values 𝜎𝜌, 𝜎𝜉   will be referred to herein as the wave parameters of the observation point 

and the source location point, respectively. Along with the wave parameters 𝜎𝜌, 𝜎𝜉  we will also 

consider the parameters of approximation by the position of the source and the observation point 

 

𝛿𝜌 =
𝜎𝜌⋅𝜏2

2𝜋
=

𝜌4

𝜆𝑅0
3, 𝛿𝜉 =

𝜎𝜉⋅𝜏2

2𝜋
=

𝜉4

𝜆𝑅0
3

 

.     (20) 

 

Using Eqs. (19), (20) the sufficient condition of the approximation application can be represented as 

 

𝛿𝜌 << 1, 𝛿𝜉 << 1.       (21) 

 

As it is known the Fraunhofer approximation is a special case of the Fresnel approximation 

when 

𝜎 << 2𝜋.       (22) 

 

Indeed, it is easy to see that taking into account the necessary condition (𝜏 << 1), this condition 

automatically implies a sufficient condition for the fulfillment of the Fresnel pattern (see (13)). It can 

be noticed that condition (22), as well as the Fresnel condition (see (16) - (19)) splits into two 

conditions 

𝜎𝜌 << 1,  𝜎𝜉 << 1,      (23) 

 

and the wave field (12) can be presented by the following expression 

 

𝑈(�⃗⃗�, 𝑡) =
𝑎

𝑅0
𝑐𝑜𝑠[𝜔𝑡 − 𝑘(𝑅0 − 𝜂)].    (24) 

 

Thus, according to the results presented above, the condition imposed on the wave parameter 

in the approximate theory of Fresnel diffraction, in fact, contains two conditions. In conjunction with 

the value of the wavelength, the first one characterizes the distance to the source, and the second     

one – the distance to the observation point from the axis of the main direction of observation. As it 

can be seen from conditions (19) and (23), the closer the source and observation point are to the 

observation axis, the more satisfactory the approximate description of the field becomes. 
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3. The viewing angle and equiphase surfaces in the Fresnel and Fraunhofer approximations 

 

In addition to the spatial parameters of the problem, the angle𝛽 between the vectors �⃗⃗� and �⃗⃗�0 

is also indicated on Fig. 2. The angle 𝛽 will be hereinafter referred to as the viewing angle of the 

pattern. As we will see below, it is the viewing angle that appears in the description of the interference 

experiment in the Fresnel pattern and it differs from the angle of determination of the intensity 

maxima in the diffraction experiment in the Fraunhofer pattern. 

As it directly follows from Fig. 2, there is a relation between the viewing angle 𝛽, the coordinate 

of the observation point 𝜌 on the line 𝑙, and the main observation distance 𝑅0 

 

𝛽 = 𝑎𝑟𝑐𝑡𝑎𝑛( 𝜌/𝑅0).      (25) 

 

In an approximate description, considering the necessary condition 𝜌2 << 𝑅0
2 (see (14)), this 

relationship turns into 

𝛽 = 𝜌/𝑅0,       (26) 

 

where the angle 𝛽 is calculated in radians. 

Using (26) and (18), as well as the relationship 𝑘 = 2𝜋/𝜆, it is easy to see that the first condition 

(17) can be written as 

𝛽4 <<
𝜆

𝑅0
.       (27) 

 

It follows from this ratio that the Fresnel pattern satisfactorily describes the wave field at small values 

of the viewing angle. It is also easy to see that the condition for applying the Fraunhofer pattern (22) 

can be written as 

𝛽2 <<
𝜆

𝑅0
.       (28) 

 

Conditions (27), (28) obviously show that the Fraunhofer pattern is a special case of the Fresnel 

pattern. Indeed, if 𝜆 << 𝑅0, then √𝜆/𝑅0
2 << √𝜆/𝑅0

4
. 

As mentioned above, the possibility of an approximate description of the field depends on the 

values of the wave parameters of the problem, which in turn, in addition to the wavelength, depend 

on the main observation distance 𝑅0 and transverse spatial parameters 𝜌, 𝜉. It is easy to see that if the 

source is located directly on the observation axis, then the source wave parameter is equal to zero 

(𝜎𝜉 = 0, see (18)). 

It is clear that in this case, for fixed values of 𝑅0, 𝜆 the applicability of the approximation will 

depend on the coordinate of the observation point on the line of view. For fixed values of 𝜌, 𝜆, when 

the applicability of the approximation is considered depending on the main observation distance, then, 

as a rule, this approach is called approximation by the observation area. If the observation is carried 

out at fixed values of 𝑅0, 𝜆, and the change in value of 𝜎𝜌is associated only with the value of 𝜌, then 

one usually it is referred to as approximation by the field or area of view. 

Assuming that the source is located at the origin of coordinates (𝜂 = 0,𝜉 = 0 ), we will consider 

the phase of a spherical wave as a function of two variables 𝑅0, 𝜌, proceeding from the exact 

expression (7), as well as from approximate expressions (11) and (24). Since the wave phase value 𝜑 

at a point is determined by the distance of the wave run 𝐿 to the given point, i.e. 

 

𝜑 = 𝐿/𝜆,       (29) 
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it is then clear that the study of the character of equiphase points is reduced to the problem of 

equidistant points. In other words, the surface of equiphase points coincides with the surface of 

equidistant points.  

As it follows from Error! Reference source not found. in the case of exact expression (7), the 

line of equiphase points will be determined by the equation 

√𝑅0
2 + 𝜌2 = 𝐿,      (30) 

 

and in the case of Fresnel and Fraunhofer patterns (see (11), (24), respectively) by the following 

equations 

𝑅0 − 𝜌2/(2𝑅0) = 𝐿,       (31) 

 

𝑅0 = 𝐿.       (32) 

 

Obviously, on the plane 𝑅0, 𝜌 the equation (30) defines a circle, equation (31) a parabola, and 

equation (32) a straight line (see Fig. 3). 

 

Fig. 3. Equiphase curves of a spherical wave (I) on the plane𝑅0, 𝜌, Fresnel (II) and  

Fraunhofer (III) approximations, respectively. 

 

As it can be seen from the presented figure, at small values of 𝜌, the equiphase lines of the three 

cases differ very little from each other. In other words, the closer the observation point is to the central 

observation point 𝑂′, the more adequate the approximate description of the field becomes. Within the 

limits of a small section of the observation plane including the point𝑂′, all three surfaces, namely the 

sphere, the paraboloid, and the plane, appear almost indistinguishable. Their differences manifest as 

they move away from the point𝑂′. It is also clear that for large deviations of the observation point 

from the point 𝑂′, the parabolic surface in its topological form is closer to a sphere than to a flat 

surface. Thus, in the Fresnel pattern, a spherical wave is approximated by a paraboloid wave, which 

in turn is approximated by a plane wave in the Fraunhofer pattern. 

 

4. Approximate description of the superposition wave field of many sources 

 

In the light of the problem of an approximate description of the wave field, the question of the 

field raised above in the context of one source may not seem so insignificant. Yet, for the 

superposition field of many sources, this issue is crucial. Let the positions of sources in space be 

determined by vectors 𝑟𝑝(𝑝 = 1,2, ⋯ , 𝑁). Then the superposition field at the observation point �⃗⃗� is 

determined by the following sum 

𝑈(�⃗⃗�, 𝑡) = ∑
𝑎

|�⃗⃗�−𝑟𝑝|
𝑐𝑜𝑠[𝜔𝑡 − 𝑘|�⃗⃗� − 𝑟𝑝|]𝑁

𝑝=1 ,    (33) 
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where we assumed that the initial phases of wave generation and their amplitudes are equal to each 

other. 

Suppose here, as in the case of a single source (see above), a description of the wave field is 

required on a straight line 𝑙 that is perpendicular to the main observation vector �⃗⃗�0 and that it is at a 

distance 𝑅0 from the origin of coordinates. For an approximate consideration of (33), we introduce 

the transverse and longitudinal components of the vectors 𝑟𝑝 with respect to the vector �⃗⃗�0 (see (4), 

(5)) 

𝑟𝑝 = 𝜉𝑝𝑒⊥ + 𝜂𝑝𝑒∥.      (34) 

 

Taking into account the above, when the vectors are𝑟𝑝 in the same plane with the vector �⃗⃗�0and 

the line of view 𝑙 , the wave field expression (33) can be represented as follows (see (7)) 

 

𝑈(�⃗⃗�, 𝑡) = ∑
𝑎⋅𝑐𝑜𝑠[𝜔𝑡−𝑘√𝑅𝑝

2+(𝜌−𝜉𝑝)
2

]

√𝑅𝑝
2+(𝜌−𝜉𝑝)

2

𝑁
𝑝=1 ,   (35) 

 

where 𝑅𝑝 is the distance from the 𝑝 source to the line of view 𝑙 

 

𝑅𝑝 = 𝑅0 − 𝜂𝑝.       (36) 

 

Based on the above consideration, let us write down the necessary and sufficient conditions for 

an approximate description of the exact expression (35) 

 

(
𝜌

𝑅0
)

2

<< 1, (
𝜂𝑝

𝑅0
)

2

<< 1, (
𝜉𝑝

𝑅0
)

2

<< 1

   

 (37) 

and 

𝛿𝜌 << 1, 𝛿𝑝
𝜉

<< 1,      (38) 

where 

𝛿𝜌 =
𝜌4

𝜆𝑅0
3,      𝛿𝑝

𝜉
=

𝜉𝑝
4

𝜆𝑅0
3.     (39) 

 

If conditions (37), (38) are satisfied for all sources and observation points, then superposition field 

(33) can be written in the Fresnel pattern as follows (see (11)) 

 

𝑈(�⃗⃗�, 𝑡) =
𝑎

𝑅0
∑ 𝑐𝑜𝑠 [𝜔𝑡 − 𝑘 (𝑅𝑝 +

(𝜌−𝜉𝑝)2

2𝑅0
)]𝑁

𝑝=1 .  (40) 

 

If the sufficient condition (38) is replaced with a stronger condition 

 

𝜌2

𝜆𝑅0
=

𝜎𝜌

2𝜋
<< 1, 

𝜉𝑝
2

𝜆𝑅0
=

𝜎𝑝
𝜉

2𝜋
<< 1,    (41) 

 

then the form of the superposition field in the Fraunhofer pattern is derived from expression (40) as 

follows 

𝑈(�⃗⃗�, 𝑡) =
𝑎

𝑅0
∑ 𝑐𝑜𝑠[𝜔𝑡 − 𝑘𝑅𝑝]𝑁

𝑝=1 .    (42) 

 

As can be seen from the result obtained, only the longitudinal spatial parameters of the problem 

appear in the Fraunhofer pattern [16]. 
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Let us now discuss the question of determining the superposition field intensity maxima points. 

It is obvious that oscillation at a point will occur with an amplitude of 

 

𝐴 = 𝑁
𝑎

𝑅0
,       (43) 

if the phase difference of all waves arriving at a given point is a multiple 2𝜋 

 

𝜑𝑝 − 𝜑𝑗 = 2𝜋𝑛𝑝𝑗,       (44) 

where 𝑛𝑝𝑗 = 0, ±1, ±2, ⋯. 

Using the exact wave field expression (35), the intensity maximum condition (44) can be written 

as follows 

𝑘 (√𝑅𝑝
2 + (𝜌 − 𝜉𝑝)

2
− √𝑅𝑗

2 + (𝜌 − 𝜉𝑗)
2

) = 2𝜋𝑛𝑝𝑗.  (45) 

 

Considering (40), in the Fresnel pattern, this condition turns into 

 

𝑘(𝑅𝑝 − 𝑅𝑗) + 𝑘
𝜉𝑝

2−𝜉𝑗
2−2𝜌(𝜉𝑝−𝜉𝑗)

2𝑅0
= 2𝜋𝑛𝑝𝑗.    (46) 

 

It is important to note that under the condition Error! Reference source not found. one can take 

 

𝑘
𝜉𝑝

2−𝜉𝑗
2−2𝜌(𝜉𝑝−𝜉𝑗)

2𝑅0
<< 1. 

 

It is easy to see that in this case (46) turns into 

 

𝑘(𝑅𝑝 − 𝑅𝑗) = 2𝜋𝑛𝑝𝑗,       (47) 

 

which is in accordance with (42) is the intensity maximum condition in the Fraunhofer pattern. 

Here attention should be paid to two circumstances, the first of which is related to the 

approximate condition (46). It is important to note that the maximum intensity condition in the Fresnel 

pattern includes the situation when 

 

𝑘(𝑅𝑝 − 𝑅𝑗) = 2𝜋𝑚𝑝𝑗,  𝑘
𝜉𝑝

2−𝜉𝑗
2−2𝜌(𝜉𝑝−𝜉𝑗)

2𝑅0
= 2𝜋ℎ𝑝𝑗,   (48) 

 

where 𝑚𝑝𝑗 , ℎ𝑝𝑗 = 0, ±1, ±2, ⋯. Obviously, if 𝑚𝑝𝑗 + ℎ𝑝𝑗 = 𝑛𝑝𝑗, then (48) automatically implies the 

fulfillment of (46). At the same time, it is clear that the first condition (48) is nothing but the condition 

for the maximum intensity in the Fraunhofer pattern. It follows from the above that, from a practical 

point of view, it is valuable to consider the diffraction experiment in the Fresnel pattern, when the 

conditions for the maximum in the Fraunhofer pattern are met (see 

Error! Reference source not found.). We will analyze this issue in more detail in the context of the 

interference problem of waves from two sources (see below). 

The second circumstance is connected with formula (47) and, in particular, its underlying 

Fraunhofer method for determining the maxima of the superposition field based on the construction 

of parallel rays. The essence of this method is well known and it entails the following. A system of 

parallel straight lines is drawn from the points of location of the sources parallel to some chosen 

direction. If the differences in the paths of the waves in the given direction are multiples of the 

wavelength, then the waves are amplified in that direction. Otherwise, the waves partially or 

completely dampen each other in that direction. In this regard, it is very often possible to meet the 
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statement that parallel beams amplify each other. In the context of the above, the following question 

seems reasonable: if we talk about amplification in a direction, should we assume that all rays 

emanating from different sources are simultaneously amplified? And if so, is the amplification 

uniform, i.e., are all beams amplified by the same amount? If the amplification is non-uniform, then 

which of the rays is amplified the most, and which the least? Clearly, such an interpretation of the 

results of the diffraction experiment raises many questions. As it will be shown below, the 

enhancement in the Fraunhofer diffraction pattern corresponds to the effect of enhancement in the 

direction of observation, while in the Fraunhofer interference pattern a point enhancement occurs 

[16]. 

 

5. About the observation angle and the viewing angle in the interference pattern 

 

The discussion presented above is rather general, the only restriction for which is that the 

sources, the direction of observation and the direct line of view are located in the same plane. Let us 

apply the results presented above to the problem of the interference of the fields of two sources of 

spherical waves, the classical treatment of which is given in the Fresnel pattern (see (40), where 𝑁 =
2). 

For definiteness, suppose the origin of coordinates is located directly in the middle of the 

segment connecting the sources through which the axis𝑋 passes (see Fig. 4). Then, the vectors 𝑟1 

and𝑟2  can be presented as 

𝑟1 = −𝑑 ⋅ 𝑒𝑥/2,  and 𝑟2 = 𝑑 ⋅ 𝑒𝑥/2,     (49) 

 

where 𝑒𝑥 is the unit dimensionless vector indicating the positive direction of the axis𝑋 and 𝑑 > 0 is 

the distance between the sources. 

The angle 𝛼 is also shown on the figure. It is the angle between the axis 𝑋 and the main observation 

vector �⃗⃗�0. The angle 𝛼 will be referred to as the angle of observation. It is easy to show that 

 

𝑒𝑥 = 𝑒∥ 𝑐𝑜𝑠 𝛼 + 𝑒⊥ 𝑠𝑖𝑛 𝛼.      (50) 

 

Note that the value 𝛼 = 𝜋/2 corresponds to the case of frontal observation (𝑒∥ = 𝑒𝑦, where 𝑒𝑦 

is the unit dimensionless vector indicating the positive direction of the axis). Fig. 4 also shows the 

viewing angle 𝛽 between the vectors �⃗⃗�0 and �⃗⃗�, which, in sum with the observation angle determines 

the actual viewing angle 𝛼 + 𝛽. 

 
Fig. 4. Diagram of the interference experiment. 
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Here it seems necessary to comment on the expediency of introducing the concept of viewing 

angle. The thing is that when changing the observation angle 𝛼, we change the observation plane (in 

this case, the spatial position of the line 𝑙). When the observation angle is changed, the spatial position 

of the observation line does not change. Obviously, at a fixed value of 𝛼, a change of the viewing 

angle 𝛽 leads to a change in the position of the observation point on the line 𝑙. 
Using (49), (50) the following are derived 

 

𝑟1 = −
𝑑

2
𝑒∥ 𝑐𝑜𝑠 𝛼 −

𝑑

2
𝑒⊥ 𝑠𝑖𝑛 𝛼,  𝑟2 =

𝑑

2
𝑒∥ 𝑐𝑜𝑠 𝛼 +

𝑑

2
𝑒⊥ 𝑠𝑖𝑛 𝛼.  (51) 

 

Based on these formulas for the longitudinal and transverse spatial parameters of sources, the 

following can be written (see (5) and (34)) 

 

𝜂1 = −
𝑑

2
𝑐𝑜𝑠 𝛼, 𝜂2 =

𝑑

2
𝑐𝑜𝑠 𝛼, 𝜉1 = −

𝑑

2
𝑠𝑖𝑛 𝛼, 𝜉2 =

𝑑

2
𝑠𝑖𝑛 𝛼.   (52) 

 

Considering the field amplification condition for two sources in the Fresnel pattern (see (46)) the 

following is derived, 

𝑘(𝑅1 − 𝑅2) + 𝑘
𝜉1

2−𝜉2
2−2𝜌(𝜉1−𝜉2)

2𝑅0
= 2𝜋𝑛12,    (53) 

where in accordance with Error! Reference source not found. 

𝑅1 = 𝑅0 − 𝜂1, 𝑅2 = 𝑅0 − 𝜂2,      (54) 

 

and it can be seen that in case of (52), the formula Error! Reference source not found. turns into 

 

𝑘 ⋅ 𝑑 𝑐𝑜𝑠 𝛼 + 𝑘 ⋅
𝜌⋅𝑑 𝑠𝑖𝑛 𝛼

𝑅0
= 2𝜋𝑛12.     (55) 

 

It is easy to check that in the case of frontal observation (𝛼 = 𝜋/2) the equation (55) turns into the 

well-known form of the condition for the maximum of the interference pattern 

 
𝜌𝑛⋅𝑑

𝑅0
= 𝜆 ⋅ 𝑛,        (56) 

where 𝑘 = 2𝜋/𝜆. 

Taking into account the relationship (26), and using (56) it is easy to determine the values of 

the viewing angles at which the intensity maximum is observed 

 

𝛽𝑛 =
𝜆⋅𝑛

𝑑
.       (57) 

 

It is interesting the maximum condition Error! Reference source not found.obtained in 

Fresnel approximation  in the Fraunhofer approximation. This suggests that 

𝑘 ⋅
𝜌⋅𝑑 𝑠𝑖𝑛 𝛼

𝑅0
<< 2𝜋. 

Taking into account this condition, it is easy to see that Error! Reference source not found.) takes 

the form of 𝑑 𝑐𝑜𝑠 𝛼 = 2𝜋𝑛12. It is easy to see that this equality is nothing more than the maximum 

condition for a in the far region of observation for a diffraction grating (see below). It is easy to see 

that in the case of the angle 𝛼𝑚         (𝑑 𝑐𝑜𝑠 𝛼𝑚 = 2𝜋𝑚) the condition 

Error! Reference source not found. takes the form 
𝜌𝑛⋅�̃�

𝑅0
= 𝜆 ⋅ 𝑛, 

where �̃� = 𝑑 𝑠𝑖𝑛 𝛼𝑚. This equality exactly coincides with the intensity maximum condition for 

frontal observation Error! Reference source not found., when the distance between the sources is 
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considered as equal to 𝑑 𝑠𝑖𝑛 𝛼𝑚. It follows from the above that when the observation screen is 

perpendicular to the direction of one of the maxima in the far region, then the distribution of maxima 

in the near observation region has a periodic character. 

Here it is necessary to pay special attention to the following circumstances. The fact is that 

when considering interference from two or many sources (diffraction grating) in the near region of 

observation, we are dealing with the effect of an intensity amplification at a point. At the same time, 

in optical experiments observed in a far region, we fix the amplification in the direction (see [16]). 

That is why lenses are used for observations in the far region. Lenses change the nature of the 

amplification, namely, the amplification in the direction is changed into amplification at the point. 

Indeed, for the diffraction experiment, the description in the Fraunhofer pattern is applicable. 

Application of the Fraunhofer pattern condition to two sources means that the intensity maximum 

condition will be determined according to the formula 𝑘(𝑅1 − 𝑅2) = 2𝜋𝑛12 (see. 

Error! Reference source not found.), which in turn is transformed into 

𝑑 𝑐𝑜𝑠 𝛼 = 𝜆𝑛12.      (58) 

 

This formula is nothing else than an equation that determines the angles of amplification in a 

diffraction experiment (see [1, 2]). As it can be seen from formula (57), the angle that determines the 

amplification effect in the interference experiment is the viewing angle 𝛽, while in formula (58) the 

angle that determines the amplification effect in the diffraction experiment is the observation angle 

𝛼 (see below). 

When deriving the well-known formulas related to the description of the interference pattern, 

the Fresnel pattern used in the theory of diffraction was used (see (37), (38)). Further, to consider the 

connection between the Fresnel conditions directly and the parameters of the interference problem, 

we note that the source approximation parameters can be replaced by a single parameter (see (52)) 

 

𝛿1,𝜁 ∼ 𝛿2,𝜁 ∼ 𝛿𝑑 =
𝑑4

16𝜆𝑅0
3.     (59) 

 

Obviously, in this case the sufficient condition for the Fresnel pattern will be presented as 

 

𝛿𝜌 << 1, 𝛿𝑑 << 1.      (60) 

 

Despite the fact that the Fresnel pattern is an approximation, in addition to the Fraunhofer 

pattern, it can also include the following situations 

 

𝛿𝑑 << 𝛿𝜌 << 1,      (61) 

𝛿𝜌 << 𝛿𝑑 << 1,      (62) 

𝛿𝜌 ∼ 𝛿𝑑 << 1.       (63) 

 

Remarkably, optical interference experiments correspond to situations (61), because the 

distances between the sources are on the order of a millimeter, and the region of observation of the 

maxima is on the order of a centimeter. 

 

6. Description of the diffraction experiment in the Fresnel approximation 

 

Let us now consider the situation when 𝑁 sources are located on the axis 𝑋, and 𝑁 > 2 (see 

Fig. 5). We again consider the problem of an approximate description of the wave field on the line 𝑙, 

perpendicular to the main direction of observation �⃗⃗�0. The figure also shows the viewing angle 𝛽 and 

the angle of observation 𝛼. 
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Fig. 5. Diagram of the diffraction experiment. 

 

Suppose the sources on the axis 𝑋are located at certain distances from each other, i.e., 

periodically. Then 

𝑟𝑝 = 𝑥𝑝𝑒𝑥, 𝑥𝑝 = 𝑥1 + (𝑝 − 1)𝑑,    (64) 

 

where 𝑝 = 1,2, ⋯ , 𝑁, 𝑥1- the coordinate of the first source, 𝑑 is the period of the diffraction grating. 

Further, we will consider the coordinate of the first source equal to 

 

𝑥1 = −
(𝑁−1)𝑑

2
 .      (65) 

 

Note that by choosing the coordinate of the first source in the form (65), we place the origin of 

coordinates at the center of the diffraction grating. Using (64), (65) (see also (52)), the longitudinal 

and transverse coordinates of the sources can be represented as 

 

𝜂𝑝 = −
𝑁−2𝑝+1

2
𝑑 𝑐𝑜𝑠 𝛼, 𝜉𝑝 = −

𝑁−2𝑝+1

2
𝑑 𝑠𝑖𝑛 𝛼.  (66) 

 

Further, on the viewing axis 𝑙, we will consider the intensity of the wave field 

 

𝐼(𝑁) =
1

𝑇
∫ 𝑈2(�⃗⃗�, 𝑡)𝑑𝑡

𝑇

0
,     (67) 

 

where𝑇 = 2𝜋/𝜔 is the oscillation period. Using the field expression in the Fresnel pattern (40) for 

(67), the following can be obtained 

𝐼(𝑁, 𝜌) =
1

2
(

𝑎

𝑅0
)

2
∑ ∑ 𝑐𝑜𝑠2 [

𝐿𝑗𝑖⋅𝑘+𝜇𝑗𝑖

2
]𝑁

𝑖=1
𝑁
𝑗=1 ,   (68) 

where 

           𝐿𝑗𝑖 = (𝑗 − 𝑖)𝑘𝑑 𝑐𝑜𝑠 𝛼, 

𝜇𝑗𝑖 =
𝑘

2𝑅0
(𝜉𝑗

2 − 𝜉𝑖
2 − 2𝜌(𝜉𝑗 − 𝜉𝑖)).    (69) 

 

It is then easy to conclude that the intensity of the field in the Fraunhofer pattern will be 

determined by the expression 

𝐼(𝑁, 𝜌) =
1

2
(

𝑎

𝑅0
)

2
∑ ∑ 𝑐𝑜𝑠2 [

𝐿𝑗𝑖⋅𝑘

2
]𝑁

𝑖=1
𝑁
𝑗=1 ,   (70) 

 

i.e., when in (68) it is assumed that all 𝜇𝑗𝑖 << 2𝜋 (see also (42)). As it follows from (69), (70), if 

𝐿𝑗𝑖 = 2𝜋𝑛𝑗𝑖 , i.e. when 

(𝑗 − 𝑖)𝑑 𝑐𝑜𝑠 𝛼 = 𝜆𝑛𝑗𝑖 ,      (71) 
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then the intensity of the field in the Fraunhofer pattern has a maximum value 

 

𝐼
1

2

2
(

𝑎

𝑅0
)

2

𝑚𝑎𝑥
.       (72) 

 

Note that in the Fraunhofer pattern, the field intensity does not depend on the coordinate of the 

observation point 𝜌on the viewing axis. It should be noted that not only in the directions of the 

maximums, but also in other directions in the far region of observation, the field intensity does not 

depend on the coordinate of the observation point on the screen. Indeed, as it follows from (42) the 

wave field in the far region does not depend on 𝜌. 

It is easy to see that the intensity maximum condition obtained in the Fraunhofer pattern for the 

interference experiment (58) coincides with the maximum condition for the diffraction experiment 

(71). Indeed, when 𝑑 𝑐𝑜𝑠 𝛼 = 𝜆𝑛𝑗𝑖, then condition (71) is satisfied for all 𝑗, 𝑖. Further, we will 

consider the field pattern in the Fresnel pattern, when the field intensity in the Fraunhofer pattern 

satisfies the maximum condition. According to (68)-(71), in this case, the intensity distribution on the 

straight line 𝑙 will be expressed by the condition 

 

𝐼(𝑁, 𝜌) =
1

2
(

𝑎

𝑅0
)

2
∑ ∑ 𝑐𝑜𝑠2 [

𝑘

4𝑅0
((𝜉𝑗

𝑛)2 − (𝜉𝑖
𝑛)2 − 2𝜌(𝜉𝑗

𝑛 − 𝜉𝑖
𝑛))]𝑁

𝑖=1
𝑁
𝑗=1 ,   (73) 

where 

𝜉𝑝
𝑛 = −

𝑁−2𝑝+1

2
𝑑 𝑠𝑖𝑛 𝛼𝑛,        (74) 

 

where the angle 𝛼𝑛 is determined based on the intensity maximum condition in the Fraunhofer 

pattern: 𝑑 𝑐𝑜𝑠 𝛼𝑛 = 𝜆𝑛. 

It should be noted that even for the case of periodically located emitters (74), series (73) cannot 

be analytically calculated. It is easy to guess that it is a discrete analogue of the well-known Fresnel 

integral in the theory of diffraction. Below we will explore frontal observation, i.e. when 𝛼𝑛 = 𝜋/2 

and, therefore, the line 𝑙 is parallel to the source location axis 𝑋. Using (74) one can see that in this 

case the expression (73) turns into 

𝐼(𝑁, 𝜌) =
1

2
(

𝑎

𝑅0
)

2
∑ ∑ 𝑐𝑜𝑠2 [

𝑥𝑗
2−𝑥𝑖

2−(𝑥𝑗−𝑥𝑖)⋅𝜌

4𝑅0
𝑘]𝑁

𝑖=1
𝑁
𝑗=1 ,   (75) 

where 

𝑥𝑝 = −
𝑁−2𝑝+1

2
𝑑.         (76) 

 

Note that the expression for the field intensity remains valid for any arrangement of emitters, 

and not only for periodic ones (see (76)). As it follows from (75), at the central observation point        

(𝜌 = 0) 

𝐼(𝑁, 0) =
1

2
(

𝑎

𝑅0
)

2
∑ ∑ 𝑐𝑜𝑠 [

𝑥𝑗
2−𝑥𝑖

2

2𝑅0
𝑘]𝑁

𝑖=1
𝑁
𝑗=1 .     (77) 

 

It is easy to see that the effect of full amplification of the waves (see (72)), i.e. when 

 

𝐼(𝑁, 0) = 𝐼𝑚𝑎𝑥,      (78) 

 

is possible only if the following condition is held 

 
𝑥𝑗

2−𝑥𝑖
2

2𝑅0
𝑘 = 2𝜋𝑛𝑗𝑖.      (79) 
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Inserting (76) into (79) one can get 

 
𝑥𝑗

2−𝑥𝑖
2

2𝑅0
𝑘 = (𝑗 − 𝑖)(𝑁 + 1 − 𝑗 − 𝑖)

𝑑2𝑘

2𝑅0
.   (80) 

 

As it can be seen from this expression, if 

 

𝑗 + 𝑖 = 𝑁 + 1,       (81) 

 

then the amplification condition (79) between the waves emitted by the 𝑗 -th and 𝑖 -th sources is 

satisfied automatically. Indeed, equation (81) corresponds to sources (𝑥𝑗 = −𝑥𝑖) symmetrically 

located and therefore 
𝑥𝑗

2−𝑥𝑖
2

2𝑅0
𝑘 = 0.       (82) 

 

It is noteworthy that in the interference experiment, where the number of sources is equal to two, the 

location of the sources fully corresponds to this case (𝑥1 = −𝑥2). 

 

7. On the problem of determining the distribution of maximums in the near observation region 

 

To meet the full amplification condition (78), it is necessary that (80) be satisfied between the 

waves of all emitters, and not only those symmetrically located relative to the origin (81). Suppose 

 
𝑑2𝑘

2𝑅0
= 2𝜋ℎ,        (83) 

 

where ℎ = 1,2, ⋯. Then, as it can be seen from Error! Reference source not found., 

Error! Reference source not found. 

 

𝑛𝑗𝑖 = ℎ(𝑗 − 𝑖)(𝑁 + 1 − 𝑗 − 𝑖)    (84) 

 

and, consequently, the waves of all emitters amplify each other. Thus, if condition (83) is satisfied, 

the diffraction grating will behave as an intensifying lens. 

Taking into account that 𝑘 = 2𝜋/𝜆 the expression Error! Reference source not found. can be 

presented in the form of 

 

𝑑 = √2𝜆𝑅0ℎ.        (85) 

 

As follows from the above, when condition (85) is satisfied, the field of a system of periodically 

located sources has the following point of maximum amplification (see (64), (76)) 

 

𝑥𝑝 = −
𝑁−2𝑝+1

2
√2𝜆𝑅0ℎ.      (86) 

 

Restricting it to the case of ℎ = 1 , let us present (85) in the following form 

 

𝑅0 =
𝑑2

2𝜆
.        (87) 

 

Suppose the radiation wavelength is 𝜆 = 0.4μm and the period of the diffraction grating is                          

𝑑 = 10−4 m. Then, as it follows from (87), the point of maximum field amplification will be at a 
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distance of 𝑅0 = 1.25 cm from the diffraction grating. In the end, we note that the obtained result 

Error! Reference source not found. directly reflects the well-known Talbot Effect [17, 18]. 

8. Conclusion 

 

Thus, it is shown that with a more comprehensive presentation of the theory of approximate 

description of the superposition field, the description of interference and diffraction experiments can 

be given within the framework of a single scheme. 
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