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Abstract. A recently introduced recurrence-relation ansatz applied to the Jaynes-Cummings-

Hubbard model is here applied to the Bose-Hubbard model that reduced the model to an easily 

soluble model. The results obtained for the two-point density correlations resemble somewhat those 

obtained recently also but in a much more complicated fashion. Our ansatz may be of value for the 

solution of many-body quantum mechanical problems. 
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1. Introduction 

 

In the study of many-body physics in dilute ultracold gases, the Bose-Hubbard model plays a 

significant role since it applies to strongly interacting gases [1] and has been experimentally realized 

with ultracold atoms in optical lattices [2–10]. In a recent paper [11], the many-body interference 

phenomena is investigated with the aid of the Bose-Hubbard model. The two-point density 

correlations ν of the number of particles in a given site shows, when varying the tunneling parameter 

J/U, a sharp peak around the value of J/U ≃ 0.23 where the dynamics becomes chaotic and exhibits 

the behavior of the indistinguishability/distinguishability of the particles [11]. 

Here we consider a recently introduce recurrence-relation ansatz between annihilation operators 

and apply it to the nearest-neighbor tunneling that considerably simplifies the Bose-Hubbard 

Hamiltonian [12]. This paper is structured as follows. In Sec. 2, we present the Bose-Hubbard model 

on an infinite, one-dimensional lattice. In Sec. 3, we introduce a recurrence-relation ansatz for the 

external degree of freedom associated with the nearest-neighbor of the j-th lattice site. In Sec. 4, we 

calculate the two-point density correlations of the number of particles on site i, irrespective of their 

internal states. Finally, in Sec. 5, we summarize our results. 

 

2. Bose-Hubbard model 

 

We consider the one-dimensional, infinite Bose-Hubbard model [1] with Hamilontian 

 

The first index of the creation and annihilation operators refers to the Wannier orbitals of 

the lattice, which span the external single-particle Hilbert space Hext . The second index σ refers to a 

basis of the s-dimensional internal single-particle Hilbert space, describing, e.g., the electronic state 

of an atom loaded into an optical lattice. The operator counts the number of 

particles on lattice site i, irrespective of their internal state. We keep the total particle number        

fixed. The two terms in Ĥ describe nearest-neighbor tunneling and on site interaction of 

the particles, both of which act exclusively on the external degree of freedom (d.o.f.), while the 
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internal d.o.f. remain static.  

 

3. Ansatz 

 

Consider the following recurrence-relation ansatz for the external d.o.f. associated with the 

nearest-neighbor of the j-th lattice in (1) 

 
and so 

 

 
 

The Bose-Hubbard Hamiltonian (1) is reduced to 

 

 
with energy eigenstates    and eigenvalues 

 

 
where Ni indicates the number of bosons in lattice site i. 

We consider the simplest mixed state 

 

 
 

where and so Tr�̂� = λ + β =1 similarly for the other three eigenstates of the number 

operators and all four states are orthonormal. Note that |a|2 + |b|2  = 1 and so Tr�̂� 2 = λ + β =1 with γ = 

Tr�̂�2 = λ2 + β2 ≥ 1/2, where the equality holds when λ = β =1/2 and so 1/2 ≤ Tr�̂�2 ≤ 1. [For S 

orthonormal terms in (6), instead of just two terms as in (6), one obtains 1/S ≤ Tr�̂�2 ≤ 1.] In the 

limiting process, 𝜖 → 0 (see (12) below), the primed and unprimed states have the same energy and 

so 

 
 

Note that a finite ratio is obtained in (7) as a limiting process, viz., 𝜖 → 0  (see (12) below) since we 

are requiring  in this limit. 

 

4. Correlations 

 

Consider the variance of expectation values of the two-point density correlations operator 

 
we then have that 
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We now average the variable |a|2 in (9) by the Dirac- δ function distribution δ(|a|2 - 1/r) in order to 

require that the correlation vanishes both in the limit J/U → ∞  and J/U → 0 and (9) becomes 

 

 
We define 

 
 

In order to evaluate the correlation (11), we consider the following four orthonormal number 

states with seven lattice sites with a total number of seven bosons with at most two bosons occupying 

a particular lattice site, 

 

 
We then have that 

 

 
And (11) becomes 

 

 
 

Fig. 1 shows the behavior of ν as a function of J/U for different values of γ = Tr�̂� 2. Note the 

maximum at J/U = 0.25. In Ref. (11), the value of γ is used as a measure of indistinguishability with 

γ = 1 for indistinguishable particles and minimal for perfectly distinguishable ones. In our case, the 

minimal value of γ = 0.5 owing to having only two states represented in the mixed state (6). Fig. 2 

shows the same results as that in Fig. 1 albeit plotted in a linear rather than a logarithmic scale. These 

results are reminiscent of those in Ref. 11, where they consider the model albeit with six bosons in 

six lattice sites and where the six bosons can occupy a single lattice site. In our case, we limit the 

occupancy of a single site to only two bosons. The onset of chaos discussed in Ref. 11 would require 

a sort of classical limit of a quantum mechanical system that may result in the presence of a multitude 

of particles that would not apply to a system with a finite number of particles. 
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Fig. 1. Plot of ν given by (11) for different values of γ = Tr�̂� 2, γ= 1.00 (red), γ = 0.81 (cyan), 

γ = 0.56 (green), and γ = 0.50 (blue). 

 

 

 

Fig. 2. Same plot as Fig. 1 in a linear rather than a logarithmic scale. 

 

 

5. Conclusions 

 

We have considered a recently introduced ansatz for the annihilation operators via a recurrence 

relation and applied it to the Bose-Hubbard model. The results obtained are quite consistent with 

previously obtained results. The simplicity of our assumption and the easily solvable resulting model 

indicates the potential value of this approach for solving quantum mechanical, many-body problems. 
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