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In this work, the Renyi holographic dark energy (RHDE) and its behaviour has been explored
with the anisotropic and spatially homogeneous Bianchi type-I Universe in the framework of f (G)
gravity. We use IR cutoff as the Hubble and Granda-Oliveros (GO) horizons. To find a consistent
solutions of the field equations of the models, it is assumed that the deceleration parameter is
defined in terms of function of Hubble parameter H. With reference to current cosmological data,
the behaviors of the cosmological parameters relating to the dark energy model are evaluated and
their physical significance is examined. It is observed that for both the models, the equation of state
parameter approaches to -1 at late times. However, the RHDE model with the Hubble horizon
exhibits stability from the squared sound speed, but the RHDE model with the GO horizon
exhibits instability. In both the models, deceleration parameter and statefinder diagnostic confirm
the accelerated expansion of the Universe and also correspond to the CDM  model at late times.
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1. Introduction. General relativity (GR) is regarded as a key theory to

comprehend several complexities of gravitational influences that offer a fundamen-

tal explanation of astrophysical events as well as the cosmos. The most significant

truth that the Universe suffers early inflation as well as late-time accelerated

expansion has been revealed by a number of observational findings in recent years

[1-6]. The exotic substance of extremely high negative pressure known as dark

energy (DE) which is the cause of the Universe's expansion at an accelerated rate

that accounts for 68 percent of the known Universe total density. Its nature

continues to be a mystery still. The cosmological constant  , which Einstein

incorporated into the field equations in General Relativity, provides the straight-

forward argument for DE. This cosmological constant is thought to be extremely

compatible with the observational data and has an equation of state (EoS)

parameter of 1 . Some dynamic models of DE, such as quintessence [7,8],

phantom [9], k-essence [10], tachyons [11], Chaplygin gas [12], etc, have been

proposed in response to the challenges associated with its theoretically expected

order of magnitude with respect to that of the vacuum energy [13]. Another

categories of dynamic DE models allow us to accelerate the expansion without
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introducing any form of energy. These categories are known as modified gravity

theories, which give an accelerated expansion through a modification in the action

such as  Tf  gravity,  TRf  ,  gravity,  GRf  ,  gravity,  T ,Tf  gravity and

) , , ,( 
 TRTRf  gravity where T is the trace of the energy-momentum tensor,

R  is the Ricci tensor and G is the Gauss-Bonnet (GB) invariant [14-17].

Modified GB gravity, also known as  Gf  gravity, is one of the modified forms

of GR that uses an arbitrary function of G, a quadratic invariant of the Gauss-

Bonnet equation in the Einstein-Hilbert action [18]. The motivation for  Gf
theory is mostly based on string theory via low energy effective scale [19]. Nojiri

and Odintsov [20] studied the cosmological reconstruction of different modified

gravities in detail and the occurrence of Big Rip and other finite-time future

singularities in modified gravity was found. This approach effectively explains the

accelerated expansion of the Universe which change from the decelerating to

accelerating phase, satisfactory system tests, essential for Sadjadi's explanation of

thermodynamics [21] and characterization of all possible four types of future

singularities by Bamba et al. [22]. Thus one can construct feasible and consistent

general theory of relativity models with local constraints by using  Gf . Myrzakulov

et al. [23] investigated this theory to examine the DE as well as the inflationary

era. The reconstruction scenario of the most recent agegraphic dark energy

(NADE) model and the  Gf  theory within the flat FRW space-time was taken

into consideration by Jawad et al. [24]. Shamir [25] reviewed the anisotropic

space-time in f(G) gravity. Sharif and Fatima [26] studied energy conditions in

 Gf  theory. Shaikh et al. [27] studied LRS Bianchi type-I models with

holographic dark energy (HDE) within  Gf  theory of gravity using different scale

factors. Nojiri et al. [28] reviewed the latest developments of modified gravity in

cosmology, emphasizing on inflation, bouncing cosmology and late-time accelera-

tion era. Koussour et al. [29] compared HDE in  Gf  gravity within Bianchi

type-I space-time with the CDM  model by analysing the jerk parameter.

Particularly among the different dynamical DE models, the HDE model has

recently emerged as an effective method for researching the DE riddle. It was put

forth based on the quantum characteristics of black holes (BH), which have been

thoroughly studied in the literature to research quantum gravity [30,31]. By

holographic principle, we know that in a system with size L, bound on the vacuum

energy   must be under the limit of same size of the BH mass because of the

formation of BH in quantum field theory. The energy density of HDE is defined

as 2223 
  Lmd p  where m

p
 is the reduced Planck mass, 23d  numerical constant

and L is IR-cutoff (Cohen et al. [32]). In the literature, various types of IR-

cutoff have been investigated, for example Hubble horizon 1H , particle horizon,

event horizon, Ricci scalar radius, conformal Universe age and Granda-Oliveros

cutoff [33-36]. Several HDE models with different IR-cutoffs may provide the
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recent accelerated expansion of the Universe and demonstrate that transition from

early decelerated epoch (q > 0) to current accelerated epoch (q <  0) is in consistent

with recent observational data. It can also resolve the problem of cosmic coin-

cidence [37]. Number of studies suggested that the HDE model and observational

data are in a fair amount of agreement [38-41]. By using generalized HDE and

phantom cosmology, Nojiri and Odintsov [42] suggested a method to unify the

early phase as well as late-time epochs of Universe, and they also advocate for

generalized concept as Hinflation [43]. Based on several formalism of entropy,

HDE models are formulated such as Tsallis HDE (THDE) [44], Sharma-Mittal

HDE (SMHDE) [45] and Renyi HDE model (RHDE) [46]. Among these models,

the new dark energy model proposed by Moradpour et al. [46] named the Renyi

holographic dark energy (RHDE) model for the cosmological and gravitational

investigations shows more stability by itself. Several researchers have discussed

RHDE in different theories of gravity. Using the Renyi entropy, the modified

Friedmann equations are obtained [47-49]. The inflation may be found in the

Renyi formalism suggested by Ghaffari et al. [50]. THDE model is unstable at

the classical level, whereas SMHDE and RHDE are stable in the case of non-

interacting cosmos. Prasanthi and Aditya [51] studied RHDE in Bianchi type VI0

space-time and found that the Hubble cutoff is stable whereas the Granda-Oliveros

cutoff is unstable. They also constrained the observational values of RHDE in

Kantowski-Sachs Universe [52]. Shekh [53] studied holographic and Renyi

holographic dark energy models with the help of FLRW line element in  Qf
gravity. Nojiri et al. [54] investigated the holographic approach to describe the

early-time acceleration and the late-time acceleration eras of our Universe in a

unified manner. Nojiri et al. [55] showed that the Barrow entropic DE model

is equivalent to the generalized HDE where the respective holographic cutoff is

determined by two ways (a) in terms of particle horizon and its derivative and

(b) in terms of future horizon and its derivative.

Since anisotropy was crucial in the early stages of cosmic evolution, the

anisotropic Universe has recently caught the interest of many physicists. Addi-

tionally, the cosmic microwave background (CMB) anomalies from the Planck

data [18], which were acquired, supported the notion of an anisotropy phase at

the beginning of the Universe followed by an isotropy phase. The Bianchi type-

I model has been examined by a number of researchers [56-59]. Based on the

aforementioned studies, we investigate the Renyi holographic model of DE with

 Gf  gravity in the Bianchi type-I Universe in this paper. In order to solve the

field equations and determine various physical variables, we shall assume that the

deceleration parameter (DP) is a function of the Hubble parameter H. Following

is the breakdown of the paper. The introduction is found in Sect. 1. We construct

the action of  Gf  gravity and the field equation in Sect. 2. We have developed
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the Bianchi type-I metric and provided a few physical and geometrical parameters

in Sect. 3. In Sect. 4, we studied the models of Renyi holographic dark energy

Sect. 5 explain about the cosmological parameters. In Sect. 6, we examine the

equivalence between the Granda-Oliveros HDE of the present work and the

generalized HDE. A conclusion is included in the final section 7.

2. Formulation of Gauss-Bonnet gravity. The  Gf  gravity's modified

Einstein-Hilbert action is configured [60] as follows

    .  ,
2

1 4

2  


 gSGfRgxdS M (1)

In this case, g denotes the determinant of metric tensor g ,   is the coupling

constant,  Gf  is a general differentiable function of GB invariant, R is the Ricci

scalar, S
M
 stands for a matter action which is a function of a space-time metric

g  and matter fields  . The equation of invariant GB quantity is given as

. 442 



  RRRRRG (2)

By varying the action (1) w.r.t. g  shows the resulting equation



    , 
2

1

8

2















TgfGffggggR

gRgRgRgRRG

GG
(3)

where   denotes covariant differentiation, the Einstein tensor, 2  RgRG ,

T  is the usual energy momentum tensor of matter fluid and f
G
 stands for the

derivation of f with respect to G.

3. Field equations and solutions. As observations highlight the possibility

of anisotropic behavior of Universe, the geometry of the spatially homogenous and

anisotropic Bianchi type-I space-time, represented by the following metric is

considered

    . 2222222 dzdytBdxtAdtds  (4)

Here A and B are time dependent functions. Thus for this LRS Bianchi type-

I metric, the Ricci scalar R and GB invariant are respectively obtained as

, 222
2

2










B

B

B

B

A

A

B

B

A

A
R


(5)

. 28
22

2











AB

BBA

AB

BA
G


(6)

The matter and holographic dark energy have the energy momentum tensors in

the form
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.   uuT m (7)

and

  .  
 pgupT

~
uu (8)

where m  and   are the energy densities of matter and holographic dark energy

respectively and p  is the pressure of the HDE. In this Bianchi type-I metric

(4), the field equations (3) with the (7) and (8) give us the system of field

equations given below

, 8162 2

2

2

22

2

 pfGff
B

B
f

B

BB

B

B

B

B
GGG







(9)

, 88 2











 pfGff

AB

BA
f

AB

BA

AB

BA

AB

BA

B

B

A

A
GGG







(10)

  , 242 2

2

2

2

2

 mGG fGff
AB

BA

B

B

AB

BA 


(11)

As we know, a dot (.) denote the derivation of the time t. The average scale factor

a(t) and the spatial volume V are defined by

. 23 ABaV  (12)

The general form of average Hubble parameter H is defined as

 . 2
3

1
21 HH

a

a
H 


(13)

Here AAH 1  and BBHH  32  are directional Hubble parameter along x,

y and z  axes respectively.

The continuity equation can be obtained as

  . 03   pH mm  (14)

The continuity equations of the matter and HDE are respectively obtained as

03  mm H (15)

and

  . 03   pH (16)

Applying the relation  p , the barotropic equation of state, the EoS HDE

parameter can be found from (16) as

. 
3

1










H


(17)

In this work, we assume that the function  Gf  obeys the power law models

introduced by Cognola et al. [19]

  , 1 nGGf (18)
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where   and n are arbitrary constants. The possibility of disappearing Big Rip

singularity and the ability to anticipate the occurrence of a transient phantom

epoch that is consistent with the observational data are the main factors for

choosing this power law  Gf  model. For the Bianchi type-I Universe (4),

deceleration parameter q, the scalar expansion  , the shear scalar 
2  and the

average anisotropy parameter A
m
 have the form

, 1
1

2










Hdt

d

a

aa
q




(19)

, 23
B

B

A

A
H


 (20)

, 3
2

1 3

1

222








 

i
i HH (21)

. 
3

1 3

1

2











 


i

i
m

H

HH
A (22)

Here, we take into account the expansion scalar   is directly proportional to the

shear scalar  , which results for following relationship between the metric

potentials:

. mBA  (23)

Here, positive constant m accounts for the anisotropic evolution of space-time.

When m = 1, the model is isotropic; else it is anisotropic. Logic behind this

condition is described with reference to [61]. Observational evidence indicates the

current isotropic expansion of Universe by about 30%  [62]. More specifically,

redshift studies set the limit at 30.H  , in the neighbourhood of our present

day galaxy. According to Collins et al. [63], the normal congruence follows the

above condition ( H  is constant) for a spatially homogenous space-time. In

accordance with recent data, we are also interested in finding an acceptable

cosmological explanations that show a transition from early deceleration to late

acceleration. To solve this problem, a number of different assumptions can be used.

Observations demonstrate the advance of Universe through a phase change from

the earlier decelerating expansion to the present accelerating one, which is the

reason for accounting for the time-dependent deceleration parameter q. The q is

a geometrical parameter that, depending on its sign, depicts the Universe accel-

eration or deceleration. For this scenario, we understand that the Universe

experiences accelerating expansion for q < 0; when q > 0, the Universe experiences

decelerating expansion; when q = 0, constant expansion of Universe is shown

whereas q < -1 stands for super-exponential expansion. As a result of the foregoing,

we decided to use deceleration parameter q as a function of the Hubble parameter



421RENYI  HOLOGRAPHIC  DARK  ENERGY  IN  f(G) GRAVITY

H as proposed by Tiwari [64]

, 
H

q


 (24)

where   and   are constants. The desired transition from positive to negative

is achieved by this form of the deceleration parameter. The scale factor and Hubble

parameter can be calculated using equation (24) as follows

   
, 1

11

1

  teka (25)

where k
1
 is the integration constant. From equation (25), in order to have an

expanding Universe, we can deduce that 1 , 0 . Also the scale factors

vanishes at t = 0, hence our model has a point type singularity at the early

Universe. From this above equation, we can immediately derive the spatial volume

as     
133

1 1tekV , which has value zero in the beginning and increases with

increase of t, which shows that our model is expanding with time. And

  
. 

11 








t

t

e

e
H (26)

From this equation, we can understand that at the beginning, H is infinite and

with the passage of time it decreases to a constant value   1 . Using equations

(23) and (25) in equation (12), the metric potentials A and B are found as

     
, 1

21323
1

 
mmtmm ekA (27)

      
. 1

21323
1

 
mtm ekB (28)

With the use of above metric potentials, the metric (4) can now be expressed as

     
     

 . 11 22
26

11

1
2

26
11

1
22 dzdyekdxekdtds

m
t

mm
t 





 





 







(29)

Fig.1. Hubble parameter H versus redshift z  for k
1
 = 0.5, 1.4  and 0.3 , 0.8, 1.4, 1.9.
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Equation (29) represents the spatially homogeneous and anisotropic Bianchi type-

I RHDE model in the context of  Gf  gravity with the following properties

together with the physical parameters described below. Using equation (26) in

equation (24), we have

. 
1

1
te

q



 (30)

From this equation we can deduce that at the beginning, q , a constant

and with the increase of time, it approaches to -1 at late times, which shows

that our model has a transition to acceleration. The relation    zt  11 , where

z  is the redshift, yield us the relationship as below

 
  

. 
1

1
1log

1
1

1 

















zk
zt (31)

Additionally, redshift z  can be used to express the Hubble parameter H as

     . 11
1

1
1





 zkzH (32)

Fig.1 depicts the behavior of the Hubble parameter as a function of redshift at

various   values (i.e. 0.3 ). According to this graph, the Hubble parameter

has a positive relationship with redshift. At the present, when ( 0z ), the Hubble

parameter is strictly positive, and for the early Universe, when ( 0z ), it increases

as z  increases. Also for 1.4 , the current value of H has been noted as

70.71 Kms-1
 Mpc-1 which is in agreement with the observational value [65].

Similarly, we get the deceleration parameter q in terms of redshift z  as

      
  

. 
11

11
1

1
1

1
1










zk

zk
zq (33)

Fig.2. Deceleration parameter q versus redshift z  for k
1
 = 0.5, and 0.3 , 0.8, 1.4, 1.9.
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The  zq  exhibits two epochs throughout the Universe: the initial deceleration

phase and the current acceleration phase, as shown in Fig.2, which depicts the

parameter's behaviour in terms of redshift. In this study, 0.3  is required to

produce both phases. The change from the initial deceleration phase to the present

accelerated phase is also accomplished with a specific redshift, called the transition

redshift z . According to the graph, the transition redshift for 1.4  is 730.ztr  .

Also the value of q is found to be -0.6 in present time. Therefore, the results

of our findings are in agreement with the observational values [65].

The expressions of scalar expansion  , shear scalar 2  and the average

anisotropy parameter A
m
 are therefore obtained as

  
, 

11

3










t

t

e

e
(34)

   
 
 

, 
2

1

11

3
2

2

22

22
2














m

m

e

e

t

t

(35)

 
 

. 
2

12
2

2






m

m
Am (36)

From equations (34) and (35), we can deduce that the scalar expansion and the

shear scalar diverge at 0t , then tends to respective constant values   13

and      22222 2113  mm  when t . From equation (36) it is

observed that the anisotropic parameter remains constant during cosmic evolution

which suggests that our model is uniformly anisotropic for 1m . We also observe

Fig.3. Evolution of f (G) versus n and t for 41. .
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from the equations (35) and (36) that when 1m , shear scalar 02   and

anisotropic parameter A
m

 = 0, the model becomes shear free and isotropic.

Also the GB invariant G and Ricci scalar R behave as

     
  , 1

112

648
443

34





 




t

t

t

e
em

em
G (37)

   
 
 

. 
2

3231

11

6
2

2

22

22





























m

mm

ee

e
R

tt

t

(38)

Equations (18) and (37) are used to derive the function  Gf  given by
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Fig.3 depicts the  Gf  as a function of time n < 0. It demonstrates that the

function  Gf  has a transitory behaviour and is positive throughout cosmic time.

 Gf  is very large at the beginning of evolution, approaches zero, then increases

and ultimately takes a constant value as        1434 12648lim



n

mmGf

when t .

4. Renyi holographic dark energy models. We have consider a system

with n discrete states having probability distribution P
i
 which satisfies the condition

1
1

 

n

i iP . Renyi entropy is a recognized generalized entropy parameter defined

as [66]
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iiT
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i PPSPS (40)

where U-1  and U is a real parameter and LT  21  and L is the IR cutoff.

By using equation (40), we obtain the relation

 . 1ln
1

TS


S (41)

In equation (41), the Bekenstein entropy is given in the form 4AST  , where
24 LA  . This gives the Renyi entropy of the system as

 . 1ln
1 2L


S (42)

Using the following assumption TdSdV  , we can get RHDE as

  . 1
8

3 1-2

2

2

L
L

d



 (43)

4.1. Model-1: RHDE model with Hubble horizon cutoff. Here, the

Renyi holographic dark energy density is calculated by using the Hubble horizon
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as a candidate for the IR cutoff i.e. 1 HL  and 18   is found to be

. 
3

2
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Hd
(44)

Using equation (26) in equation (44), we obtain energy density of RHDE in this

model as

 
        

. 
1111

3
42

42











ttt

t

eee

ed
(45)

From this expression for  , we can deduce that it is a positive decreasing

function of time and when t , it tends to a constant value 
   422

2

11
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d

which shows that this dark energy component will remain uniformly at late epoch.

This phenomenon highlights the behavior of accelerated expansion of Universe.

Also using equation (26) in (15), we found the matter energy density as
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The coincidence parameter r  is defined as the ratio between the HDE density

  and the matter energy density m , therefore from equations (45) and (46)

the coincidence parameter is found to be
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The Renyi holographic dark energy density is plotted against time in Hubbles

cutoff with appropriate values of constants as shown in Fig.4. It is shown that

it remains positive and decrease with increase of time and the contribution of  ,

Fig.4. Holographic dark energy density 


  versus time t (Hubble horizon cutoff) for 41. ,
d = 7 and 25. .
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  and   remains negligible in its behavior. From equation (46), we can observed

that the evolution of the matter energy density m  begins with a positive value,

but disappears later, which denotes the expansion of the Universe. It is also noted

that the coincidence parameter r  initially changes at a very early stage of

development, but after a finite time, it converges to a constant value and stays

constant throughout the evolution, avoiding the coincidence problem (unlike

CDM ). Equation of state parameter for RHDE in Hubble cutoff is

     
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(48)

From this expression, we can deduce that the value of   converges to -1 at

late times, indicating the CDM  model, which coincides with observational data.

The RHDE pressure is obtained as

 
        
     

   
. 

11

1121

3

2
1

1111

3

2222

2222

42

42





















 





 


















ttt

tt

ttt

t

eee

ee

eee

ed

(49)

4.2. Model-2: RHDE model with Granda-Oliveros horizon cutoff.

For this model, we consider RHDE model with GO horizon cut off i.e.

  21

2
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
 HHL   and 18  . Substituting this value of L in (43), we have
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Using equation (26) in equation (50), we found energy density of RHDE as
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From this expression, we can derive that the value of   is very large in the

beginning and decreases with the increase of time. Also for this model, the matter

energy density will be same as that of the RHDE with Hubble cutoff. Now from

equations (45) and (51) the coincidence parameter becomes
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The behavior of Renyi holographic dark energy density is plotted against time in

Granda-Oliveros cutoff with the acceptable values of constant as shown in Fig.5.

From the figure, it is observed that the energy density of the model is constantly

a positive function of time and decreases with increase of time. As we know from

equation (46), evolution of the matter energy density m  starts at a positive value,

but disappears at late times. As in the RHDE Hubble cutoff, it is observed that

the coincidence parameter r  initially changes at a very early stage of development,

but after a finite time, it converges to a constant value and stays constant

throughout the evolution, avoiding the coincidence problem (unlike CDM ).

Equation of state parameter for RHDE in Granda-Oliveros cutoff is
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(53)

From this expression also, we can deduce that the value of   converge to -

1 at late times, indicating the CDM  model, which coincides with the obser-

vational data. The RHDE pressure is obtained as

Fig.5. Holographic dark energy density 


  versus time t (GO cutoff) for 41. , d = 7,
25. , 0651
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.  and 40
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5. Cosmological parameters. This section investigates how the Universe

expands using the cosmological parameters including equation of state (EoS),

squared sound speed 
2
sv , density parameter  , state finder parameter (r, s) and

the energy conditions for both the derived anisotropic RHDE models.

5.1. EoS parameter. The various phases of the expanding Universe are

commonly categorised using the equation of state parameter  . Particularly, the

transition between the decelerated and accelerated phases has phases where radia-

tion and DE predominate. EoS parameter is defined as  p  where p is

pressure and   is energy density of matter distribution. The eras that make up

the decelerated and accelerated phases are as follows: decelerated phase (cold dark

matter or dust fluid 0 , radiation era 310   and stiff fluid 1 ) and

accelerated phase (cosmological constant or vacuum era 1 , quintessence -

311   and quintom era). Fig.6 displays the graphical behavior of the Renyi

holographic dark energy equation of state parameter versus redshift z  in Hubble

cutoff for the proper choice of constants. This figure makes it abundantly clear

that the equation of state parameter changes to negative values inside the proper

range ( 01   ), which is in good agreement with astronomical data. As a

result our research model is realistic. Fig.6 shows that the equation of state

Fig.6. Equation of state parameter   versus redshift z  (Hubble horizon cutoff) for k
1
 = 0.5,

41. , d = 7 and 25. .
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parameter begins near to zero at the beginning of cosmic time (i.e., the Universe

is dominated by matter) and progresses to a close negative value of -1 at the end

of cosmic time (i.e. when the Universe dominated by the HDE). Additionally,

we can see that in the current Universe,   tends to -1, indicating the model

CDM , whereas in the early Universe, 01    suggests the quintessential

model. Our model produces a 900.  at the current epoch, which is near

to the CDM  model i.e. 1  which is compatible with the observational

bounds [65]. Fig.7 displays the graphical behaviour of the Granda-Oliveros cutoff

equation of state parameter of Renyi holographic dark energy vs redshift z  for the

proper choice of constants. We observed that the value of   is differed as compared

to with the results obtained in the RHDE with Hubble cutoff. In this case, 

deviates from its initial positive value to function as a pure cosmological constant

in the last phases of cosmic time. This model produces a 720.  value at the

current epoch, which is relatively close to the value produced by the CDM  model

( 1 ), which is compatible with the observational bounds [65].

5.2. Squared sound speed. The squared sound speed parameter is given by

 2









 
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 
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

p

p
sv (55)

This parameter can be used to discuss how the stability of DE models is

affected by its sign. If 
2
sv  has a positive signature, the DE model is stable;

otherwise, the model is unstable. Using equations (45), (48) and (51), (53) in

the expression of squared sound speed 
2
sv  equation (55), we analyze 

2
sv  graphically

or both models -1 and 2. Fig.8 displays the stability of RHDE with the Hubble

cutoff for the proper choice of constants. It can be seen from the figure that the

value of the   has no effect on the stability of the Universe. Also 02 sv  for

Fig.7. Equation of state parameter   versus redshift z  (GO cutoff) for k
1
 = 0.5, 41. ,

d = 7, 25. , 0651
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all epoch and tends to a small value. Hence in all Universe our model is stable.

Fig.9 shows the stability of RHDE in the Granda-Oliveros cutoff of the model

over time for the proper choice of constants. The model is stable during the

beginning epoch, as can be seen in the figure. But after t > 1.17 Gyr, the trajectory

of the graph becomes negative, which shows that our model is classically unstable

at current epoch.

5.3. Density parameter. Total energy density parameter is given by

,  m (56)

where 
23Hmm   is the matter density parameter and 

23H   is the

holographic dark energy density parameter. The total energy density parameters

1 , 1 , and 1  correspondingly represent the open, flat, and closed

Fig.8. Square speed sound parameter 
2

s
v  versus time t (Hubble horizon cutoff) for 41. ,

d = 7 and 25. .

Fig.9. Square speed sound parameter 
2

s
v  versus time t (GO cutoff) for k

1
 = 0.5, c

1
 = 1,

41. , d = 7, 25. , 0651
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2

. .

0

v s
2

2 6 84

t (Gyr)

1.0

1.4

1.8

0

v s
2

1 3 42

t (Gyr)

-0.2

0.0

5

0.2

0.4



431RENYI  HOLOGRAPHIC  DARK  ENERGY  IN  f(G) GRAVITY

Universes. Now the total energy density parameter for RHDE with Hubble cutoff

is found to be
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And the total energy density parameter for RHDE with Granda-Oliveros cutoff

is found as
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The total energy density parameter for the RHDE with the Hubble cutoff is

shown in Fig.10. Here, it is demonstrated that the energy density parameter's value

Fig.10. Total energy density parameter   versus time t (Hubble horizon cutoff) for k
1
 = 0.5,

c = 1, 41. , d = 7 and 25. .
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was high in the early period of the Universe but is currently approaching 1. So

for very large times, the model predicts a flat Universe. The resultant model is

consistent with the observations because the Universe as it currently exists is very

close to flat. The total energy density parameter for RHDE with Granda-Oliveros

cutoff is shown in Fig.11. Here the graph is almost same as that of the Hubble

cutoff. Hence the model predicts a flat Universe for large time.

5.4. Statefinder parameters. Hubble and deceleration parameters can be

used to accurately explain the known Universe expanding nature. The values of

these parameters, however, are the same in many dynamical DE models at the

present. As a result, these parameters were unable to choose the best-fitting model

out of a variety of dynamical DE models. With this objective, Sahni et al. [67]

developed statefinder parameteres, which are dimensionless cosmological parameters

and are defined as follows:
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For (r, s) = (1, 0) and (r, s) = (1, 1), respectively, these statefinders establish

a connection with the CDM  and CDM models. In contrast to the Chaplygin

gas model, which occurs for r > 1 with s < 0, if the trajectories of r - s correspond

to the region s > 0 and r < 1, the model belongs to the phantom and quintessence

phases. These statefinders are same for both the models and are obtained as
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Fig.12 shows the graph of (r, s) parameter in r - s plane. The parameter s

Fig.12. Plot of r - s plane for 41. , d = 7.
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is seen to remain negative for all values of r at the early epoch. This suggests

that the RHDE models were able to correspond to the Chaplygin gas model.

Additionally, at late times, the r - s plane corresponds to the CDM .

5.5. Energy conditions. The energy conditions namely, null energy con-

ditions (NEC), strong energy conditions (SEC) and dominant energy conditions

(DEC), are respectively given by

(i) , 0  p

(ii) , 03   p

(iii) . 0  p

Now the energy conditions for RHDE with Hubble cutoff are
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DEC:
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Also the energy conditions for RHDE with Granda-Oliveros cutoff are found

to be
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NEC:
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DEC:
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Fig.13 shows the graph of energy conditions for RHDE with Hubble cutoff

for our model. From the graph, it is observed that 0  p  and 0  p

but 03   p  at early times but becomes negative after some time and stays

in the negative domain. So, NEC and DEC are satisfied whereas SEC is violated.

Fig.14 shows the graph of energy conditions for RHDE with Granda-Oliveros

cutoff for our model. From the graph, it is observed that 0  p  and

0  p  but 03   p . This shows that NEC and DEC are satisfied

whereas SEC is violated. So in both the model NEC and DEC are satisfied
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whereas SEC is violated in the present and future. Therefore, the Universe

accelerates as a result of the SEC violation. Our model shows the shift from an

early decelerating to a current accelerating Universe as a result of the violation

of SEC, which causes an anti-gravitational effect that causes the Universe to jerk.

Our model therefore fits the most recent cosmological observations.

6. Generalized holographic dark energy. In this section, we effort to

establish that our dark energy model has a direct equivalence to the generalized

holographic dark energy model. In the holographic principle, the holographic

energy density is proportional to the inverse squared infrared cutoff L
IR
, which

could be related to the causality given by the cosmological horizon:

Fig.14. Energy conditions versus time t (GO horizon cutoff) for 41. , d = 7, 25. ,

0651
1

.  and 40
2

. .

Fig.13. Energy conditions versus time t (Hubble horizon cutoff) for 41. , d = 7 and 25. .
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, 
3

22

2

IR

hol
L

c


 (68)

where c is a numerical constant which acts as a free parameter and G 82

is the gravitational constant. The IR cutoff is supposed to be the particle horizon

L
P
 or the future event horizon L

F 
, which are determined respectively as [54,55,68]

. , 
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dt
aL (69)

Differentiating both sides of the above expressions leads to the Hubble parameter

in terms of PL , PL
  or in terms of FL , FL

  as

    . 
1

 ,, 
1

 ,
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(70)

The general form of the cutoff was proposed in the work [68]

 .  ..., , , , ..., , , , aLLLLLLLL FFFPPPIRIR
 (71)

Actually, the other dependency of L
IR
, particularly on the Hubble parameter, the

Ricci scalar and their derivatives, can be transformed to either L
P
 and their

derivatives or L
F
 and their derivatives via Eq. (71). The above cutoff could be

chosen to be equivalent to a general covariant gravity model:
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In the following, using the above expressions and with the help of the generalized

cutoff, we will show that the Granda-Oliveros HDE of the present work has direct

equivalence to the generalized HDE model. The comparison of Eq. (68) with Eq.

(50) and using Eq. (70) immediately conduct to the equivalence holographic cut-

off L
R
 (in terms of L

P
 and its derivatives or in terms of L

F
 and its 19 derivatives)

corresponds to the HDE as
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The equation of state parameter can be derived from the conservation equation

corresponds to the HDE density hol

  , 
3

2
1

dt

dL

HL
R

R

R
hol  (74)

where L
R
 is given by Eq. (73). Hence, we conclude that  R

hol  is equivalent to

  as derived in Eq. (53).

7. Conclusion. In this work, we investigate RHDE with a homogeneous and

anisotropic Universe of Bianchi type-I, in the context of  Gf  gravity. We also

consider RHDE with the IR cutoffs of both the Hubble and the Granda-Oliveros

horizons. We make the assumption that the deceleration parameter (DP) is a

function of Hubble parameter H in order to determine exact solutions to the field

equations. With the use of this analysis, we found that the deceleration parameter

changes from negative to positive with respect to redshift z , indicating that the

Universe transitions from an earlier deceleration phase to the present acceleration

phase. Our model's transition redshift value is 730.ztr  , which is in accordance

with the observational data. Scalar expansion and shear scalar both have infinitely

large value at 0t  and become finite at t . Since the anisotropic parameter

doesn't change throughout the cosmic evolution, our model is fully anisotropic

from the early Universe to the end of the Universe for 1m  whereas the model

is isotropic for 1m . For investigations in model I, it has been found that the

energy density of the model is consistently a positive function of time, and that

these parameters have no effect on the behavior of the model for any 30. .

Also, the RHDE density in Hubble's cutoff is positive for all Universe and is

decreasing to a small value at at later times. The RHDE Universe in the Hubble's

cutoff is stable, and the value of   has no effect on the stability of the Universe,

which is approaching to a small value. From the evolution of the EoS parameter,

we understand that in the early Universe, it indicates the quintessential model,

while in the current Universe,   tends to -1, i.e. the model CDM , which

is well in agreement with recent observational data. Additionally, the NEC and

DEC energy conditions are satisfied, however the SEC is violated at later times.

The acceleration of the Universe results from this SEC violation. Again in the

study of model II, the energy density of the model is rigorously a positive function

of time and is a decreasing function and approaches to a small positive value at

later times. Even if it is stable in the early Universe, the behavior of the stability

of the RHDE Universe in the Granda-Oliveros cutoff is not stable at later times.

In this model, the EoS parameter falls from a positive value in the early phase

of cosmic time to act as a pure cosmological constant, or 1 , in the late

phase. The NEC and DEC energy conditions are also satisfied, while the SEC

is violated in the present and the future, which causes the Universe to accelerate.
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Additionally, for both models, the (r, s) plane provides a correspondence with the

Chaplygin gas model and, at late times, with the CDM . Finally, the exact

solutions described in the study can be one of the decent candidates to describe

the observable Universe. In order to comprehend the characteristics of the

anisotropic Bianchi type-I model in the development of the Universe, it may be

helpful to consider the solutions presented in this study.
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ÃÎËÎÃÐÀÔÈ×ÅÑÊÀß ÒÅÌÍÀß ÝÍÅÐÃÈß ÐÅÍÜÈ È ÅÅ
ÏÎÂÅÄÅÍÈÅ Â  f(G) ÃÐÀÂÈÒÀÖÈÈ

Ì.Õ.ÀËÀÌ, Ñ.Ñ.ÑÈÍÃÕ, Ë.À.ÄÅÂÈ

Â äàííîé ðàáîòå èññëåäóåòñÿ  ãîëîãðàôè÷åñêàÿ òåìíàÿ ýíåðãèÿ Ðåíüè

(RHDE) è åå ïîâåäåíèå â àíèçîòðîïíîé è ïðîñòðàíñòâåííî îäíîðîäíîé

Âñåëåííîé òèïà Áüÿíêè-I â ðàìêàõ ãðàâèòàöèè  Gf . Ìû èñïîëüçóåì èíôðà-

êðàñíîå îáðåçàíèå êàê ãîðèçîíò Õàááëà è Ãðàíäà-Îëèâåðîñà (GO). Äëÿ

íàõîæäåíèÿ ñîãëàñîâàííûõ ðåøåíèé óðàâíåíèé ïîëÿ ìîäåëåé ïðåäïîëàãàåòñÿ,

÷òî ïàðàìåòð çàìåäëåíèÿ îïðåäåëåí â òåðìèíàõ ôóíêöèè ïàðàìåòðà Õàááëà

H. Ñ ó÷åòîì ñîâðåìåííûõ êîñìîëîãè÷åñêèõ äàííûõ îöåíèâàåòñÿ ïîâåäåíèå

êîñìîëîãè÷åñêèõ ïàðàìåòðîâ, ñâÿçàííûõ ñ ìîäåëüþ òåìíîé ýíåðãèè, è

èññëåäóåòñÿ èõ ôèçè÷åñêàÿ çíà÷èìîñòü. Îòìå÷àåòñÿ, ÷òî äëÿ îáåèõ ìîäåëåé

ïàðàìåòð óðàâíåíèÿ ñîñòîÿíèÿ ïðèáëèæàåòñÿ ê -1 â ïîçäíþþ ýïîõó. Îäíàêî

ìîäåëü RHDE ñ ãîðèçîíòîì Õàááëà ïðîÿâëÿåò ñòàáèëüíîñòü ïî îòíîøåíèþ

ê êâàäðàòó ñêîðîñòè çâóêà, òîãäà êàê ìîäåëü RHDE ñ ãîðèçîíòîì GO

íåñòàáèëüíà. Â îáåèõ ìîäåëÿõ ïàðàìåòð çàìåäëåíèÿ è äèàãíîñòè÷åñêèé

ïîêàçàòåëü ñîñòîÿíèÿ ïîäòâåðæäàþò óñêîðåííîå ðàñøèðåíèå Âñåëåííîé è

òàêæå ñîîòâåòñòâóþò ìîäåëè CDM  â ïîçäíþþ ýïîõó.

Êëþ÷åâûå ñëîâà: ìåòðèêà Áüÿíêè-I: ãðàâèòàöèÿ  Gf : ãîëîãðàôè÷åñêàÿ

       òåìíàÿ ýíåðãèÿ Ðåíüè: êîñìîëîãèÿ
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