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In this work we propose Modified Tsallis Holographic Dark Energy (MTHDE) in General
Relativity (GR) in the framework of Bianchi type III space-time. Einstein's field equations are
solved by using a special law of variation of Hubble parameter H proposed by Berman which yields
constant deceleration parameter (DP). Interestingly, for the two different constant values of decel-
eration parameter, we have obtained two different cosmological models. The model 1 behaves like
a quintessence dark energy model whereas model 2 behaves like a cosmological constant model. A
correspondence between model 1 and quintessence scalar field is established. The quintessence
dynamics of the potential and scalar field are reconstructed which illustrates the accelerating phase
of the Universe. Various parameters like deceleration parameter, Hubble parameter, anisotropy
parameter, equation of state (EOS) parameter, etc. for both the cosmological models are thoroughly
discussed. The results obtained are found to be consistent with the recent observations on the
present-day Universe.
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1. Introduction. Recent astrophysical observational data [1-6] show that our
Universe is going through a phase of accelerated expansion which put new avenues
in modern cosmology. A class of people are making attempts to accomodate this
observational fact by choosing some exotic matter (known as dark energy) in the
framework of general relativity. Dark energy (DE) is believed to dominate over
the matter content of the Universe by 70%. In all theories and models, the
cosmological constant model is the most natural and simplest candidate of DE
with the equation of state (EOS) parameter w=-1 but it suffers from cosmic
coincidence and fine-tuning problem [7,8]. To relieve such problems, various dark
energy models have been suggested in literature such as quintessence [9], phantom
[10], k-essence [11], tachyon [12], HDE [13], etc.

Despite of many efforts from different observational and theoretical ways, the
problem of DE is still not well settled due to its unknown nature. In order to
justify the source of accelerating expansion (i.e. the nature of DE) of the Universe,
two different approaches have been adopted. One way is to modify the geometric
part of Einstein-Hilbert action (termed as modified theories of gravity) for the
discussion of expansion phenomenon [14-18]. The second approach is to propose
the different forms of DE called dynamical DE models. Up to now, different
dynamical DE models have been proposed in two different contexts such as
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quantum gravity and GR. Holographic dark energy have been proposed in the
framework of quantum gravity on the basis of holographic principle [19]. The
density of HDE model has the following form p,; =3c’M,L™* where ¢ is a
specific constant, M, = (STc G)ﬁl/ ? termed as reduced Planck mass and L represent
the infrared (IR) cutoff described the size of the Universe. By considering horizon
entropy of a black hole, Tsallis and Cirto assumed some quantum modification
for HDE given by (Tsallis and Cirto [20]) S; =yA8 with y being an unknown
constant and § represents the non-additivity parameter chosen to have a positive
value. The Bekenstein entropy is a particular case when §=1 and y=1/4G [21].
Considering the holographic hypothesis, Cohen et al. [22] proposed the relation
among the system entropy S, the IR (L) and UV (A) cutoffs as [’ A’ < S¥*
which after combining with S = yA5 gives A* < }/(47:)G [**. Using this inequal-
ity, the THDE density is obtained as p; =DI** where D is an unknown
parameter [23-25]. It is worthy to mention that for § =1, the standard HDE is
recovered. Furthermore, for =2, the cosmological constant model is retrieved.
Using the Hubble horizon H™' as the IR cutoff L, pr =DH 254 ig obtained.

Since DE occupies almost 70% of the content of the Universe today, it is
rational to assume that the density of DE is a function of the Hubble parameter
H and its derivative w.r.t. cosmic time [26]. In this paper, we have modified the
THDE by assuming p,,; = DH “2+4 L EH . In the above expression dot (.) denotes
differentiation w.r.t. cosmic time ¢ and £ is the arbitrary dimensionless parameter.
The early Universe inflation can be considered as the primordial DE because DE
is merely the substitute for the accelerating expansion of the Universe [27]. So,
our constructed model is a good candidate to describe the inflationary stage.

Bianchi type spaces play an important role in constructing spatially homo-
geneous and anisotropic cosmological models to describe the behaviour of the
Universe at its early stages of its evolution. The anomalies found in the cosmic
microwave background (CMB) and large-scale structure (LSS) observations stimu-
lated a growing interest in anisotropic cosmological model of the Universe. Here
we confine ourselves to Bianchi type III models.

Several researchers have investigated various cosmological models in the
framework of THDE. Two Tsallis Agegraphic DE (TADE) models have been
proposed by using the age of the Universe and the conformal time as the IR cut-
offs and study their effects on the evolution of the Universe [28]. THDE in FRW
Universe with time varying deceleration parameter (DP) in the framework of FRW
Universe have been investigated by [29]. Mamon [30] has studied the evolution
of a fractal Universe with THDE in presence of an interacting scenario. Sadeghi
et al. [31] have explored THDE by considering the complex form of the
quintessence model in the framework of Brans-Dicke cosmology. Pradhan et al.
[32] have discussed THDE in the modified f (R,T) gravity framework with
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Granda-Oliveros (GO) cutoff. Mamon et al. [33] have studied THDE in presence
of interacting scenario. Dubey et al. [34] have discussed the axially symmetric
space-time in THDE. Korunur [35] have explored THDE in Bianchi type III
space-time. Yadav [36] has worked out THDE in Brans-Dicke cosmology. Santhi
and Sobhanbabu [37] have explained THDE in Saez-Ballester theory of gravita-
tion. Dubey et al. [38] have investigated THDE using hybrid expansion law (HEL)
with k-essence. Dubey et al. [39] have examined THDE in the non-flat Universe.
Motivated by the above aforesaid works, we have modified THDE in GR in the
framework of Bianchi type III space-time.

The organisation of the paper is as follows: In Section 2, we formulate the
metric and field equations for MTHDE model. In Section 3, we have obtained
the solutions of field equations of Bianchi type III space-time. In Section 4, we
have studied the cosmological model 1 and the correspondence between model 1
and quintessence scalar field. In Section 5 we have studied the cosmological model
2. The model 1 behaves like a quintessence dark energy model whereas the model
2 behaves like a cosmological constant model. Various parameters for both the
models are discussed graphically in Sections 6 and 7 respectively. The paper ends
with concluding remarks in Section 8.

2. Metric and field equations. We consider the anisotropic Bianchi type
I1I space-time
ds* =dt* - I*dx* - J?e " dy* - K*dz* (1)
where the scale factors /, J and K are functions of cosmic time ¢ only.
The Einstein's field equations are given by

B3R =147, @

where R,.j is the Ricci tensor and R is the Ricci scalar.
The energy momentum tensor T/” for dark matter (DM) is
T} = diagp,,. 0,0,0], (3)
where p,, is the energy density of DM.
The energy momentum tensor 7T /’ for MTHDE is
7_7 = diag[p 7, — Pur, >~ Pur, >~ Pur, 1= diag[l, Oy, =0y, =0, ]pMT
= diag[l, —Opyrs ~ Opyps— (")MT]pMT )

4)

where p,; is the energy density of MTHDE, p, . is the pressure of MTHDE
and o, =wy;, o, =0,, and o, =, are the directional equation of state
(EOS) parameters on x, y and z axes respectively and ®,,7pr = pur -

The Einstein's field equations (2) for the metric (1) using Egs. (3) and (4)
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takes the form

J K JK
7 + EJFJ_K =~ OyrPur (&)
I K IK
7 E"'l_:_mMTpMT (6)
I J o1
7 J STane Iz ==OyrPur (7)
I . JK JK KT KI 1 ®)
U UK kI PP
J I
——-—=0. 9
A, @)
Eq. (9) on integration and taking integrating constant to be unity, we obtain
J=1. (10)
Using Eq. (10) in Egs. (5)-(8), we get
I K IK
7+E+E:_(DMTPMT (11)
I 1 1
27 e =—OyrPur (12)
I ZIK 1
1—2+ E_I_z_pm'i_pMT' (13)
The energy conservation equation is
L I K
pm+pMT+[27+Ej(pm+pMT+pMT)=0, (14)

where overhead dot (.) denotes differentiation w.r.t. cosmic time #.
We assume that there is no interaction between DM and MTHDE throughout
the study.

3. Solutions of field equations. The average scale factor a(f) and the
spatial volume V are defined as

V=a’=IK. (15)

The directional Hubble's parameters H Hy and H_ in the direction of x, y and
z axes respectively are given by

K
H, =H, H == (16)
K

~|~.

The mean Hubble's parameter H is



MODIFIED TSALLIES HDE 403

a Vv H+H+H. 1( [ K
a 3V 3 3. I K
The deceleration parameter g is defined as
_ad
(I——?- (18)
The anisotropy parameter Ap is defined as
1 &(H-HY
A ==|—"].
» 321[ = ] (19)

Field equations (11)-(13) forms a system of three independent equations with five
unknowns I, K, o, pyr and p,,. So, we use two extra relations to solve the
system of field equations completely. These are as follows:

(i) Following Chen and Jing [26] and Bharali and Das [40], we define
MTHDE density p,; as a function of Hubble parameter H and its derivative
w.r.t. cosmic time ¢ as follows

pyr =DH >+ EH, (20)

where E is the arbitrary dimensionless parameter and the other symbols have their
usual meanings.

(ii) A special law of variation for Hubble's parameter H proposed by Berman
[41] is defined as

H=ka™, (21)
where £>0 and m >0 are constants.
Using Egs. (17) and (21), we have obtained two models
a=(mkt+k1)l/m, g=m—1, m<I, (22)
where k is a constant of integration.
a =exp {k(t— kz)}, g=-1, m

where k, is a constant of integration.
From Egs. (11) and (12), we get

. . . N |
K I u 1 (K I
———=—exp| |-—| ——-= dt |,
K IV p(j 12(1( IJ J (24)
where u, is a constant of integration.
Following Adhav [42], we assume
K I I*
Using Eq. (25) in Eq. (24), we get

Il
(=]

(23)
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K _I_u
T e’ (26)
Integrating Eq. (26), we obtain
~t
K=ul exp{uo J.%dt} ) 27

where u, is a constant of integration.

4. Model 1. When a=(mkt+k )™, m<1. Eq. (27) with a=(mkt+k )"
implies

e
K= ull eXp |jl0 J.Wdt} (28)
1
V=1’K =a® = (mhkt+k, " . (29)
Egs. (28) and (29) together implies
o u e
I = (mkl-l— kl )l/ U /3 €xXp {—%jmdl} (30)
1
I/m 2/3 21”0 e’
K:(mkH- kl) u;’” exp 3 '[(mkt+k )3/m dt|. (31)
1

Both the cosmic scale factors / and K increases as the age of the Universe increases
(Fig.1, 2). The Hubble parameter H and the MTHDE density p,,; are calculated as

k

H- .
mhki+ k, (32)
80
40
0 AAAAAAAAAAAAAAAAAAAAAAAA
0 10 20 30 40 50

Fig.1. The plot of I versus cosmic time ¢ for m=0.5, k=0.3, kK, =0.5, 4,=0.03 and u, =0.15.
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10}

t

Fig.2. The variation of K against cosmic time ¢ for m=0.5, k=0.3, k,=0.5, u,=0.03 and
u, =0.15.

The Hubble parameter H is a decreasing function of 7 and tends to a small value
with the passage of cosmic time.

k —28+4 —mk2
=D +E|—2 |
Purr (mkt+ k, j {(mkH kY } (33)

Fig.3 shows that p,,, decreases and tends to a constant value as cosmic time
evolves. The anisotropy parameter Ap is calculated as

4 2 mhat K, e .
ool k (mkt+ k) 4

4,—0 as observed from Fig.4. Thus, our Universe approaches isotropy at late

0.15 i )

£ 0.10 1 )
a
E

(o8 L {

0.05 - “\““ pMT T

e00p, A ——_——————_—_AVoA
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Fig.3. The variation of p, and p,, versus cosmic time ¢ for m=0.5, k=0.3, k, = 0.5,
p, =08, D=0.5, 8=15 and E=0.2.
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times. The energy conservation equation for dark matter is

p.+3Hp, =0. (35)

Using Eq. (32) in Eq. (35), the energy density of dark matter p, is found as
_ Po

" (et by ) (36)

p, is a constant of integration.

From Fig.3, we see that p, diminishes as cosmic time evolves and ultimately
approaches to zero.

The energy conservation equation for MTHDE is

Pur +3H(pMT +pMT):0' (37)
0.20 F ]
_ 05t ' 1
< i
T o10f K ]
0.05 | — ]
L A
p
0.00 |, - - - ; :
0 10 20 30 40 50

t
Fig.4. The evolution of H and Ap against cosmic time ¢ for m=0.5, k=0.3, kK, =0.5 and u,=0.03.
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Fig.5. The plot of ®,, versus ¢t for m=10.5, k=0.3, kK, =05, §=15, D=0.5, p,=038
and E=0.2.
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The EOS parameter of MTHDE ®,,, is obtained by the use of Egs. (32), (33)
and (37) as

—20+3 P 2.3
ZD(S—Z)( J mk 4 2m°k’E
mkt+ k, mkt+ ky (mkt+ k) | (mke+ &, )
Oy =—1= (38)

-26+4
3 D(k J +E{_mk2 }
mhkt+ky (mikt+ ky )
From Fig.5, it is observed that ®,; >—1. Thus, our model 1 behaves like a
quintessence dark energy model. The present value of the EOS is calculated as
o, =—-0.834 [43-45] and this concludes that the model 1 is a quintessence dark
energy model.

Correspondence between model 1 and quintessence scalar field.
The pressure and energy density for quintessence scalar field [46] are given by

12

P =L-1(0) (39)
¢2

Py =+ (0), (40)

where ¢ denotes the scalar field and V(¢) is the scalar field potential.
The EOS parameter ©, is defined as

_Po _ 92 -2V(9)

® . .
"oy ¥ +2r() @
Egs. (33) and (40) together implies
-28+4 .
k — mk? b*
D +E|———|=—+V(d).
(mkt +hk ] {(mkﬁ k) } 2 @) (42)
Egs. (38) and (41) together implies
o (1+oy,
| M (o).
7 e (6) 43)
Using Eq. (43) in Eq. (42), we obtain the scalar field potential V(d)) as
-0 VY Emk?
V(9)=| —2ur ) p - oM L
(@) [ 2 ]{ (mm klj (mket+ kl)z} (44)

The scalar field ¢ is calculated by using Egs. (43) and (44) and then integrating,
we get
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12

—26+4 )
k Emk
— ( dt, (45)

mkt+ k, mhkt+ k)

0=+ [| 1+ @) D[

where ¢, is the constant of integration.

Both the scalar field potential ¥(¢) and the scalar field ¢ diminishes and
ultimately tends to a small value during the evolution of the Universe as seen
from Fig.6 and 7.

5. Model 2. When a=exp{k(t—k,)}, m=0. Eq. (27) with a=exp {k(t—k, )}
implies

0.020 -
0.015 1
E
= 0010} ]
0.005 f
0 100 200 300 400 500

t

Fig.6. The plot of V(¢) versus ¢ for m=0.5, k=0.3, k, =05,
and E=0.2.
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Fig.7. The evolution of ¢ against cosmic time ¢ for m=0.5, k=0.3, k£, =0.5, =15,
p, =08, D=0.5, E=0.2 and ¢, =0.05.
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e*l
K= ull exp|:u0 de[} (46)
V=IK=da’ =exp{3k(t— kz)}. (47)
Eqgs. (46) and (47) together implies

_ .13 —U e’ _
I=u exp{ 3 I o {3 k)] dt} exp {k(t ky )} (48)

23 2u, e’ _
K =uj; exp{ 3 I oxp PR )] dt} exp {k(t—k, )}. (49)

Fig.8 demonstrates that the cosmic scale factors / and K increases as cosmic
time evolves. The Hubble parameter H and the MTHDE density p,, are
calculated as

H=k (50)
Py = Dk~ (51)

From Egs. (50) and (51), we can conclude that both Hubble parameter H and
MTHDE density p,,; are constant.
The energy conservation equation for dark matter is

p.+3Hp, =0. (52)
Using Eq. (50) in Eq. (52), p,, is found as
pu=phe ™, (53)

where p, is a constant of integration.
From Fig.9, we can conclude that p,, —> 0 as cosmic time evolves.

' B S S S B N L N S S S S S R S S S Su S S S S S S e

300000 |

« 200000 | K

100000 |

0 10 20 30 40 50
t

Fig.8. The plot of I and K versus cosmic time 7 for k=0.3, k,=0.6, u,=0.03 and u = 0.15.
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Fig.9. The graph of p, and Ap versus cosmic time ¢ for py, =0.8, k=0.3 and k,=0.6.

The energy conservation equation for MTHDE is

Pur +3H(PMT + pMT): 0. (54)
Using Egs. (50) and (51) in Eq. (54), we have obtained ®,, as
Oy =—1. (55)

Thus, our Model 2 behaves like a cosmological constant model. Recent studies
[5,47-50] indicate that our model 2 approaches to ACDM (o, =—1) served as
an excellent model to describe the cosmological evolution. Hence our model 2
is in good agreement with these observations.

The anisotropy parameter Ap is obtained as

_ 2 D6kl
P=5.2°¢ :
9k
Fig.9 indicates that as ¢t —>0, A4, > and as t—>oo, A4, 0. Hence, the
anisotropy of our Universe dies out with the passage of cosmic time.

In all the graphs, ¢ denotes cosmic evolution time, generally measured in giga
years (1 Gyr=10"y) along x axis. Along y axis, all physical quantities like the
matter energy density p,,, MTHDE density p,;, EOS parameter w,,,, etc. are
measured in geometrized units, where the speed of light ¢=1 and the gravitational
constant G=1.

(56)

6. Graphical discussions of model 1.

I and K are increasing functions of ¢ as observed from Fig.1 and 2.

Both H and Ap are decreasing functions of 7 as observed from the above figure.
H tends to a small value whereas 4,0 at the later age of the Universe.

Both p,, and p,; decreases with the passage of 7. p,, approaches to zero
whereas p,, approaches to small value at the later epoch.



MODIFIED TSALLIES HDE 411

From the above figure, we can conclude that o, >—1 at the late times. This
indicates that our model 1 behaves like a quintessence dark energy model.

The scalar field potential V(¢) decreases and ultimately approaches to a small
value as cosmic time evolves.

¢ tends to a small value at the later age of the Universe as observed from
the above figure.

7. Graphical discussions of model 2.

I and K increases with the passage of cosmic time as observed from Fig.8.

Both p,, and Ap are decreasing functions of 7 and tends to zero at the later
age of the Universe.

8. Conclusions. In this paper we have studied a Bianchi type III Universe
filled with dark matter and MTHDE in General Relativity. To determine the
solutions of the field equations completely, we make use of a special law of
variation of Hubble parameter H proposed by Berman that yields constant DP.
Interestingly, we have obtained two different cosmological models for two different
constant values of DP. The EOS parameter of MTHDE also behaves like
quintessence DE for model 1. Using these results, we have established a corre-
spondence between MTHDE model with the quintessence scalar field. Quintes-
sence potential and the dynamics of the quintessence scalar field are reconstructed
for this anisotropic accelerating model of the Universe. Furthermore, it is observed
from Eq. (55) that for large cosmic time the EOS parameter of the MTHDE
for model 2 becomes -1. Therefore, in the late time evolution of the Universe,
our model 2 behaves like a cosmological constant model. Also, the deceleration
parameter appears with negative sign which implies accelerating expansion of the
Universe. Perlmutter et al. [3] and Riess et al. [1,51,52] proved that the
deceleration parameter of the Universe is in the range —1<¢ <0, and the present-
day Universe is undergoing an accelerated expansion. From Fig.4 and 9, we see
that the anisotropy parameter 4,0 as t—>o. Hence, for sufficiently large
time, our MTHDE models predict that the anisotropic nature vanishes and it will
become isotropic at late times. This implies that our MTHDE models become
isotropic at late times even though the space-time is anisotropic. Our results show
that the Universe is anisotropic in the early stage and at the late time dynamics
anisotropy of the Universe damps out and the present day Universe becomes
isotropic as suggested by different observational data. We have found that the results
are consisent with current cosmological observational data. The models presented
in this paper could give an appropriate description of the evolution of the Universe.
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MOINDPULTMPOBAHHAA T'OJIOTPAOUYECKAA
TEMHAA SHEPI'MA LAJVIMCA

Hx.BXAPAJIN, KJOAC

B nanHo#1 paGote MBI NpeajaraeM MOAUMULIMPOBAHHYIO ToJorpadguuecKyto
teMHyto sHepruto (MTHDE) Ilannuca B oOuieid Teopuun otHocuteabHoct (OTO)
B paMKax IpocTpaHCcTBa-BpeMeHM Tuiia besaku I11. YpaBHenwns monst DifHIITEliHA
pelIaloTCsl ¢ UCMHOJb30BaHUEM CIIeLMaIbHOIO 3aKOHA Bapualluyu MmapaMeTpa Xaboia
H, npeanoxeHHoro bepMaHoMm, KOTOpPBII IPUBOAUT K IIOCTOSIHHOMY ITapaMeTpy
damemieHus (DP). MHTepecHo, 4To MIst ABYX pa3HBIX MOCTOSIHHBIX 3HAUCHUI
MapaMmeTpa 3aMeJIeHUSI Mbl MIOJy4yaeM JIBe pa3InyHble KOCMOJIOTMYECKUE MOICIN.
Mognens 1 BemeT cebs KaK MOAEIb KBUHTICCEHIIUM TEMHOM 3SHEPryMM, TOTIa Kak
Mozesb 2 BeleT cebdsl KakK MOJeIb KOCMOJIOTMYECKOI MOCTOSIHHOM. Y CTaHARIMBAeTCs
COOTBETCTBUE MEXIY MOAENbI0 1 U KBUHTACCEHIUAIbHBIM CKAJISIPHBIM TOJIEM.
ITpoBomuTCsST PEKOHCTPYKIIMST KMHEMATUKM KBUHTACCEHIIMM TTIOTEHIYAJIA U CKAJIIPHOIO
MoJjisi, WJUIIOCTpUpyollas yckopsiiolnyiocs da3sy BceneHHoit. TiiateabHO
00Cy>XIal0TCs pa3IMyHbIe IMapaMeTphbl, TAKWE KaK MapaMeTp 3aMeIJICHUS, TTapaMeTp
Xabbsa, mapamMeTp aHU30TPOIMKU, NapaMeTp ypaBHeHUs1 coctosgHust (EOS) u np.
JJ11 00erx KocMmoyiornueckux moneneil. IloayyeHHbIe pe3yabTaThl OKa3bIBalOTCS
COIJIaCOBaHHBIMU C TMOCAEAHUMU HAOIIOACHUSIMU COBpeMeHHol BceneHHOI.

Kmouesnie cioBa: MTHDE: OTO: napamemp Xabbaa: napamemp 3ameonenus DP
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