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In this work we propose Modified Tsallis Holographic Dark Energy (MTHDE) in General
Relativity (GR) in the framework of Bianchi type III space-time. Einstein's field equations are
solved by using a special law of variation of Hubble parameter H proposed by Berman which yields
constant deceleration parameter (DP). Interestingly, for the two different constant values of decel-
eration parameter, we have obtained two different cosmological models. The model 1 behaves like
a quintessence dark energy model whereas model 2 behaves like a cosmological constant model. A
correspondence between model 1 and quintessence scalar field is established. The quintessence
dynamics of the potential and scalar field are reconstructed which illustrates the accelerating phase
of the Universe. Various parameters like deceleration parameter, Hubble parameter, anisotropy
parameter, equation of state (EOS) parameter, etc. for both the cosmological models are thoroughly
discussed. The results obtained are found to be consistent with the recent observations on the
present-day Universe.
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1. Introduction. Recent astrophysical observational data [1-6] show that our

Universe is going through a phase of accelerated expansion which put new avenues

in modern cosmology. A class of people are making attempts to accomodate this

observational fact by choosing some exotic matter (known as dark energy) in the

framework of general relativity. Dark energy (DE) is believed to dominate over

the matter content of the Universe by 70%. In all theories and models, the

cosmological constant model is the most natural and simplest candidate of DE

with the equation of state (EOS) parameter 1  but it suffers from cosmic

coincidence and fine-tuning problem [7,8]. To relieve such problems, various dark

energy models have been suggested in literature such as quintessence [9], phantom

[10], k-essence [11], tachyon [12], HDE [13], etc.

Despite of many efforts from different observational and theoretical ways, the

problem of DE is still not well settled due to its unknown nature. In order to

justify the source of accelerating expansion (i.e. the nature of DE) of the Universe,

two different approaches have been adopted. One way is to modify the geometric

part of Einstein-Hilbert action (termed as modified theories of gravity) for the

discussion of expansion phenomenon [14-18]. The second approach is to propose

the different forms of DE called dynamical DE models. Up to now, different

dynamical DE models have been proposed in two different contexts such as
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quantum gravity and GR. Holographic dark energy have been proposed in the

framework of quantum gravity on the basis of holographic principle [19]. The

density of HDE model has the following form 2223  LMc pDE  where c is a

specific constant,   218  GM p  termed as reduced Planck mass and L represent

the infrared (IR) cutoff described the size of the Universe. By considering horizon

entropy of a black hole, Tsallis and Cirto assumed some quantum modification

for HDE given by (Tsallis and Cirto [20]) 
  AS  with   being an unknown

constant and   represents the non-additivity parameter chosen to have a positive

value. The Bekenstein entropy is a particular case when 1  and G41  [21].

Considering the holographic hypothesis, Cohen et al. [22] proposed the relation

among the system entropy S, the IR (L) and UV (  ) cutoffs as 4333 SL 

which after combining with 
  AS  gives   424 4  L . Using this inequal-

ity, the THDE density is obtained as 42  DLT  where D is an unknown

parameter [23-25]. It is worthy to mention that for 1 , the standard HDE is

recovered. Furthermore, for 2 , the cosmological constant model is retrieved.

Using the Hubble horizon 1H  as the IR cutoff L, 42  DHT  is obtained.

Since DE occupies almost 70% of the content of the Universe today, it is

rational to assume that the density of DE is a function of the Hubble parameter

H and its derivative w.r.t. cosmic time [26]. In this paper, we have modified the

THDE by assuming HEDHMT
  42 . In the above expression dot (.) denotes

differentiation w.r.t. cosmic time t and E is the arbitrary dimensionless parameter.

The early Universe inflation can be considered as the primordial DE because DE

is merely the substitute for the accelerating expansion of the Universe [27]. So,

our constructed model is a good candidate to describe the inflationary stage.

Bianchi type spaces play an important role in constructing spatially homo-

geneous and anisotropic cosmological models to describe the behaviour of the

Universe at its early stages of its evolution. The anomalies found in the cosmic

microwave background (CMB) and large-scale structure (LSS) observations stimu-

lated a growing interest in anisotropic cosmological model of the Universe. Here

we confine ourselves to Bianchi type III models.

Several researchers have investigated various cosmological models in the

framework of THDE. Two Tsallis Agegraphic DE (TADE) models have been

proposed by using the age of the Universe and the conformal time as the IR cut-

offs and study their effects on the evolution of the Universe [28]. THDE in FRW

Universe with time varying deceleration parameter (DP) in the framework of FRW

Universe have been investigated by [29]. Mamon [30] has studied the evolution

of a fractal Universe with THDE in presence of an interacting scenario. Sadeghi

et al. [31] have explored THDE by considering the complex form of the

quintessence model in the framework of Brans-Dicke cosmology. Pradhan et al.

[32] have discussed THDE in the modified  TRf  ,  gravity framework with
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Granda-Oliveros (GO) cutoff. Mamon et al. [33] have studied THDE in presence

of interacting scenario. Dubey et al. [34] have discussed the axially symmetric

space-time in THDE. Korunur [35] have explored THDE in Bianchi type III

space-time. Yadav [36] has worked out THDE in Brans-Dicke cosmology. Santhi

and Sobhanbabu [37] have explained THDE in Saez-Ballester theory of gravita-

tion. Dubey et al. [38] have investigated THDE using hybrid expansion law (HEL)

with k-essence. Dubey et al. [39] have examined THDE in the non-flat Universe.

Motivated by the above aforesaid works, we have modified THDE in GR in the

framework of Bianchi type III space-time.

The organisation of the paper is as follows: In Section 2, we formulate the

metric and field equations for MTHDE model. In Section 3, we have obtained

the solutions of field equations of Bianchi type III space-time. In Section 4, we

have studied the cosmological model 1 and the correspondence between model 1

and quintessence scalar field. In Section 5 we have studied the cosmological model

2. The model 1 behaves like a quintessence dark energy model whereas the model

2 behaves like a cosmological constant model. Various parameters for both the

models are discussed graphically in Sections 6 and 7 respectively. The paper ends

with concluding remarks in Section 8.

2. Metric and field equations. We consider the anisotropic Bianchi type

III space-time

222222222 dzKdyeJdxIdtds x   (1)

where the scale factors I, J and K are functions of cosmic time t only.

The Einstein's field equations are given by

 , 
2

1
ijijijij TTRgR  (2)

where R
ij
 is the Ricci tensor and R is the Ricci scalar.

The energy momentum tensor i
jT   for dark matter (DM) is

 , 0 0, 0, ,diag m
i
jT  (3)

where m  is the energy density of DM.

The energy momentum tensor 
i
jT  for MTHDE is

 
  ,  , , ,1diag

 , , ,1diag , , ,diag ][

MTMTMTMT

MTzyxMTMTMTMT
i
j zyx

pppT




(4)

where MT  is the energy density of MTHDE, p
MT

 is the pressure of MTHDE

and MTx  , MTy   and MTz   are the directional equation of state

(EOS) parameters on x, y and z  axes respectively and MTMTMT p .

The Einstein's field equations (2) for the metric (1) using Eqs. (3) and (4)
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takes the form

MTMT
JK

KJ

K

K

J

J



(5)

MTMT
IK

KI

K

K

I

I



(6)

MTMT
IIJ

JI

J

J

I

I


2

1
(7)

MTm
IKI

IK

JK

KJ

IJ

JI


2

1
(8)

. 0
I

I

J

J 
(9)

Eq. (9) on integration and taking integrating constant to be unity, we obtain

. IJ  (10)

Using Eq. (10) in Eqs. (5)-(8), we get

MTMT
IK

KI

K

K

I

I



(11)

MTMT
II

I

I

I


22

2 1
2


(12)

. 
1

2
22

2

MTm
IIK

KI

I

I



(13)

The energy conservation equation is

  , 02 







 MTMTmMTm p
K

K

I

I 
 (14)

where overhead dot (.) denotes differentiation w.r.t. cosmic time t.

We assume that there is no interaction between DM and MTHDE throughout

the study.

3. Solutions of field equations. The average scale factor a(t) and the

spatial volume V are defined as

. 23 KIaV  (15)

The directional Hubble's parameters H
x
, H

y
 and zH  in the direction of x, y and

z  axes respectively are given by

. , 
K

K
H

I

I
HH zyx


 (16)

The mean Hubble's parameter H is
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. 2
3

1

33 
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zyx


(17)

The deceleration parameter q is defined as

. 
2a

aa
q




 (18)

The anisotropy parameter A
p
 is defined as











 


3

1

2

. 
3

1

i

i
p

H

HH
A (19)

Field equations (11)-(13) forms a system of three independent equations with five

unknowns I, K, MT , MT  and m . So, we use two extra relations to solve the

system of field equations completely. These are as follows:

(i) Following Chen and Jing [26] and Bharali and Das [40], we define

MTHDE density MT  as a function of Hubble parameter H and its derivative

w.r.t. cosmic time t as follows

,42 HEDHMT
  (20)

where E is the arbitrary dimensionless parameter and the other symbols have their

usual meanings.

(ii) A special law of variation for Hubble's parameter H proposed by Berman

[41] is defined as

, mkaH  (21)

where k > 0 and 0m  are constants.

Using Eqs. (17) and (21), we have obtained two models

  , 1, 1, 1
1  mmqkmkta m (22)

where k
1
 is a constant of integration.

   , 0, 1, exp 2  mqktka (23)

where k
2
 is a constant of integration.

From Eqs. (11) and (12), we get

, 
1

exp

1

2
0























 



dt
I

I

K

K

IV

u

I

I

K

K 

(24)

where u
0
 is a constant of integration.

Following Adhav [42], we assume

. 
1
2II

I

K

K



(25)

Using Eq. (25) in Eq. (24), we get
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. 0 te
V

u

I

I

K

K 


(26)

Integrating Eq. (26), we obtain

, exp 01 







 



dt
V

e
uIuK

t

(27)

where u
1
 is a constant of integration.

4. Model 1. When   mkmkta 1
1 , m < 1. Eq. (27) with   mkmkta 1

1

implies

  












 



dt
kmkt

e
uIuK

m

t

3
1

01 exp (28)

  . 3
1

32 mkmktaKIV  (29)

Eqs. (28) and (29) together implies

 
  













 


 dt

kmkt

eu
ukmktI

m

t
m

3
1

031
1

1
1

3
exp (30)

 
 

. 
3

2
exp

3
1

032
1

1
1














 



dt
kmkt

eu
ukmktK

m

t
m

(31)

Both the cosmic scale factors I and K increases as the age of the Universe increases

(Fig.1, 2). The Hubble parameter H and the MTHDE density MT  are calculated as

. 
1kmkt

k
H


 (32)

Fig.1. The plot of I versus cosmic time t for m = 0.5, k = 0.3, k
1
 = 0.5, u

0
 = 0.03 and u

1
 = 0.15.
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The Hubble parameter H is a decreasing function of t and tends to a small value

with the passage of cosmic time.

 
. 
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242
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kmkt

k
DMT (33)

Fig.3 shows that MT  decreases and tends to a constant value as cosmic time

evolves. The anisotropy parameter A
p
 is calculated as

 
. 

9

2
6

1

22
0

2

1





















 




m

t

p
kmkt

eu

k

kmkt
A (34)

0pA  as observed from Fig.4. Thus, our Universe approaches isotropy at late

Fig.2. The variation of K against cosmic time t for m = 0.5, k = 0.3, k
1
 = 0.5, u

0
 = 0.03 and

u
1
 = 0.15.
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  versus cosmic time t for m = 0.5, k = 0.3, k
1
 = 0.5,
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0
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times. The energy conservation equation for dark matter is

. 03  mm H (35)

Using Eq. (32) in Eq. (35), the energy density of dark matter m  is found as

  mm
kmkt

3
1

0




 (36)

0  is a constant of integration.

From Fig.3, we see that m  diminishes as cosmic time evolves and ultimately

approaches to zero.

The energy conservation equation for MTHDE is

  . 03  MTMTMT pH (37)

Fig.4. The evolution of H and A
p
 against cosmic time t for m = 0.5, k = 0.3, k

1
 = 0.5 and u

0
 = 0.03.
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Fig.5. The plot of MT
  versus t for m = 0.5, k = 0.3, k

1
 = 0.5, 51. , D = 0.5, 80

0
.

and E = 0.2.
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The EOS parameter of MTHDE MT  is obtained by the use of Eqs. (32), (33)

and (37) as
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MT (38)

From Fig.5, it is observed that 1MT . Thus, our model 1 behaves like a

quintessence dark energy model. The present value of the EOS is calculated as

83400 .  [43-45] and this concludes that the model 1 is a quintessence dark

energy model.

Correspondence between model 1 and quintessence scalar field.

The pressure and energy density for quintessence scalar field [46] are given by

 


 Vp
2

2
(39)

  , 
2

2




 V


(40)

where   denotes the scalar field and  V  is the scalar field potential.

The EOS parameter   is defined as

 
 

. 
2

2
2

2














V

Vp





(41)

Eqs. (33) and (40) together implies

 
 . 

2

2

2
1
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(42)

Eqs. (38) and (41) together implies

 . 
1

1

2

2
















V

MT

MT


(43)

Using Eq. (43) in Eq. (42), we obtain the scalar field potential  V  as

 
 

. 
2

1
2

1

242
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kmkt

Emk

kmkt

k
DV MT

(44)

The scalar field   is calculated by using Eqs. (43) and (44) and then integrating,

we get
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(45)

where 0  is the constant of integration.

Both the scalar field potential  V  and the scalar field   diminishes and

ultimately tends to a small value during the evolution of the Universe as seen

from Fig.6 and 7.

5. Model 2. When   2exp ktka  , m = 0. Eq. (27) with   2exp ktka 

implies

Fig.6. The plot of )(V  versus t for m = 0.5, k = 0.3, k
1
 = 0.5, 51. , 80

0
. , D = 0.5

and E = 0.2.

Fig.7. The evolution of   against cosmic time t for m = 0.5, k = 0.3, k
1
 = 0.5, 51. ,

80
0

. , D = 0.5, E = 0.2 and 050
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dt
ktk

e
uIuK

t

2
01

3exp
exp (46)

  . 3exp 2
32 ktkaKIV  (47)

Eqs. (46) and (47) together implies

  
  2

2

031
1 exp

3exp3
exp ktkdt

ktk

eu
uI

t













 




(48)

  
  . exp

3exp3

2
exp 2

2

032
1 ktkdt

ktk

eu
uK

t











 



(49)

Fig.8 demonstrates that the cosmic scale factors I and K increases as cosmic

time evolves. The Hubble parameter H and the MTHDE density MT  are

calculated as

kH  (50)

. 42  DkMT
(51)

From Eqs. (50) and (51), we can conclude that both Hubble parameter H and

MTHDE density MT  are constant.

The energy conservation equation for dark matter is

. 03  mm H (52)

Using Eq. (50) in Eq. (52), m  is found as

, 3
0

kt
m e (53)

where 0  is a constant of integration.

From Fig.9, we can conclude that 0m  as cosmic time evolves.

Fig.8. The plot of I and K versus cosmic time t for k = 0.3, k
2
 = 0.6, u

0
 = 0.03 and u

1
 = 0.15.
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The energy conservation equation for MTHDE is

  . 03  MTMTMT pH (54)

Using Eqs. (50) and (51) in Eq. (54), we have obtained MT  as

. 1MT (55)

Thus, our Model 2 behaves like a cosmological constant model. Recent studies

[5,47-50] indicate that our model 2 approaches to CDM  ( 1MT ) served as

an excellent model to describe the cosmological evolution. Hence our model 2

is in good agreement with these observations.

The anisotropy parameter A
p
 is obtained as

   . 
9

2
262

2

ktkt
p e

k
A  (56)

Fig.9 indicates that as 0t , pA  and as t , 0pA . Hence, the

anisotropy of our Universe dies out with the passage of cosmic time.

In all the graphs, t denotes cosmic evolution time, generally measured in giga

years (1 Gyr = 109
 y) along x axis. Along y axis, all physical quantities like the

matter energy density m , MTHDE density MT , EOS parameter MT , etc. are

measured in geometrized units, where the speed of light c = 1 and the gravitational

constant G = 1.

6. Graphical discussions of model 1.

I and K are increasing functions of t as observed from Fig.1 and 2.

Both H and A
p
 are decreasing functions of t as observed from the above figure.

H tends to a small value whereas 0pA  at the later age of the Universe.

Both m  and MT  decreases with the passage of t. m  approaches to zero

whereas MT  approaches to small value at the later epoch.

Fig.9. The graph of m
  and A

p
 versus cosmic time t for 80

0
. , k = 0.3 and k

2
 = 0.6.
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From the above figure, we can conclude that 1MT  at the late times. This

indicates that our model 1 behaves like a quintessence dark energy model.

The scalar field potential  V  decreases and ultimately approaches to a small

value as cosmic time evolves.

  tends to a small value at the later age of the Universe as observed from

the above figure.

7. Graphical discussions of model 2.

I and K increases with the passage of cosmic time as observed from Fig.8.

Both m  and A
p
 are decreasing functions of t and tends to zero at the later

age of the Universe.

8. Conclusions. In this paper we have studied a Bianchi type III Universe

filled with dark matter and MTHDE in General Relativity. To determine the

solutions of the field equations completely, we make use of a special law of

variation of Hubble parameter H proposed by Berman that yields constant DP.

Interestingly, we have obtained two different cosmological models for two different

constant values of DP. The EOS parameter of MTHDE also behaves like

quintessence DE for model 1. Using these results, we have established a corre-

spondence between MTHDE model with the quintessence scalar field. Quintes-

sence potential and the dynamics of the quintessence scalar field are reconstructed

for this anisotropic accelerating model of the Universe. Furthermore, it is observed

from Eq. (55) that for large cosmic time the EOS parameter of the MTHDE

for model 2 becomes -1. Therefore, in the late time evolution of the Universe,

our model 2 behaves like a cosmological constant model. Also, the deceleration

parameter appears with negative sign which implies accelerating expansion of the

Universe. Perlmutter et al. [3] and Riess et al. [1,51,52] proved that the

deceleration parameter of the Universe is in the range 01  q , and the present-

day Universe is undergoing an accelerated expansion. From Fig.4 and 9, we see

that the anisotropy parameter 0pA  as t . Hence, for sufficiently large

time, our MTHDE models predict that the anisotropic nature vanishes and it will

become isotropic at late times. This implies that our MTHDE models become

isotropic at late times even though the space-time is anisotropic. Our results show

that the Universe is anisotropic in the early stage and at the late time dynamics

anisotropy of the Universe damps out and the present day Universe becomes

isotropic as suggested by different observational data. We have found that the results

are consisent with current cosmological observational data. The models presented

in this paper could give an appropriate description of the evolution of the Universe.
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ÌÎÄÈÔÈÖÈÐÎÂÀÍÍÀß ÃÎËÎÃÐÀÔÈ×ÅÑÊÀß
ÒÅÌÍÀß ÝÍÅÐÃÈß ÖÀËËÈÑÀ

Äæ.ÁÕÀÐÀËÈ, Ê.ÄÀÑ

Â äàííîé ðàáîòå ìû ïðåäëàãàåì ìîäèôèöèðîâàííóþ  ãîëîãðàôè÷åñêóþ

òåìíóþ ýíåðãèþ (MTHDE) Öàëëèñà â îáùåé òåîðèè îòíîñèòåëüíîñòè (ÎÒÎ)

â ðàìêàõ ïðîñòðàíñòâà-âðåìåíè òèïà Áüÿíêè III. Óðàâíåíèÿ ïîëÿ Ýéíøòåéíà

ðåøàþòñÿ ñ èñïîëüçîâàíèåì ñïåöèàëüíîãî çàêîíà âàðèàöèè ïàðàìåòðà Õàááëà

H, ïðåäëîæåííîãî Áåðìàíîì, êîòîðûé ïðèâîäèò ê ïîñòîÿííîìó ïàðàìåòðó

çàìåäëåíèÿ (DP). Èíòåðåñíî, ÷òî äëÿ äâóõ ðàçíûõ ïîñòîÿííûõ çíà÷åíèé

ïàðàìåòðà çàìåäëåíèÿ ìû ïîëó÷àåì äâå ðàçëè÷íûå êîñìîëîãè÷åñêèå ìîäåëè.

Ìîäåëü 1 âåäåò ñåáÿ êàê ìîäåëü êâèíòýññåíöèè òåìíîé ýíåðãèè, òîãäà êàê

ìîäåëü 2 âåäåò ñåáÿ êàê ìîäåëü êîñìîëîãè÷åñêîé ïîñòîÿííîé. Óñòàíàâëèâàåòñÿ

ñîîòâåòñòâèå ìåæäó ìîäåëüþ 1 è êâèíòýññåíöèàëüíûì ñêàëÿðíûì ïîëåì.

Ïðîâîäèòñÿ ðåêîíñòðóêöèÿ êèíåìàòèêè êâèíòýññåíöèè ïîòåíöèàëà è ñêàëÿðíîãî

ïîëÿ, èëëþñòðèðóþùàÿ óñêîðÿþùóþñÿ ôàçó Âñåëåííîé. Òùàòåëüíî

îáñóæäàþòñÿ ðàçëè÷íûå ïàðàìåòðû, òàêèå êàê ïàðàìåòð çàìåäëåíèÿ, ïàðàìåòð

Õàááëà, ïàðàìåòð àíèçîòðîïèè, ïàðàìåòð óðàâíåíèÿ ñîñòîÿíèÿ (EOS) è äð.

äëÿ îáåèõ êîñìîëîãè÷åñêèõ ìîäåëåé. Ïîëó÷åííûå ðåçóëüòàòû îêàçûâàþòñÿ

ñîãëàñîâàííûìè ñ ïîñëåäíèìè íàáëþäåíèÿìè ñîâðåìåííîé Âñåëåííîé.

Êëþ÷åâûå ñëîâà: MTHDE: ÎÒÎ: ïàðàìåòð Õàááëà: ïàðàìåòð çàìåäëåíèÿ DP
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