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1. Introduction
A semiring is a set R equipped with two binary operations + and -, called addition
and multiplication, such as:
1.(R, +) is a commutative monoid with identity element 0:
(@+b)+c=a+(b+c)
O+a=a+0=a
atb=b+a
2.(R, -) is a monoid with identity element 1:
(a-b)-c=a'(b-c)
lra=a'l=a
3. Both multiplying left and right distribute over addition:
a'(b+c)=(ab)+(ac)
(a+b)yc=(ac)+(bc)
4. Multiplication by 0 annihilates R:
0-a=a0=0
A semiring (R, +,) is called commutative, if (R,) is commutative groupoid.
An idempotent semiring is a semiring R = (R,+,) , with identity a+a=a.

2. Examples
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1. The motivating example of a semiring is a set of natural
numbers N (including zero) under ordinary addition and multiplication. All these
semirings are commutative.

2. The square nxn matrixes with  non-negative entries form a (non-
commutative) semiring under ordinary addition and multiplication of matrices. More
generally, the same applies to the square matrices whith elements of any other given
semiring S, and the semiring is generally non-commutative nevetheless S may be
commutative.

3. IfAis a commutative monoid, then the set End
(A) of endomorphisms f:4—A form is a semiring, where addition is pointwise
addition and multiplication is functional composition.

(f+g)x=f(x)+g(x)
(f-&)x=g(f(x)
Zero morphism and identity are respective neutral elements
4, If (Q,+,-) is a semiring , then the set End (Q) of endomorphisms is a

semiring under with of the following operations are:
(f+gh=rf(x)+g(x)
(f gk = fle(x))

5. The ideals of a ring is a semiring under addition and multiplication of ideals.

6. Any bounded, distributive lattice is a commutative, idempotent semiring
under joining and meeting.

If R=(R,+,") isasemiring, then we denote R* =R(+).

3. Preliminary results
Two groupoids on {r are called isotopic if there are permutationsof g p,

« and 7,suchasforany g be G,
aob= (ap . bO')T

where . and @ denotes the operation in these two groupoids. The isotopy relation is an
equivalence relation for the binary operations. An isomorphism of two binary
operations defined on the same set is a special case of an isotopy (with
p=o=11)

In about quasigroups the following results are known[1,2]:

Theorem 1. (Albert,1943):Every groupoid that is isotopic to a quasigroup is a
quasigroup itself.

Theorem 2: (Albert,1943): Every quasigroup is isotopic to some loop .

Theorem 3: (Albert,1943): If a loop (in particular, a group) is isotopic to some
group, then they are isomorphic.

Theorem 5:( Bruck) If a groupoid with identity element is isotopic to
a semigroup, then they are isomorphic, that is, they are both semigroups with
identity.

The isotopy of rings with the same additive groups is defined by Albert in the
following manner:

If Q(+,-) and Q(+,0) rings are called k-isotopic if there exist bijective mappings

a,By:Q—>Q suchas:
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Da(x-y)=F(x)or(y)

2)a,B.y € Aut[ Q(+)] :

Theorem6: (Albert [1,2], Kurosh [3]) If a ring with identity element is k-isotopic
to an associative ring,then they are isomorphic.

4. The structure result
We introduce the following general concept of isotopy.
Q(+,,,) and Q'(+,,-,) semrings are called K-isotopic, if there exist bijective
mappings
a,B.y:Q->Q
such as
1)05()('1 Y) :ﬂ(x)'z V(Y)’
2)a, B.7:Q(+) > Q'(+,)
isomorphic mappings:
Theorem 1. If a ring with identity element is K-isotopic to an associative
ring,then they are isomorphic.

Theorem 2. K-isotopic semirings are isomorphic.
The isotopy of algebras is defined as follows [4,5]:
Two algebras  (Q,Q) and (Q’,Q") with binary operations are called M-isotopic, if
there exist bijective mappings «,,7:Q > Q' , y:Q— ', such that y :Q—
preservs the arity of operations and

aA(x, y) = (y A)(BX, BY)
forall AeQ .

Theorem. Two M-isotopic semirings are isomorphic.
Proof. Let A=(Q,Z) A'=(Q',%') is M-isotopic semirings, i.e.
ah (xy)=[A)px )

forall A eX operations and forall X,y € Q elements.
Since forall x,y,zeQ elementsand forall A €ZX operations

AlA K Y)z]= Alx Aly.2)]

Then
Al A A (o)) | = A s a A ()|

For X=1 =€, we obtain

forany y e Q
Futher, for fX=e, we obtain

Alpla ) rel=7| oA (8. 2) |
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Ala ) rel=7 oA (3y.12)|
Replacing fytoy and yztoz we obtain

Alrlay) )= [ (v, )]

Similarly, from condition yz=e, we obtain

Bla A (5 )| = A Tx e ()] = A lx sl 0y)]

Replacing fxtox and ytoy we obtain

o, 6] A T sl )

forall X,y € Q elements
Further,

ya A (x,y) = mlﬂ[a%'(ﬁx,w)} = oAyl A (B )] = A e (o) )=

= oA blec*(p0) ]| = A e (90 ol 0] A ol ) e )] -
= [Ty Bl *By]

i.e. (yo B, ) isan isomorphism from semiring A to semiring A'’.
The theorem is proved.
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