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1. Introduction

While investigating the linear quadrature mirror filters in signal processing, Mallat

[1] pioneered an algorithm for the construction of orthonormal wavelet bases for

L2(R), coined as the multiresolution analysis (MRA). Undoubtedly, the theory

of MRA has attained a respectable status within the scientific and engineering

communities in such a way that it is now considered as a nucleus of shared aspirations

and ideas [2]. Some of the prominent wavelets obtained via an MRA include Shannon

wavelet, Meyer wavelet, Franklin wavelet, spline wavelets, biorthogonal wavelets,

nonuniform wavelets, harmonic wavelets, Daubechies wavelets and the Riesz wavelets

[3, 4, 5, 6, 7].

The theory of MRA on locally compact abelian groups has grown at an exponential

rate over the last two decades and is befitting for investigating deep problems in

time-frequency analysis, owing to its ability to unify continuous and discrete theory,

and to cover higher-dimensional problems without any notational complication.

For instance, Dahlke [8] constructed orthonormal wavelet basis on LCA groups by

means of the generalized B-splines and self-similar tiles, whereas Lang [9] adapted

1The first author is financially supported by HRDG-CSIR, Government of India, Grant No.
09/045(1653)/2019-EMR-I.
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the well-known finite mask approach of Daubechies [2] to construct compactly

supported wavelets on the Cantor dyadic groups. Later on, Kamyabi-Gol and Tousi

[10, 11] investigated the conditions under which a function generates a multiresolution

analysis on a locally compact abelian group using the theory of spectral functions

and shift-invariant spaces. Subsequently, Yang and Taylor [12] introduced the notion

of an MRA on certain non-abelian locally compact groups G with no regularity or

decay constraints on the scaling functions and constructed the Haar-like wavelet

bases for L2(G). Recently, Bownik and Jahan [13] constructed an MRA on compact

Abelian groups with epimorphism as a dilation operator and characterize the scaling

sequences of an MRA for Lp(G), 1 ≤ p < ∞. Very recently, Kumar and Satyapriya

[14] formulated the theory of frame multiresolution analysis on LCA groups and

investigated certain properties of multiresolution subspaces
{
Vj : j ∈ Z

}
which

provides the quantitative criteria for the construction of an FMRA for L2(G).

Motivated and inspired by the contemporary developments in the theory of MRA

abreast the profound applicability of the unifying structure of locally compact

Abelian groups, we construct a Riesz MRA for L2(G) starting from a given scaling

function. Subsequently, we study all the conditions under which a scaling function

ϕ generates a Riesz MRA for L2(G). Nevertheless, several illustrative examples are

presented to facilitate a sound clarification of the constructed Riesz MRA. Towards

the end, some exceptional cases have been discussed regarding the non-existence of

dilative automorphism α of G.

The remainder of the article is structured as follows: Section 2 is entirely devoted

for the exposition of the preliminaries including the definition of Fourier transform,

dilative automorphism, uniform lattices and the Riesz basis on LCA groups. Section

3 exclusively deals with the construction of a Riesz MRA for L2(G). In section 4,

some exceptional cases have been discussed briefly. Finally, a conclusion is extracted

in Section 5.

2. Preliminaries and Fourier analysis on LCA groups

We shall start this section with a brief overview of the locally compact Abelian

groups followed by some preliminary results concerning the Fourier transforms on

LCA groups, which serves as a cornerstone for the subsequent developments of

the Riesz bases for L2(G). Towards the culmination of the section, we present the

definition and characterizations of Riesz bases in Hilbert spaces.

2.1. Basics of LCA groups. A group G equipped with a Hausdorff topology is called

an LCA group, if it is metrizable, locally compact and can be written as a countable
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union of compact sets. The set of real number R, integers Z, unit disk T and ZN

(the integers modulo N) are some prominent examples of LCA groups. These groups

along with their higher dimensional variants, are called elementary LCA groups.

Moreover, the family of all continuous homomorphisms from the LCA group G to

the circle group T = {z ∈ C : |z| = 1} is denoted by Ĝ and also constitutes an LCA

group under a suitable topology and the composition

(ω + ω′)(x) = ω(x)ω′(x), x ∈ G,ω, ω′ ∈ Ĝ.(2.1)

This group is often referred as the dual group of G and its elements are called the

characters of Ĝ. It is well-known that the double-dual group ̂̂
G = G and as such

ω(x) can be interpreted as either the action of ω ∈ Ĝ on x ∈ G or the action of

x ∈ G on ω ∈ Ĝ. For the sake of brevity, we shall use the following notation:

(ω, x) = ω(x), x ∈ G,ω ∈ Ĝ.(2.2)

2.2. Fourier analysis on LCA groups

Let µG and µĜ be the Haar measures on LCA groups G and Ĝ, respectively. Based

on the Haar measure, we define the spaces Lp(G) and Lp(Ĝ), 1 ≤ p ≤ ∞ in the

usual way. The Fourier transform of any arbitrary function f ∈ L1(G) is defined by

F : L1(G) → C0(Ĝ), F (f)(ω) =

∫
G

f(x) (ω, x) dµG(x),(2.3)

where C0(Ĝ) denotes the space of all continuous functions on Ĝ vanishing at infinity.

For the sake of our convenience, we will also use the notation f̂ to denote the Fourier

transform of the function f .

It is worth noticing that for a fixed Haar measure dµG(x), there exits a Haar

measure dµĜ(x) on Ĝ called the normalized Plancherel measure, such that the

Fourier transform (2.3) is an isometric transform on L1(G) ∩ L2(G), and hence, it

can be extended uniquely to a unitary isomorphism from L2(G) onto L2(Ĝ) [15].

Therefore, each f ∈ L1(G) with F (f)(ω) ∈ L1(Ĝ) can be reconstructed via the

following formula:

f(x) =

∫
Ĝ

f̂(ω)(ω, x) dµĜ(ω), x ∈ G.(2.4)

Moreover, the Parseval’s formula corresponding to (2.3) reads〈
f, g

〉
=

∫
G

f(x) g(x) dµG(x) =

∫
Ĝ

f̂(ω) ĝ(ω) dµĜ(ω) =
〈
f̂ , ĝ

〉
.(2.5)

For typographical convenience, we shall denote the Haar measures dµG and dµĜ

by dx and dω, respectively.

For y ∈ G, the generalized translation operator is defined by

Ty : L2(G) → L2(G), Tyf(x) = f(x− y), x ∈ G.(2.6)
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Likewise, the generalized dilation operator D in L2(G) can be defined via the

dilative automorphism introduced by Dahlke [8]. An automorphism α : G → G

is said to be dilative if there exists N ∈ N such that K ⊆ αn(U), ∀n ≥ N , where K

is any compact set in G and U is an open neighbourhood at the origin. Therefore,

for a dilative automorphism α, the dilation operator D : L2(G) → L2(G) is defined

by

Df(x) = ∆(α)1/2 f
(
α(x)

)
, x ∈ G,(2.7)

where ∆(α) is a positive constant such that∫
G

f(x) dx = ∆(α)

∫
G

f
(
α(x)

)
dx.(2.8)

2.3. Lattices and fundamental domains in LCA groups

A uniform lattice in an LCA group G is a discrete subgroup Λ for which the quotient

group G/Λ is compact. In addition to this, we shall also assume that α(Λ) ⊆ Λ.

Corresponding to the lattice Λ, an annihilator Λ⊥ is defined by

Λ⊥ =
{
ω ∈ Ĝ : (x, ω) = 1, x ∈ Λ

}
.(2.9)

It is easy to verify that the annihilator Λ⊥ is also a lattice in Ĝ and α̂
(
Λ⊥) ⊂ Λ⊥,

whenever α(Λ) ⊂ Λ. For the classical case G = R, we have Λ = Λ⊥ = Z. Therefore,

the inclusion α(Λ) ⊂ Λ always holds for the automorphism x 7→ 2x as α(Λ) = 2Z.

Nevertheless, it is pertinent to mention that a lattice Λ in G can be used to obtain

a splitting of the group G and Ĝ into disjoint cosets [16].

Lemma 2.1. [16] Let Λ be a lattice in an LCA group G. Then the following hold:

(i). There exists a Borel measurable relatively compact set Q ⊆ G such that

G =
⋃
λ∈Λ

(λ+Q), (λ+Q) ∩ (λ′ +Q) = ∅, for λ ̸= λ′; λ, λ′ ∈ Λ.(2.10)

(ii). There exists a Borel measurable relatively compact set S ⊆ Ĝ such that

Ĝ =
⋃

ω∈Λ⊥

(ω + S), (ω + S) ∩ (ω′ + S) = ∅, for ω ̸= ω′; ω, ω′ ∈ Λ⊥.(2.11)

The sets Q and S appearing in (2.10) and (2.11) are called a fundamental domains

or the tiles associated with the lattices Λ and Λ⊥, respectively.

We now discuss the periodic functions on G. For a given set H ⊂ G, a function

f : G → C is said to be H-periodic if

f(x+ h) = f(x), ∀ x ∈ G, h ∈ H.(2.12)
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In particular, if we take H = Λ, then by virtue of Λ-periodicity of the functions

defined on G, we can determine the space L2(G/Λ). Similarly, we can define Λ⊥-

periodic functions on Ĝ and hence, the space L2(Ĝ/Λ⊥) can be determined accordingly

[17, 14]. If we assume that G = R and Λ = Z, then both the quotient spaces

L2(G/Λ) and L2(Ĝ/Λ⊥) can be identified with the space L2(T). Note that a

function F ∈ L2(Ĝ/Λ⊥) if and only if there exists a sequence {cλ}λ∈Λ ∈ l2(Λ)

such that [14]

F (ω) =
∑
λ∈Λ

cλ(ω, λ), ∀ ω ∈ Ĝ.(2.13)

2.4. The Riesz basis in L2(G)

Considering the lattice Λ as a countable index set, we define a Riesz basis for the

space L2(G). For a detailed study on Riesz bases and related topics, we refer to

[16].

Definition 2.1. A family
{
fλ : λ ∈ Λ

}
is called a Riesz basis for L2(G) if there

exist a bounded bijective operator U : L2(G) → L2(G) and an orthonormal basis

{eλ : λ ∈ Λ} of L2(G) such that fλ = Ueλ, for each λ ∈ Λ.

It is worth noticing that for a Riesz basis
{
fλ : λ ∈ Λ

}
of L2(G), there exists

positive constant 0 < A ≤ B < ∞ such that [16]

A
∥∥f∥∥2 ≤

∑
λ∈Λ

∣∣⟨f, fλ⟩∣∣2 ≤ B
∥∥f∥∥2, ∀f ∈ L2(G).(2.14)

The numbers A and B are called lower and upper Riesz bounds, respectively. In

the optimal case, we have

A =
∥∥U−1

∥∥−2
, and B =

∥∥U∥∥2.(2.15)

In most cases, it is extremely strenuous to determine the existence of A and B or

an operator U to verify whether the family
{
fλ : λ ∈ Λ

}
is a Riesz basis or not. In

such cases, an alternate characterization of the Riesz bases is given below.

Lemma 2.2. [16] Let Λ be a lattice in LCA group G. A sequence
{
fλ : λ ∈ Λ

}
in

L2(G) is a Riesz basis for L2(G) if and only if the map T : l2(Λ) → L2(G) given

by

T ({cλ}) =
∑
λ∈Λ

cλfλ,(2.16)

is well defined and bijective.
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3. Construction of Riesz MRA on LCA groups

In this section, we construct the Riesz MRA on locally compact Abelian groups by

first choosing an appropriate scaling function ϕ ∈ L2(G) and then obtaining the

subspace V0 by taking the linear span of translates of ϕ. Consequently, the other

subspaces Vj , j ∈ Z can be generated as the scaled adaptations of V0. Besides, we

shall present several conditions under which a scaling function generates a Riesz

MRA for L2(G). Prior to that, we shall formally introduce the notion of a Riesz

MRA in L2(G) by slight modifications of the classical MRA.

Definition 3.1. A Riesz multiresolution analysis of L2(G) is a sequence of closed

subspaces
{
Vj : j ∈ Z

}
of L2(G) satisfying the following properties:

(i). Nested Property: Vj ⊆ Vj+1, for all j ∈ Z;

(ii). Density Property:
⋃

j∈Z Vj is dense in L2(G);

(iii). Separation Property:
⋂

j∈Z Vj =
{
0
}
;

(iv). Dilation Property: f(·) ∈ Vj if and only if f(α(·)) ∈ Vj+1 for all j ∈ Z;

(v). Translation Invariant: f ∈ Vj =⇒ Tλf ∈ Vj for all λ ∈ Λ, j ∈ Z;

(vi). Riesz Basis: the sequence
{
Tλϕ(·) = ϕ(· − λ) : λ ∈ Λ

}
is a Riesz basis for V0.

Definition 3.1 allows us to make the following observations.

(i). The function ϕ appearing in (vi) is called as the scaling function or the father

wavelet of a Riesz MRA, where as the subspaces Vj ’s are known as approximation

spaces or multiresolution subspaces.

(ii). Condition (vi) also implies that

V0 = span
{
Tλϕ : λ ∈ Λ

}
,(3.1)

whereas condition (iv) yields

Vj = span
{
Dj Tλϕ : λ ∈ Λ

}
, j ∈ Z.(3.2)

(iii). Using Definition 3.1 together with the fact that Dj is an unitary operator, it

follows that
{
DjTλϕ : λ ∈ Λ

}
is a Riesz basis for Vj , j ∈ Z with same bounds as

that of the Reisz sequence
{
Tλϕ : λ ∈ Λ

}
. Therefore, every function f ∈ Vj can be

expressed as

f(x) =
∑
λ∈Λ

cλ D
jTλϕ(x), ∀x ∈ G.(3.3)

(iv). Implementation of the Fourier transform of (3.3) yields

f̂
(
α̂j(γ)

)
= F (γ) ϕ̂(γ), ∀ γ ∈ Ĝ,(3.4)

where F (γ) ∈ L2(Ĝ/Λ⊥).
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We now state a lemma which provide a complete characterization of the scaling

functions ϕ ∈ L2(G) so that the condition (vi) holds good.

Lemma 3.1. [17] For any arbitrary function ϕ ∈ L2(G), the family of translates{
Tλϕ(x) : λ ∈ Λ

}
forms a Riesz sequence for V0 with bounds A and B if and only

if

A ≤ Φ(γ) ≤ B, ∀ γ ∈ Ĝ,(3.5)

where Φ(γ) =
∑

ω∈Λ⊥

∣∣ϕ̂(γ + ω)
∣∣2.

To construct a Riesz MRA on locally compact Abelian groups, the foremost requirement

is to choose an appropriate function ϕ ∈ L2(G) such that
{
Tλϕ : λ ∈ Λ

}
constitutes

a Riesz basis for V0. Once we choose ϕ and define the subspaces Vj ’s by (3.2), the

separation property (iii) of the subspaces becomes redundant. Moreover, it follows

that Vj satisfy the dilation and translating properties of Definition 3.1. Nevertheless,

the separation property associated with the MRA based wavelet frames for L2(G)

is proved in [14]. However, for the sake of courtesy, we shall state this result for a

Riesz MRA on LCA groups below.

Lemma 3.2. Let ϕ ∈ L2(G) be such that the family of translates
{
Tλϕ : λ ∈ Λ

}
forms a Riesz sequence for V0 and let

{
Vj : j ∈ Z

}
be the sequence of closed

subspaces of L2(G) as defined in (3.2). Then,
⋂

j∈Z Vj = {0}.

In order to verify that the ladder spaces Vj ’s generated by ϕ constitute a Riesz

MRA for L2(G), it is sufficient to show that the following properties also hold:

• The subspaces Vj are nested;

•
⋃

j∈Z Vj is dense in L2(G).

Since the subspaces Vj defined via (3.2) exhibit the scaling property and Dj is a

unitary operator, thus, the only inclusion V0 ⊆ V1 is required to show that the

subspaces Vj ’s are nested.

Theorem 3.1. Let ϕ ∈ L2(G) be such that the family of translates
{
Tλϕ : λ ∈ Λ

}
forms a Riesz sequence for V0 and let

{
Vj : j ∈ Z

}
be the sequence of closed

subspaces of L2(G) as defined in (3.2). Then, the following statements are equivalent:

(i). V0 ⊆ V1

(ii). There exist a Λ⊥-periodic function H0 ∈ L∞(Ĝ/Λ⊥) such that

ϕ̂
(
α̂(γ)

)
= H0(γ) ϕ̂(γ), ∀ γ ∈ Ĝ.(3.6)

Proof. We first assume that V0 ⊆ V1. Since V1 = DV0 and ϕ ∈ V0, hence, it follows

that D−1ϕ ∈ V0. By virtue of (3.4), there exists a function F ∈ L2(Ĝ)/Λ⊥ such
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that

D̂−1ϕ(γ) = F (γ) ϕ̂(γ), ∀ γ ∈ Ĝ,

which in turn implies that

ϕ̂
(
α̂(γ)

)
= H0(γ) ϕ̂(γ), γ ∈ Ĝ,(3.7)

where H0(γ) = ∆
−1/2
α F (γ), which asserts (3.6). It remains to show that H0(γ) is

essentially bounded on Ĝ. Using representation (3.3) and the definition of Φ, we

have

Φ(γ) =
∑

ω∈Λ⊥

∣∣∣ϕ̂(γ + ω)
∣∣∣2 =

∑
ω∈Λ⊥

∣∣∣H0

(
α̂−1(γ + ω)

)
ϕ̂
(
α̂−1(γ + ω)

)∣∣∣2 .(3.8)

Since α̂(Λ⊥) ⊆ Λ⊥, relation (3.8) becomes

Φ(γ) ≥
∑

ω∈α̂(Λ⊥)

∣∣∣H0

(
α̂−1(γ + ω)

)
ϕ̂
(
α̂−1(γ + ω)

)∣∣∣2 .
Applying the Λ⊥-periodicity of H0, we obtain

Φ(γ) ≥
∣∣∣H0

(
α̂−1(γ)

)∣∣2Φ(α̂−1(γ)
)
.

Since the collection
{
Tλϕ : λ ∈ Λ

}
forms a Riesz sequence for V0 with bounds A

and B (say), therefore, it is easy to obtain the following inequality:∣∣H0(γ)
∣∣ ≤ √

B

A
, ∀ γ ∈ Ĝ.

Thus, we conclude that the Λ⊥-periodic function H0 is also essentially bounded.

Conversely, suppose that there exists a Λ⊥-periodic function H0 such that (3.6)

holds. Then, for an arbitrary function f ∈ V0, relation (3.4) implies that there exist

some F ∈ L2(Ĝ/Λ⊥) such that f̂(γ) = F (γ) ϕ̂(γ) for all γ ∈ Ĝ. Therefore, by virtue

of (3.6), above relation yields

f̂
(
α̂(γ)

)
= F

(
α̂(γ)

)
H0(γ) ϕ̂(γ), ∀ γ ∈ Ĝ,

which further implies that f̂
(
α̂(γ)

)
= H1(γ) ϕ̂(γ) for all γ ∈ Ĝ, where H1(γ) =

F
(
α̂(γ)

)
H0(γ) and belongs to L2(Ĝ/Λ⊥) as F ∈ L2(Ĝ/Λ⊥) and H0 ∈ L∞(Ĝ/Λ).

Again by virtue of (3.4), it follows that f ∈ V1. This completes the proof of Theorem

3.1. □

Corollary 3.1. Let ϕ ∈ L2(G) be such that the family of translates
{
Tλϕ : λ ∈ Λ

}
forms a Riesz sequence for V0 and let

{
Vj : j ∈ Z

}
be the sequence of closed

subspaces of L2(G) as defined in (3.2). Then, the refinement mask H0 associated

with the scaling function ϕ is unique.
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It’s just a matter of demonstrating that the union of the subspaces {Vj : j ∈ Z}
is dense in L2(G). Several authors have used different approaches to demonstrate

this property. For instance, Daubechies [2] determine this property by knowing

the behaviour of ϕ̂ around the neighbourhood of 0 ∈ Ĝ. Kamyabi and Tousi [10]

employed the machinery of spectral radius and shift invariant spaces to verify this

property for LCA groups. On the other hand, the property of α-substantiality of

the scaling function ϕ has be utilized to prove this property [14, 12]. We shall also

use the property of α-substantial to prove that the union of Vj is dense in L2(G).

We recall that a function f ∈ L2(G) is said to be α-substantial if there exists a

non-zero function g ∈ L2(G) such that

Djf ∗ g = 0, ∀ j ∈ Z =⇒ g = 0.

Lemma 3.3. [14] If ϕ ∈ L2(G) is such that |ϕ̂| > 0 on a neighbourhood of 0 ∈ Ĝ,

then ϕ is α-substantial.

We now state the union theorem in terms of α-substantial of the scaling function

ϕ.

Theorem 3.2. [14] Let ϕ be a refinable function in L2(G) and
{
Vj : j ∈ Z

}
be

defined by (3.2). Then, the following conditions are equivalent:

(i).
⋃

j∈Z Vj = L2(G)

(ii). ϕ is α-substantial.

We now assemble all the conditions under which a function ϕ ∈ L2(G) generates a

Riesz MRA for L2(G).

Theorem 3.3. A function ϕ ∈ L2(G) generate a Riesz MRA for L2(G) if the

following conditions are satisfied:

(i). The family of translates
{
Tλϕ : λ ∈ Λ

}
forms a Riesz sequence.

(ii). The subspaces Vj are defined by (3.2).

(iii). The function ϕ̂ is nonzero on a neighbourhood of 0 ∈ Ĝ.

(iv). There exists a Λ⊥-periodic function H0 ∈ L∞(Ĝ/Λ⊥) such that (3.6) holds.

We now present some examples for the lucid illustration of the proposed construction.

Example 3.1. Let G = R+ be an LCA group of of all positive real numbers with

Haar measure

µG(B) =
∫
B

(log 2)−1

t
dt,
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where B ⊆ G is any Borel set in G. Then, it is easy see that Λ =
{
2n : n ∈ Z

}
is a uniform lattice in G and the corresponding quotient group Λ/α(Λ) has the

following representation
Λ

α(Λ)
=

{
α(Λ), 2α(Λ)

}
,

where α : x 7→ x2 is a dilative automorphism of G. For x, ω ∈ G, the map x → xi logω

is a continuous homomorphism from G to the unit interval T. Subsequently, the

characters of G may be defined by (ω, x) = ϕω(x) so that dual group of R+ is

R+; i.e, Ĝ = G. The measure µĜ is normalized appropriately so that the inversion

formula and the Parseval formula hold. Moreover, the annihilator Λ⊥ of Λ and the

automorphism α̂ of Ĝ can be derived accordingly. We choose the sets

Q =

[
1√
2
,
√
2

)
and S =

[
e
− π

log 2 , e
π

log 2

)
as the fundamental domains in G and Ĝ, respectively. Then, we observe that

µG(Q) = 1 = µĜ(S). We now define a function ϕ ∈ L2(G) via its Fourier transform

as

ϕ̂(γ) = XA1
(γ) + 2XA2

(γ), γ ∈ Ĝ,(3.9)

where

A1 =

[
e
− π

log 4 , e
π

log 4

)
, and A2 =

[
e
− π

log 2 , e
− π

log 4

)⋃[
e

π
log 4 , e

π
log 2

)
.(3.10)

Then, it is quite evident that for any γ ∈ S, we have∑
ω∈Λ⊥

∣∣∣ϕ̂(γω)∣∣∣2 = XA1
(γ) + 2XA2

(γ),

which further implies that

1 ≤ Φ(γ) ≤ 2, ∀ γ ∈ Ĝ.(3.11)

Using Lemma 3.2, it follows that the family of translates
{
Tλϕ : λ ∈ Λ

}
forms a

Riesz sequence. In particular, if we choose the subspaces Vj as defined in (3.2), then

the collection
{
Tλϕ : λ ∈ Λ

}
constitutes a Riesz basis for V0. From the relation (3.9),

we observe that ϕ̂(γ) is continuous in any neighbourhood of 0 ∈ Ĝ with ϕ̂(0) = 1

and is contained in A1 , this verifies the density property (ii) of a Riesz MRA on a

LCA group G. Let H0 be the Λ⊥-periodic extension of the function

XA3(γ) + 2XA4(γ), γ ∈ S,

where

A3 =

[
e
− π

log 16 , e
π

log 16

)
, A4 =

[
e−

π
log 4 , e

− π
log 16

)⋃[
e

π
log 16 , e

π
log 4

)
.
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Therefore, we have

ϕ̂
(
α̂(γ)

)
= ϕ̂(γ2) = H0(γ) ϕ̂(γ), ∀ γ ∈ Ĝ.

Thus, we can say that ϕ is refineable and hence, the subspaces Vj are also nested.

Using Theorem 3.3, it follows that ϕ generates a Riesz MRA for L2(G).

Example 3.2. Let G = R be the Euclidean group of real numbers. We choose the

Lebesgue measure dx as the Haar measure on G, then it is easy verify that the dual

of R itself R. Consider Λ = Z as a uniform lattice in G and the map x 7→ 3x as a

dilative automorphism of R. Then, it turns out that Λ⊥ = Λ and α̂ = α.

We now define a function ϕ ∈ L2(G) via its Fourier transform by

ϕ̂(x) =



(
x4

24
+

5x3

12
+

25x2

16
+

125x

48
+

625

384

)1/2

, x ∈
[
−5

2
,−3

2

)
(
−x4

6
− 5x3

6
− 5x2

4
− 5x

24
+

55

96

)1/2

, x ∈
[
−3

2
,−1

2

)
(
x4

4
− 5x2

8
+

115

192

)1/2

, x ∈
[
−1

2
,
1

2

)
(
−x4

6
+

5x3

6
− 5x2

4
+

5x

24
+

55

96

)1/2

, x ∈
[
1

2
,
3

2

)
(
x4

24
− 5x3

12
+

25x2

16
− 125x

48
+

625

384

)1/2

, x ∈
[
3

2
,
5

2

)
.

(3.12)

Define the subspaces Vj via the relation (3.2). Then, it trivially satisfies the separation

condition (ii) of a Riesz MRA. Since, ϕ̂(γ) ̸= 0 in the neighbourhood of 0 ∈ Ĝ,

therefore, by virtue of Lemma 3.3, it follows that ϕ is α-substantial and subsequently,

Theorem 3.2 implies that Vj is dense in L2(G). We also observe that Φ(γ) = 1, ∀ γ ∈
Ĝ, which means that the family of translates

{
Tλϕ : λ ∈ Λ

}
constitutes a Riesz

basis for V0 with Riesz bounds equal to 1. Finally, taking H0(γ) = ϕ̂(3γ)/ϕ̂(γ)

as the refinement mask on [−1/2, 1/2), which can be extended periodically to the

whole real line R, then all the conditions of Theorem 3.3 are satisfied and hence, ϕ

generates a Riesz MRA for L2(G).

4. Some exceptional cases

Since the construction of Riesz MRA discussed in the previous section entirely

relies upon the existence of a dilative automorphism α of the locally compact

Abelian group G. There arises a serious question: Does there always exist a dilative

automorphism α for every LCA group G? In this section, we show that there exist

LCA groups for which there exist no dilative automorphism.
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Example 4.1. Let G = T be the circle group equipped with the topology of R2.

Taking Λ =
{
1
}

as a uniform lattice of G, then the quotient group G/Λ can be

identified as G itself, which is compact. Let α : x 7→ xn be an automorphism of G.

Assume that U =
{
eix : −π/4 < x < π/4

}
is an open neighbourhood of the identity

element 1 ∈ G. Then, for the case G = K, we have α−n(K) = K for all n ∈ N,

and hence, the condition for α to be dilative can never be achieved. Therefore, we

conclude that there exist no dilative automorphism α on G and hence we can’t

construct a Riesz MRA on the space L2(G) using the methods given in this paper.

But, if we use an epimorphism instead of automorphism, then using the methods

of [13], the construction of a Riesz MRA is possible on the space L2(G).

Theorem 4.1. For a non-trivial compact abelian group G, there does not exist a

dilative automorphism α of G.

Proof. Let α be an automorphism of a compact Abelian group G. Let U be any

proper open neighbourhood of the origin in G. Take K = G as a compact set

in G and assume that α is dilative. Then, there exist some n0 ∈ N such that

K ⊆ αn(U), n ≥ n0. This implies that

α−n(K) ⊂ U, ∀ n ≥ n0.(4.1)

Hence, α−n(K) = G as K = G. Using the fact that U ⊂ G and (4.1), it follows

that G = U , which can not be true as U is a proper subset of G. Thus, we conclude

that there exist no dilative automorphism α for a non-trivial LCA group G. □

Remark 4.1. The paper [13] deals with the construction of an MRA on the space

L2(G), G being a compact Abelian group. The main difference in our paper and

[13] lies in the associated structures of lattices and dilation operator. In [13], the

authors have used an epimorphism A to define the dilation operator for L2(G).

Further, in [13] a nonstationary like case has been dealt with as there are different

scaling functions ϕj for different multiresolution spaces Vj (although it is valid

for the stationary case as well.). They have also used different sets for translation

on different multiresolution levels. To sum up, the analogous of condition (vi) of

Definition 3.1 reads as: there exist functions ϕj ∈ Vj such that the family {Tβϕj :

β ∈ ker(Vj)} forms an orthonormal basis for Vj .

In the next example, we show that there also exist no dilative automorphism α on

the discrete group Z.

Example 4.2. Let G = Z be the group of integers under addition and equipped

with the discrete topology. For a fixed m ∈ Z, the quotient group Z/mZ is finite and
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compact, so we can take Λ = mZ as a uniform lattice for G. Let α : x 7→ px, p ∈ Z,

be an automorphism of G, then pmZ ⊆ mZ. We claim that α is not dilative. By

taking U = {0} and K = {−1, 0, 1}, we observe that U is an open neighbourhood

of the origin and K is compact in Z. Therefore, αn(U) =
{
pn · 0

}
=

{
0
}
, n ∈ N

and thus, K can not be contained within α̂n(U), for any n ∈ Z. Hence, there exist

no dilative automorphism α of Z.

In the following theorem, we generalize above assertion for any arbitrary discrete

group G.

Theorem 4.2. Let G be a discrete LCA group with atleast two elements. Then,

there does not exist any dilative automorphism α of G.

Proof. Let α be an automorphism of a discrete LCA group G with atleast two

elements. Let U = {0} and K =
{
a1, a2, . . . , aN

}
such that atleast one ak’s is

non-zero. Clearly, U is an open neighbourhood of 0 ∈ G and K is compact n G.

Therefore, αn(0) = 0, for any n ∈ N. This means that

αn(U) = U, ∀n ∈ N.(4.2)

Since K is not contained in U , so K can not be a subset of αn(U), for any n ∈ N,

which implies that α can not be dilative. □

Remark 4.2. It is noteworthy that if the discrete group G is finite (for instance

the group of integers modulo n, i.e. n), then G is also compact in its topology and

hence we can apply the theory of [13] to construct an MRA or a Riesz MRA for

such groups. We also find it necessary to mention here that for the groups except

the ones mentiond in this section (for instance the Euclidean group Rn), the theory

of [13] fails and our theory needs to be applied.

Since a discrete group can be considered as a special case of a disconnected group,

therefore, it is worthwhile to generalize the above result for disconnected groups. We

recall that the component C(x) of x ∈ G is the union of all connected subsets of G

which contain x [18]. Thus, we can say that a component C(x) is the maximal

connected subset of G or in other words, it is not properly contained in any

connected subset of G.

Theorem 4.3. Let G be the disconnected LCA group with atleast two components.

Then, there exist no dilative automorphism α of G.

Proof. Let G1 and G2 be two components of the disconnected LCA group G.

Without loss of generality, we assume that 0 ∈ G1. Let U be an open neighbourhood
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of 0 ∈ G contained in G1 and K be a compact subset of G entirely contained within

G2. Then, for any automorphism α of G, αn(U), n ∈ N is always contained in G1.

This means that

K ∩ αn(U) = ∅, ∀n ∈ N.(4.3)

Hence, there exist no dilative automorphism α of G. □

For the lucid illustration of the above result, we present an example of a disconnected

LCA group G having four components.

Example 4.3. Consider the set

G =


a 0 0
0 b 0
0 0 c

 : a, b, c ∈ R, abc > 0

 .

Then, it is easy to verify that G is LCA group under the matrix multiplications

and induced topology of the Euclidean space R3. Moreover, under this topology,

the group G is disconnected having the following components:

G1 =


a 0 0
0 b 0
0 0 c

 : a, b, c ∈ R, a, b, c > 0

 ,

G2 =


a 0 0
0 b 0
0 0 c

 : a, b, c ∈ R, a, b < 0, c > 0

 ,

G3 =


a 0 0
0 b 0
0 0 c

 : a, b, c ∈ R, a, c < 0, b > 0

 ,

G4 =


a 0 0
0 b 0
0 0 c

 : a, b, c ∈ R, a > 0, b, c < 0

 .

We also observe that the given group G is algebraically isomorphic and topologically

homeomorphic to a subset of R3 with the following representation:

G1 =
{
(x, y, z) ∈ R3 : x, y, z > 0

}
, G2 =

{
(x, y, z) ∈ R3 : x, y < 0, z > 0

}
,

G3 =
{
(x, y, z) ∈ R3 : x, z < 0, y > 0

}
, G4 =

{
(x, y, z) ∈ R3 : x > 0, y, z < 0

}
.

It is quite evident that the identity element e ∼ (1, 1, 1) of G belongs to G1. Let

U be an open neighbourhood of e in G entirely contained in G1 with the following

identification in R3:

U ∼
{
(x, y, z) ∈ R3 :

√
(x− 1)2 + (y − 1)2 + (z − 1)2 <

1

2

}
.
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If α is any automorphism of G, then α maps any connected set onto connected set

in G, that is;

αn(U) ⊂ G1, ∀ n ∈ Z.(4.4)

Let K be any set in G with the following identification:

K ∼
{
(x, y, z) ∈ R3 : max

{
|x+ 1|, |y + 1|, |z − 1|

}
≤ 1

2

}
.

Clearly, K is compact in G and entirely contained within G2. Thus, K ∩ αn(U) =

∅, n ∈ Z, which means that α can not be dilative automorphism on G.
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Boston (2016).

[17] C. Cabrelli and V. Paternostro, “Shift-invariant spaces on LCA groups”, J. Funct. Anal., 258,
no. 6, 2034 – 2059 (2010).

[18] T. B. Singh, Introduction to Topology, Springer, Singapore (2013).

Поступила 16 ноября 2021

После доработки 11 февраля 2022

Принята к публикации 13 февраля 2022

96


	1. Introduction
	2. Preliminaries and Fourier analysis on LCA groups
	3. Construction of Riesz MRA on LCA groups
	4. Some exceptional cases
	Список литературы

