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1. Introduction

Let {fn(·)}∞n=1 be a sequence of almost everywhere finite measurable functions

defined on [0, 1]. A set D ⊂ [0, 1] is called a divergence set of the series
∞∑

n=1
fn(·),

if that series is divergent for all x ∈ D, and it is convergent for all x /∈ D.

The case of particular interest is when the sequence {fn(·)}∞n=1 is a sequence of

terms of expantion of some f ∈ L2[0, 1] with respect to some complete orthonormal

sequence Φ = {ϕn, n ∈ N}. That is, fn = (f, ϕn)ϕn, where (f, ϕn) =
∫ 1

0
f(x)ϕn(x)dx.

One of the classical cases is when Φ is the trigonometric system. Several classical

results concerning pointwise convergence and divergence of Fourier series can be

found e.g. in classical monographs A. Zygmund [1], or N.K. Bari [2], see also e.g.

S. B. Stechkin [3], K. Zeller [4], L.V. Taikov [5], J.-P. Kahane, Y. Katznelson [6],

V.V. Buzdalin [7], [8] for other results in this direction. Similar type of results for

the Walsh series can be found e.g. in Sh.V. Kheladze [9], [10], U. Goginava [11].

Another classical system is the Haar system. It is well known that the behaviour

of Fourier-Haar series of functions from C[0, 1] or L1[0, 1] is different than respective

1The work of Martin G. Grigoryan was supported by the Science Committee of the Republic
of Armenia in the frames of the research project No. 21AG-1A066.
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Fourier or Fourier-Walsh series, in particular: (i) if f ∈ C[0, 1], then its Haar series

converges uniformly to f on [0, 1], (ii) if f ∈ L1[0, 1], then its Haar series converges

to f almost everywhere on [0, 1]. The question of characterization of divergence

sets of Haar series has been completely solved by G. A. Karagulyan [12]: a set

D ⊂ [0, 1] is a set of divergence of the Haar series of a function f ∈ L∞[0, 1] if

and only if D is a Gδσ set of measure 0. (Note that – because of (ii) and the fact

that Haar functions are piecewise constant – a divergence set of the Haar series of

any f ∈ L1[0, 1] must be a Gδσ set of measure 0, cf. the necessity part of Theorem

1 of [12].) Some earlier related results can be found in V. Prokhorenko [13], M.A.

Lunina [14], V. M. Bugadze [15].

G.A. Karagulyan [16], [17] continued this line of investigation for sequences of

operators with localization property. In particular, he proved the following:

Theorem A ([17], Theorem 1). Let M [0, 1] be the space of bounded measurable

functions on [0, 1], with the norm ∥f∥M = supx∈[0,1] |f(x)|. Let Un : L1[0, 1] →
M [0, 1] be a sequence of linear operators satisfying the following conditions:

C1) ρn = ∥Un : L1[0, 1] → M [0, 1]∥ < ∞ for each n ∈ N.

C2) ρ = supn∈N ∥Un : L∞[0, 1] → M [0, 1]∥ < ∞.

C3) If f ∈ M [0, 1] is such that f(x) = 1 on (a, b) ⊂ [0, 1], then Unf(x) → 1

for all x ∈ (a, b), where the convergence is uniform on compact subsets of

(a, b).

C4) Unf(x) → f(x) a.e. for f ∈ L∞[0, 1].

Let D be a Gδσ set of measure 0. Then there is a function f ∈ L∞[0, 1] such that

Un(x, f) → f(x) for x ∈ [0, 1] \D, and the sequence {Un(x, f), n ≥ 1} is divergent

for x ∈ D.

The restriction that D is a Gδσ set is natural, as the range of operators Un may

be a subspace of C[0, 1], see also Theorem 2 of [17] for more general situation.

We are interested in extending Theorem A to the setting of operators Un =

U
(1)
n1 ⊗. . .⊗U

(d)
nd , where n = (n1, . . . , nd) ∈ Nd, and for each 1 ≤ i ≤ d the sequence of

operators {U (i)
ni , ni ∈ N} satisfies some variant of localization conditions analogous

to those of Theorem A, and the convergence is understood in rectangular sense, i.e.

as min(n) → ∞.

For comparison, let us remind some facts concerning pointwise convergence of

expansions of functions on [0, 1]d with respect to tensor products of univariate

complete ortonormal systems. In case of the tensor product Haar system, both

rectangular and spherical partial sums of f ∈ L(log+ L)d−1 converge to f a.e., and
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this result is sharp. For the rectangular partial sums, the convergence results follow

by B. Jessen, J. Marcinkiewicz, A. Zygmund [18], while the divergence results are

contained in S. Saks [19]. For the spherical partial sums, the convergence results

can be found in G.G. Kemkhadze [20], while the divergence results can be found

in G.E. Tkebuchava [21] in case of d = 2 and G. Oniani [22] for general d ≥ 2,

the latter paper containing several other divergence results. Note that in the one-

dimensional case the Fourier-Haar series of every f ∈ L1[0, 1] converges almost

everywhere on [0, 1]. The Fourier series of any function f(x) ∈ L2[T] converges

almost everywhere on T. On the other hand, for the trigonometric system on T2,

C. Fefferman [23] showed the existence of f ∈ C(T2) with rectangular partial sums

diverging everywhere on T2. More results in this direction can be found in G. Gát,

G. Karagulyan [24].

In this note, we present a partial result in the direction of extending Theorem

A to the multivariate and multiparameter setting, in the very special case that the

divergence set D ⊂ [0, 1]d is countable. This is the content of the main results of

this note, Theorems 1.1 and 1.2. Recall that a construction of a function f ∈ C(T)
with its Fourier series divergent exactly on a given countable set D ⊂ T is one of

classical results, cf. e.g. [2], chapter IV, section 21, or [1], vol 1, chapter VIII, a

remark following the proof Theorem 1.16. In case of the Haar system, construction

of f ∈ L∞[0, 1] with its Haar series divergent on exactly a given countable set

D ⊂ [0, 1] is one of the results in V.I. Prokhorenko [13].

The paper is organized as follows. In section 1.1, we formulate the setting of

the problem and the main results, i.e. Theorems 1.1 and 1.2. Then, in section 2,

we give examples of sequences of kernels and corresponding operators satisfying

assumptions of Theorems 1.1 and 1.2. We begin with one-parameter examples.

In the univariate and one-parameter case, we are mostly interested in sequences

of orthogonal projections on spline spaces with arbitrary knots. We describe this

example in detail in section 2.1, in particular in Proposition 2.1. Some other classical

one-parameter examples are mentioned in section 2.2. Then, by the usual tensor

product procedure, starting from low-dimensional and low-parameter kernels satis-

fying assumptions of Theorems 1.1 and 1.2, it is possible to get higher-dimensional

and higher-parameter examples. This is described in section 2.3. Finally, in section

3, we proceed with the proofs of Theorems 1.1 and 1.2.

1.1. Setting of the problem and formulation of the result. To formulate the

result, we need to introduce some notation. By µ = µd we denote the Lebesgue

measure on [0, 1]d (or on Rd, Td, when we switch to the setting of Rd or Td), and
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∥ · ∥ denotes the euclidean norm on Rd. For E ⊂ [0, 1]d, we put Ec = [0, 1]d \E. By

M [0, 1]d we denote the space of bounded functions on [0, 1]d, with the norm ∥f∥M =

supx∈[0,1]d |f(x)|. By supp(f) we denote the set-theoretic support of function f , i.e.

(1.1) supp(f) := {x : f(x) ̸= 0}.

For n = (n1, . . . , np) ∈ Np, denote min(n) = min(n1, . . . , nd).

Consider a family of d-variate kernels, parametrized by n ∈ Np,

(1.2) Kn : [0, 1]d × [0, 1]d → R, n ∈ Np

with the following localization properties:

(k.1) Each Kn is measurable with respect to the σ-field on [0, 1]d × [0, 1]d, which

is a product of d-variate Lebesgue σ-fields on [0, 1]d.

(k.2) Boundedness: for each n ∈ Np, there is γn such that |Kn(x, y)| ≤ γn for all

x, y ∈ [0, 1]d.

(k.3) For each x ∈ [0, 1]d, there is a number w(x) ∈ (0,∞) such that∫
[0,1]d

|Kn(x, y)|dy ≤ w(x) for all n ∈ Np.

(k.4) Partition of unity:
∫
[0,1]d

Kn(x, y)dy = 1 for all n ∈ Np and x ∈ [0, 1]d.

(k.5) Localization: for each x ∈ [0, 1]d and δ > 0

lim
min(n)→∞

∫
{y∈[0,1]d:∥x−y∥>δ}

|Kn(x, y)|dy = 0,

where for n = (n1, . . . , np) ∈ Np, we denote min(n) = min(n1, . . . , nd).

Consider sequence of operators Un, corresponding to kernels Kn, given by formula

(1.3) Unf(x) =

∫
[0,1]d

Kn(x, y)f(y)dy.

The above properties of kernels Kn imply the following:

(v.1) Each Un : L1[0, 1]d → M [0, 1]d is a bounded linear operator with

∥Un : L1[0, 1]d → M [0, 1]d∥ ≤ γn.

(v.2) If x ∈ [0, 1]d is a continuity point of f ∈ M [0, 1]d, then limmin(n)→∞ Unf(x) =

f(x).

Indeed, (v.1) follows by (k.1) and (k.2), while (v.2) is a consequence of (k.3),

(k.4) and (k.5).

In this setting, we prove the following:

Theorem 1.1. Let {Kn, n ∈ Np} be a sequence of kernels as in (1.2), satisfying

conditions (k.1)-(k.5), and let {Un, n ∈ Np} be a sequence of corresponding operators

given by formula (1.3). Let D ⊂ [0, 1]d be a countable set. Let ε > 0, and fix a
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sequence {nr, r ≥ 1} of elements of Np with limr→∞ min(nr) = ∞. Then there is a

real-valued function f ∈ M [0, 1]d such that

• µ{x ∈ [0, 1]d : f(x) ̸= 0} < ε,

• f is continuous at each point x ̸∈ D, and consequently, Unf(x) → f(x) as

min(n) → ∞,

• the sequence {Unrf(x), r ≥ 1} is divergent for all x ∈ D.

Concerning the countinuity properties of f as in Theorem 1.1, observe that

because of (v.2), any function f ∈ M [0, 1]d such that the sequence {Unf(x), n ∈ Np}
is divergent, cannot be continuous at x.

Because of (v.2), Theorem 1.1 implies the following Menshov-type theorem:

Theorem 1.2. Let {Kn, n ∈ Np} be a sequence of kernels as in (1.2), satisfying

conditions (k.1)-(k.5), and let {Un, n ∈ Np} be a sequence of corresponding operators

given by formula (1.3). Let D ⊂ [0, 1]d be a countable set. Let g be a measurable,

almost everywhere finite function, defined on [0, 1]d and ε > 0. Fix a sequence

{nr, r ≥ 1} of elements of Np with limr→∞ min(nr) = ∞. Then there is f ∈ M [0, 1]d

such that

• µ{x ∈ [0, 1]d : f(x) ̸= g(x)} < ε,

• f is continuous at each point x ̸∈ D, and consequently, Unf(x) → f(x) as

min(n) → ∞.

• the sequence {Unrf(x), r ≥ 1} is divergent for all x ∈ D.

We have formulated Theorems 1.1 and 1.2 for functions and operators on [0, 1]d.

The same results can be obtained in the setting of T and Rd. Remarks 1.1 and 1.2

below indicate the necessary changes.

Remark 1.1. Setting of Td, where T = R/Z: conditions (k.1)-(k.5) should be

formulated on Td. In particular, condition (k.5) should be formulated for the periodic

distance on Td, i.e. distTd(x, y) =
∑d

i=1 distT1(xi, yi), where distT1(t, u) = min(|t−
u|, 1 − |t − u|) for 0 ≤ t, u < 1, and x = (x1, . . . , xd), y = (y1, . . . , yd). Then, in

versions of Theorems 1.1 and 1.2 for Td, continuity of a function f : Td → R at a

point x ∈ Td should be understood in the sense of the distance on Td. With these

adaptations, the conclusions of Theorems 1.1 and 1.2 are true in the Td setting.

Remark 1.2. Setting of Rd: conditions (k.1)-(k.5) should be formulated on Rd.

Moreover, in the statement of Theorem 1.2 for Rd, we need the following assumption

on function g:

(1.4) µ{x ∈ Rd : |g(x)| > λ} → 0 as λ → ∞.
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With these adaptations, the conclusions of Theorems 1.1 and 1.2 are true in the Rd

setting.

The proofs in the case of Td or Rd follow by the same lines as in case of [0, 1]d,

so we just comment on them at the end of section 3, but we do not include the

details. However, we feel free to discuss examples not only on [0, 1]d, but on Td or

Rd as well.

2. Examples

Now, we give some examples of kernels satisfying (k.1)-(k.5).

2.1. Sequences of orthogonal projections onto splines of fixed order. Basic

facts concerning spline spaces discussed below can be found e.g in L.L. Schumaker

[25], or R.A. DeVore, G.G. Lorentz [26], Chapter 5.

Fix k ≥ 1. For ρ ≥ k, consider a sequence of points T = {ti, 1 ≤ i ≤ ρ+k} ⊂ [0, 1]

such that

ti ≤ ti+1, ti < ti+k, t1 = . . . = tk = 0, tρ+1 = . . . tρ+k = 1.

Denote |T | = max{ti+1 − ti : 1 ≤ i ≤ ρ + k − 1}. We say that a point τ ∈ T has

multiplicity m, 1 ≤ m ≤ k, if ti−1 < τ = ti = . . . = ti+m−1 < ti+m for some i.

Let Sk(T ) be the space of splines of order k with knots T . That is, if f ∈ Sk(T ),

then f is polynomial of degree ≤ k − 1 on each interval (ti, ti+1), while for τ ∈ T
of multiplicity m < k, f is of class Ck−m−1 at τ ; in case k = m both left- and

right- limits f(τ−) = limt→τ− f(t) and f(τ+) = limt→τ+ f(t) exist, and we put

f(τ) = f(τ+); the exception is the endpoint τ = 1, where we put f(1) = f(1−).

Recall that each function f ∈ Sk(T ) can be uniquely written as f =
∑ρ

i=1 ciNi,

where Ni = Nk
i are normalized B-splines on [0, 1] of order k with knots T . In

particular, Ni ≥ 0,
∑ρ

i=1 Ni = 1 and suppNi = (ti, ti+k), with the exception of the

case when ti is of multiplicity k – in this case Ni(ti) = 1, and N1(0) = 1, Nρ(1) = 1.

Let PT ,k be the orthogonal projection onto Sk(T ) with respect to the usual inner

product in L2[0, 1], i.e. (f, g) =
∫ 1

0
f(x)g(x)dx. Then PT ,k is an integral operator,

and its Dirichlet kernel KT ,k can be written as follows:

(2.1) KT ,k(x, y) =

ρ∑
i,j=1

aijNi(x)Nj(y),

where the coefficients aij are the entries of the matrix inverse to the Gram matrix

G = [(Ni, Nj) : 1 ≤ i, j ≤ ρ], i.e. G−1 = [aij , 1 ≤ i, j ≤ ρ]. This formula implies

in particular properties(k.1), (k.2) and (k.3), while (k.4) follows from the fact that

χ[0,1] ∈ Sk(T ). Moreover, recall the constant w(x) in (k.3) can be chosen as wk, i.e.
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a constant depending on the order of splines k, but not on a point x ∈ [0, 1], nor

a sequence of points T . This is a concequence of A.Yu. Shadrin [27], which states

that

(2.2) ∥PT ,k : L∞[0, 1] → L∞[0, 1]∥ ≤ Ck,

with Ck depending on k, but not on T (cf. also M.v. Golitschek [28] for a simpified

proof of this result).

To discuss condition (k.5), we need to recall some estimates for kernels KT ,k.

First, note that – because of localization of B-splines – if τ = ti = . . . = ti+k−1 ∈ T
, τ ̸= 0, 1, is a point in T of multiplicity k, then for each i1 < i ≤ i2 there is

(Ni1 , Ni2) = 0, and consequently ai1,i2 = 0. It follows that if x < τ ≤ y, then

KT ,k(x, y) = KT ,k(y, x) = 0.

In general, we need to recall some estimates for kernels KT ,k from M. Passenbrunner,

A. Shadrin [29]. Let i, j be such that ti ≤ x < ti+1 and tj ≤ y < tj+1, and denote

Iij = [tmin(i,j), tmax(i,j)+1). Then Lemma 2.1 of [29] states that there are C = Ck

and θ = θk ∈ (0, 1), depending on k, but not on T , such that

(2.3) |KT ,k(x, y)| ≤ C
θ|i−j|

µ(Iij)
.

Formula (2.3) implies the following: for x1 < x2, denote dT (x1, x2) = #{i : x1 <

ti ≤ x2}. Then there are a constant C = Ck and ϑ = ϑk ∈ (0, 1), depending on k,

but neither on T nor x and α, β with α < x < β, such that

(2.4)
∫
(α,β)c

|KT ,k(x, y)|dy ≤ Cϑmin
(
dT (α,x),dT (x,β)

)
.

In particular, if δ > 0, and α = x− δ, β = x+ δ, then

(2.5)
∫
y:|x−y|>δ

|KT ,k(x, y)|dy ≤ Cϑmin
(
dT (x−δ,x),dT (x,x+δ)

)
,

or more generally, if α < α′ ≤ β′ < β, then

(2.6)
∫
(α,β)c

|KT ,k(x, y)|dy ≤ Cϑmin
(
dT (α,α′),dT (β′,β)

)
for x ∈ [α′, β′].

To summarize these considerations, we formulate the following:

Proposition 2.1. Fix k ≥ 1. Let {Tn, n ≥ 1} be a sequence of partitions with points

of multiplicity at most k and with |Tn| → 0 as n → ∞. Then the kernels KTn,k

satisfy conditions (k.1)-(k.5), and the sequence of operators Un = PTn,k satisfies

assumptions of Theorems 1.1 and 1.2.

Moreover, the sequence of operators Un = PTn,k satisfies conditions C1)-C4) of

Theorem A.
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Proof. In fact, we have already seen that conditions (k.1)-(k.4) are satisfied. To

check (k.5), observe that if |Tn| → 0 as n → ∞, then for each x, δ, min
(
dTn(x −

δ, x), dTn
(x, x+δ)

)
→ ∞ as n → ∞. Combining this observation with formula (2.5)

we get (k.5).

Concerning conditions C1)-C4) of Theorem A, note that C1) coincides with (v.1),

while C2) follows by the fact that w(x) in (k.3) can be chosen independently of x

and T , as explained above. C3) follows by (k.4) and formula (2.6), while C4) is a

consequence of Theorems 1.1 or 3.1 of [29]. □

Recall that in case k = 1, formula (2.1) can be written explicitly. That is, if

T = {ti, 1 ≤ i ≤ ρ + 1}, with 0 = t1, ti < ti+1, tρ+1 = 1, and x, y are such that

ti ≤ x, y < ti+1 (or tρ ≤ x, y ≤ tρ+1 = 1 in case i = ρ), then KT ,1(x, y) =
1

ti+1−ti
,

and KT ,1(x, y) = 0 otherwise.

Remark 2.1. In case each Tn+1 is obtained from Tn by adding 1 knot, the sequence

PTn,k is a sequence of partial sums with respect to the corresponding orthonormal

spline systems of order k. The case of k = 1 corresponds to the general Haar

systems, as introduced by A.Haar [30], Chapter III, section 4 (see also e.g. I.Novikov,

E. Semenov [31], Chapter 10.b) and the case of k = 2 corresponds to general

Franklin system, as studied e.g. in G.G. Gevorkyan, A. Kamont [32], [33]. The

orthonormal spline systems with arbitrary knots and general k ≥ 1 were studied in

M. Passenbrunner [34]. In case when the sequence of knots is the sequence of dyadic

points, we recover classical Haar and Franklin systems (cf. e.g. B.S. Kashin, A.A.

Saakyan [35], Chapters III and VI) and orthonormal spline systems with dyadic

knots, as studied e.g. by Z. Ciesielski, J. Domsta [36], [37].

Remark 2.2. Let us note that it is possible to consider also a periodic version

of this example, i.e. sequences of orthogonal projections onto periodic splines with

arbitrary knots. In order to verify that sequences of these operators satisfy the

periodic version of conditions (k.1)-(k.5), the essential point is to get a periodic

counterpart of the estimates (2.5) or (2.6). This is possible due to the estimate of the

elements of the matrix inverse to the Gram matrix of the periodic B-splines, cf. M.

Passenbrunner [38], Remark 3.2 (ii). Moreover, combination of these estimates and

Theorem 1.3 of [38] implies that sequences of orthogonal projections onto periodic

splines satisfy assumptions of the periodic version of Theorem A.

2.2. Some other one-parameter examples. Let us recall briefly some other

classical examples of sequences of kernels satisfying conditions (k.1)-(k.5).
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2.2.1. Wavelet projections. For terminlogy, existence of object discussed in this

section and their properties we refer e.g. to Y. Meyer [39].

Let ϕ be an orthonormal scaling function on Rd, associated with the dilation

matrix 2I, where I denotes d× d identity matrix, and such that |ϕ(x)| ≤ C
(∥x∥+1)d+ϵ

with some ϵ > 0. Then K0(x, y) =
∑

k∈Zd ϕ(x − k)ϕ(y − k) is the Dirichlet kernel

of the orthogonal projection onto V0 = spanL2(Rd){ϕ(·−k), k ∈ Zd}, and it satisfies

the estimate |K(x, y)| ≤ C
(∥x−y∥+1)d+ϵ . Moreover,

∫
Rd K0(x, y)dy = 1 for all x ∈

Rd. Then Kn(x, y) = 2ndK0(2
nx, 2ny) is the Dirichlet kernel of the orthogonal

projection onto Vn = spanL2(Rd){2nd/2ϕ(2n · −k), k ∈ Zd}. Then the sequence of

kernels {Kn, n ∈ N} satisfies conditions (k.1)-(k.5).

2.2.2. Cesaro (C,α), α > 0, means of partial sums with respect to the trigonometric

system. This is a classical example. For precise formulae, we refer e.g. to [1], vol.

I, Chapter III, section 5. Conditions (k.1) and (k.4) are clear, while (k.2), (k.3) and

(k.5) can be seen as a consequence of formula (5.5) in [1], vol. I, Chapter III, section

5.

2.2.3. Cesaro (C, 1) means of partial sums with respect to the Walsh system. For

definition and properties of the Walsh system we refer e.g. to F. Schipp, W.R.

Wade, P. Simon, J. Pál [40], or B. Golubov, A. Efimov, V, Skvortsov [41]. Here, we

refer to the Walsh system in the Walsh-Paley order. Again, properties (k.1), (k.2)

and (k.4) are clear, and (k.3) and (k.5) are consequences e.g. of [40], Chapter 1,

Theorem 16: uniform version of (k.3) is a content Theorem 16 v), while (k.5) is a

consequence of the pointwise estimate for the Walsh-Fejer kernel as in Theorem 16

iv), see also [41], Chapter 4, section 4.2, from the formulas 4.2.6 and 4.2.10 of this

section follows that the Walsh-Fejer kernel satisfies the conditions (k.1)-(k.5).

2.3. Examples via tensor product procedure. Observe that tensor product of

kernels satisfying conditions (k.1)-(k.5) gives again a kernel – with more variables

and more parameters – satisfying conditions (k.1)-(k.5). For the sake of completeness,

we formulate this observation as Fact 2.1 below.

Fix k ≥ 1. For each 1 ≤ j ≤ k, we are given kernels

Knj
: [0, 1]dj × [0, 1]dj → R, nj ∈ Npj .

Let d = d1 + . . .+ dk and p = p1 + . . .+ pk. For x = (x1, . . . , xk), y = (y1, . . . , yk)

with xj , yj ∈ [0, 1]dj and n = (n1, . . . , nk) with nj ∈ Npj , define

(2.7) Kn(x, y) =

k∏
j=1

Knj
(xj , yj).

54



MENSHOV-TYPE THEOREM FOR DIVERGENCE SETS ...

Fact 2.1. Let the kernels {Knj
, nj ∈ Npj} satisfy conditions (k.1)-(k.5) on [0, 1]dj ,

j = 1, . . . , k. Then the kernels {Kn, n ∈ Np} satisfy conditions (k.1)-(k.5) on [0, 1]d

Proof. Indeed, (k.1)-(k.4) should be clear. To see (k.5), note that

{y ∈ [0, 1]d : ∥y − x∥ > δ} ⊂
k⋃

j=1

{y ∈ [0, 1]d : ∥yj − xj∥ > δ/
√
k}.

Therefore, (k.5) for Kn follows by combining (k.3) and (k.5) for Knj
, j = 1, . . . , k. □

Now, we can combine one-parameter examples from sections 2.1 or 2.2 with Fact

2.1 to get some multivariate and multiparameter examples. For example, combining

Proposition 2.1 and Fact 2.1 we get the following:

Corollary 2.1. Let d ≥ 1 and k = (k1, . . . , kd) ∈ Nd. For each 1 ≤ j ≤ d, consider

a sequence of points {Tnj
, nj ≥ 1} of multiplicity at most kj and with |Tnj

| → 0 as

nj → ∞. For n = (n1, . . . , nd), put

Kn,k(x, y) =

d∏
j=1

KTnj
,kj

(xj , yj),

where x = (x1, . . . , xd), y = (y1, . . . , yd). Then the kernels Kn,k satisfy conditions

(k.1)-(k.5), and the sequence of operators Pn,k = PTn1
,k1 ⊗ . . . ⊗ PTnd

,kd
, n ∈ Nd,

satisfies assumptions of Theorems 1.2 and 1.1.

Remark 2.3. In case each Tnj+1 is obtained from Tnj
by adding 1 knot, the

sequence Pn,k is a sequence of rectangular partial sums with respect to orthonormal

system on [0, 1]d, which is tensor product of respective univariate orthonormal spline

systems from Remark 2.1.

Other examples obtained by this procedure include in particular:

• d-variate Cesaro (C,α), α = (α1, . . . , αd) means of partial sums respect to

the d-variate trigonometric series on Td.

• d-variate Cesaro (C, 1), 1 = (1, . . . , 1) means of partial sums with respect

to the tensor product Walsh system on [0, 1]d.

3. Proof of Theorems 1.1 and 1.2

In both Lemmas 3.1 and 3.2 below, {Kn, n ∈ Np} is a sequence of kernels

as in (1.2), satisfying conditions (k.1)-(k.5), and {Un, n ∈ Np} is a sequence of

corresponding operators given by formula (1.3).

Denote ν = µ{x ∈ Rd : ∥x∥ < 1}. We begin with a technical lemma:
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Lemma 3.1. Fix s ∈ [0, 1]d, 0 < η < 1 and a sequence {nr, r ≥ 1} of elements of

Np with limr→∞ min(nm) = ∞. Moreover, let δ > 0 and m ∈ N. Then there are

j > m and 0 < κ < δ such that:

(i) For every f ∈ M [0, 1]d satisfying 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1]d and

µ{x : ∥x− s∥ < δ, f(x) ̸= 1} ≤ νκd there is Unj
f(s) ≥ 1− η.

(ii) For every f ∈ M [0, 1]d satisfying 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1]d and

f(x) = 0 for x such that κ < ∥x− s∥ < δ, there is Unjf(s) ≤ η.

Proof. Take any j > m such that

(3.1)
∫
{y∈[0,1]d:∥s−y∥>δ}

|Knj
(s, y)|dy ≤ η/2.

It exists by assumption (k.5). Having chosen j, put κ =
(

η
2νγnj

)1/d

.

Let us check (i). Let f be as in (i). Using
∫
[0,1]d

K(s, y)dy = 1 we can write

(3.2) Unj
f(s) = 1−

∫
[0,1]d

(1− f(y))Knj
(s, y)dy.

Recall that 0 ≤ f(y) ≤ 1, so 0 ≤ 1− f(y) ≤ 1. Using this fact and (3.1) we find∫
{y∈[0,1]d:∥s−y∥>δ}

|1− f(y)| · |Knj (s, y)|dy ≤ η/2.

On the other hand, by the choice of κ we have∫
{y∈[0,1]d:∥s−y∥≤δ}

|1− f(y)| · |Knj
(s, y)|dy ≤ νκd · γnj

= η/2.

Putting these estimates to (3.2), we get Unjf(s) ≥ 1− η.

Next, we check (ii), so let f be as in (ii). Using these assumptions and (3.1) we

find

|Unj
f(s)| =

∣∣∣∣∣
∫
{y∈[0,1]d:∥s−y∥>δ}

f(y) ·Knj
(s, y)dy+

+

∫
{y∈[0,1]:∥s−y∥<κ}

f(y) ·Knj
(s, y)dy

∣∣∣∣∣ ≤ η/2 + νκdγnj
= η. □

With Lemma 3.1 at hand, we get the following:

Lemma 3.2. Fix s ∈ [0, 1]d, ε > 0, 0 < η < 1/2 and a sequence {nr, r ≥ 1} of

elements of Np with limr→∞ min(nr) = ∞. Then there is a real-valued function

f ∈ M [0, 1]d such that

• µ{x ∈ [0, 1]d : f(x) ̸= 0} < ε,

• f is continuous at each point x ̸= s, and consequently, Unf(x) → f(x) as

min(n) → ∞,

• the sequence {Unr
f(s), r ≥ 1} is divergent.
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Proof. First, given 0 < η < 1/2, we choose inductively

• two increasing sequences of natural numbers {jk, k ≥ 1}, {lk, k ≥ 1}, with

jk < lk < jk+1,

• two decreasing sequences of positive numbers, {δk, k ≥ 1} and {ξk, k ≥ 1},
with δk > ξk > δk+1,

• a sequence of real-valued functions hk ∈ C[0, 1d], k ≥ 1,

with the following properties:

(h.1) supphk ⊂ {x : ξk < ∥x− s∥ < δk} and 0 ≤ hk ≤ 1 on [0, 1]d,

(h.2) if ϕ ∈ M [0, 1]d, 0 ≤ ϕ ≤ 1 and ϕ = hk on {x : ξk < ∥x − s∥ < δk}, then

Unjk
ϕ(s) ≥ 1− η,

(h.3) if ϕ ∈ M [0, 1]d, 0 ≤ ϕ ≤ 1 and ϕ = 0 on {x : δk+1 < ∥x − s∥ < ξk}, then

Unlk
ϕ(s) ≤ η.

Each inductive step has two stages, which we call the filling step and the gap

step, respectively.

Initialization of induction. Take δ1 =
(
ε/ν

)1/d

and m = 1.

Step 1.a – "the filling step". Apply Lemma 3.1 with δ = δ1 and m = 1, to

get j1 > 1 and κ1 < δ1. Put ξ1 = κ1/2
1/d – note that ξ1 < δ1. Fix a real-valued

function h1 ∈ C[0, 1]d, with supph1 ⊂ {x : ξ1 < ∥x − s∥ < δ1}, 0 ≤ h1 ≤ 1 and

µ{x : h1(x) ̸= 1, ξ1 < |x− s| < δ1} ≤ νκd
1/2. Therefore, if ϕ ∈ M [0, 1]d and ϕ = h1

on {x : ξ1 < |x− s| < δ1}, then µ{x : |x− s| < δ1, ϕ(x) ̸= 1} ≤ νκd
1. By Lemma 3.1

(i), it follows that Unj1
ϕ(s) ≥ 1− η.

Step 1.b – "the gap step". Apply Lemma 3.1 with δ = ξ1 and n = j1, to get

corresponding l1 > j1 and κ′
1 < ξ1. Put δ2 = κ′

1. Lemma 3.1 (ii) guarantees that if

ϕ ∈ M [0, 1]d, 0 ≤ ϕ ≤ 1 and ϕ = 0 on {x : δ2 < ∥x− s∥ < ξ1}, then Unl1
ϕ(s) ≤ η.

Thus, after step 1, we have fixed δ1, δ2, ξ1, j1, l1 and function h1, see figure 1

below.

ss− ξ1 s+ ξ1s− δ2 s+ δ2s− δ1 s+ δ1

0

1

0

1

0

sum of measures ≤ κ1

Рис. 1. Illustration of the function h1 after the first step, in d = 1 case.
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Inductive step. Assume that our sequences are fixed for i = 1, . . . , k, with the

exception that δk+1 is fixed as well. We shall fix ξk+1, jk+1, lk+1, δk+2 and function

hk+1.

Step (k+ 1).a – "the filling step". Apply Lemma 3.1 with δ = δk+1 and n = lk,

to get jk+1 > lk and κk+1 < δk+1. Put ξk+1 = κk+1/2
1/d – note that ξk+1 < δk+1.

Fix a real-valued function hk+1 ∈ C[0, 1]d, with supphk+1 ⊂ {x : ξk+1 < ∥x− s∥ <

δk+1}, 0 ≤ hk+1 ≤ 1 and µ{x : hk+1(x) ̸= 1, ξk+1 < ∥x − s∥ < δk+1} ≤ νκd
k+1/2.

Therefore, if ϕ ∈ M [0, 1]d and ϕ = hk+1 on {x : ξk+1 < ∥x − s∥ < δk+1}, then

µ{x : ∥x − s∥ < δk+1, ϕ(x) ̸= 1} ≤ νκd
k+1. By Lemma 3.1 (i), it follows that

Unjk+1
ϕ(s) ≥ 1− η.

Step (k+1).b – "the gap step". Apply Lemma 3.1 with δ = ξk+1 and n = jk+1, to

get corresponding lk+1 > jk+1 and κ′
k+1 < ξk+1. Put δk+2 = κ′

k+1. Lemma 3.1 (ii)

guarantees that if ϕ ∈ M [0, 1]d, 0 ≤ ϕ ≤ 1 and ϕ = 0 on {x : δk+2 < ∥x−s∥ < ξk+1},
then Unlk+1

ϕ(s) ≤ η.

Now, put f(x) =
∑∞

k=1 hk(x), see figure 2 for the illustration in d = 1 case. The

ss− ξ1 s+ ξ1s− δ2 s+ δ2s− ε
ε = δ1

s+ ε
ε = δ1

0

1

0

1

0

1

0

1

0

Рис. 2. Illustration of the function f in d = 1 case.

supports of functions hk are disjoint, so for each x, the series defining f(x) has

at most 1 non-zero term. This guarantees that f is well defined and 0 ≤ f ≤ 1.

Moreover, by the construction, the supports of functions hk are well-separated, or

more precisely dist(supph1,
⋃

i≥2 supphi) > ξ1 − δ2 > 0, while for k ≥ 2 there is ,

dist(supphk,
⋃

i ̸=k supphi) > min(ξk−1 − δk, ξk − δk+1) > 0. It follows that for each

point x ̸= s there is ζ > 0 such that on {y : ∥x − y∥ < ζ} either f = 0 or f = hk

for some k ∈ N. This implies continuity of f at all points x ̸= s. In addition, note

that f satisfies conditions of (h.2) and (h.3). Consequently, there is

Unjk
f(s) ≥ 1− η > η ≥ Unlk

f(s).

It follows that the sequence {Unr
f(s), r ≥ 1} is divergent.

Finally, by the choice of δ1, there is suppf ⊂ {x : ∥x − s∥ ≤
(
ε/ν

)1/d

}, and

consequently µ(suppf) ≤ ε. □

We are ready to prove Theorem 1.1.
58



MENSHOV-TYPE THEOREM FOR DIVERGENCE SETS ...

Proof of Theorem 1.1. Once we have Lemma 3.2, the proof of Theorem 1.1 follows

by the line of arguments of the proof of the analogous result in the trigonometric

case, cf. e.g. [2], chapter IV, section 21, or [1], vol 1, chapter VIII, a remark

following the proof Theorem 1.16. However, we present the details for the reader’s

convenience. The argument can be simplified a little because of property (v.2).

Let D = {x1, x2, .., xk, ..} and ε > 0. Fix a sequence {nr, r ≥ 1} of elements of

Np with limr→∞ min(nr) = ∞. Let {ak, k ≥ 1} be a sequence of real numbers such

that

(3.3)
∞∑
k=1

|ak| < ∞ and ak ̸= 0 for all k ≥ 1.

Successively applying Lemma 3.2 for each point xk ∈ D and εk = ε/2k, we obtain

a sequence of functions fk, k ∈ N such that

• 0 ≤ fk ≤ 1, µ{x : fk(x) ̸= 0} < ε/2k,

• For each k and x ̸= xk, fk is continuous at x.

• For all k ∈ N

(3.4) lim sup
r→∞

Unr
fk(xk) > lim inf

r→∞
Unr

fk(xk).

Define f =
∞∑
k=1

akfk. Condition (3.3) guarantees that the sum defining f converges

in M [0, 1]d. Moreover, it implies that f is continuous at each point x ∈ Dc.

Next, observe that µ (supp(f)) ≤
∞∑
k=1

µ (supp(fk)) < ε.

It remains to check that the sequence {Unr
f(x), r ≥ 1} is divergent for each

x ∈ D. Fix k and consider the function

wk(x) =
∑
j ̸=k

ajfj(x) = f(x)− akfk(x).

Denote Dk = D\{xk}. By the first part of the proof we know that wk is continuous

at each point in Dc
k, in particular it is continuous at xk. Consequently, by (v.2), we

have Unwk(xk) → wk(xk) as min(n) → ∞. So in particular limr→∞ Unr
wk(xk) =

wk(xk). Note that Unr (f ;x) = Unr (wk;x) + akUnr (fk;x). As ak ̸= 0, combining

Unr (wk;xk) → wk(xk) with (3.4) we see that the sequence {Unr (f ;xk), r ≥ 1}
cannot be a convergent sequence. □

Proof of Theorem 1.2. Let g be a measurable, almost everywhere finite function.

Fix ε > 0. By Luzin’s Theorem (see [42] and Theorem 2.24 in [43]), there is a

function gε ∈ C[0, 1]d such that

µ{x ∈ [0, 1]d : g(x) ̸= gε(x)} <
ε

2
.
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Next, applying Theorem 1.1 for ε/2, we find a function fϵ ∈ M [0, 1]d such that

µ
(
supp(fε)

)
< ε/2, fε is continuous at each point x ∈ Dc and the sequence

{Unr
fε(x), r ≥ 1} diverges for x ∈ D. Note that f = gε + fϵ satisfies conditions

required by Theorem 1.2. □

Comments on the proofs of Remarks 1.1 and 1.2. First, we need a version of The-

orem 1.1 in the setting of Td or Rd. This is proved by the same arguments as in

the case of [0, 1]d. Next, in the setting of Remark 1.2, we need to observe that

Luzin’s theorem implies that if g satisfies condition (1.4), then there is a function

gε ∈ C(Rd) ∩M(Rd) such that

µ{x ∈ Rd : g(x) ̸= gε(x)} <
ε

2
.

With this observation at hand, the proofs of the variants of Theorem 1.2 in the

setting of Td or Rd, are the same as in the setting of [0, 1]d. □
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