Известия НАН Армении, Математика, том 58, н. 3, 2023, стр. 92 – 100. AN APPLICATION OF RICCERI THEOREM IN SOLVING BOUNDARY VALUE PROBLEMS

S. SHOKOOH

Gonbad Kavous University, Gonbad Kavous, Iran¹ E-mails: shokooh@gonbad.ac.ir sd.shokooh@gmail.com

Abstract. Professor Ricceri very recently in the interesting paper has obtained a global minima theorem. In this paper, we will provide an application of this theorem.

MSC2020 numbers: 49J40; 35J50; 49J35; 90C26.

Keywords: multiple global minima; semilinear elliptic systems; variational methods.

1. INTRODUCTION

Authors in [1], considered a class of semilinear elliptic systems of the form

$$\begin{cases} -\operatorname{div}(h_1(x)\nabla u) = \lambda F_u(x, u, v) & \text{in } \Omega, \\ -\operatorname{div}(h_2(x)\nabla v) = \lambda F_v(x, u, v) & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial\Omega \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^N $(N \ge 2)$ and λ is a positive parameter. Indeed, using the Mountain pass theorem, they proved if λ is large enough the above system has at least two nonnegative solutions. Such problems come from the consideration of standing waves in anisotropic Schrödinger systems (see [15]). These equations appear in many topics of applied physics, such as nuclear physics, field theory, solid waves and problems of false vacuum see ([2, 3]).

Ricceri in [4] established following theorem:

Theorem 1.1. Let X be a topological space, $(Y, \langle \cdot, \cdot \rangle)$ a real Hilbert space, $T \subseteq Y$ a convex set dense in Y and $I: X \to \mathbb{R}$, $\varphi: X \to Y$ two functions such that, for each $y \in T$, the function $x \to I(x) + \langle \varphi(x), y \rangle$ is lower semicontinuous and inf-compact. Moreover, assume that there exists a point $x_0 \in X$, with $\varphi(x_0) \neq 0$ such that

- (φ_1) x_0 is a global minimum of both functions I and $\|\varphi(\cdot)\|$;
- $(\varphi_2) \inf_{x \in X} \langle \varphi(x), \varphi(x_0) \rangle < \|\varphi(x_0)\|^2.$

Then, for each convex set $S \subseteq T$ dense in Y, there exists $\tilde{y} \in S$ such that the functional $x \to I(x) + \langle \varphi(x), \tilde{y} \rangle$ has at least two global minima in X.

¹This research was supported by a grant from Gonbad Kavous University (No. 6/00/104).

Then, he presented an application of this theorem in solving a system of elliptic equations. Indeed, he proved following theorem.

Let $\Omega \subseteq \mathbb{R}^n$ $(n \geq 2)$ is a bounded domain with smooth boundary. We denote by \mathcal{A}_1 the class of all functions $\Phi : \Omega \times \mathbb{R}^2 \to \mathbb{R}$ which are measurable in Ω , C^1 in \mathbb{R}^2 and satisfy

$$\sup_{v,v)\in\Omega\times\mathbb{R}^2} \frac{|\Phi_u(x,u,v)| + |\Phi_v(x,u,v)|}{1+|u|^m+|v|^m} < +\infty$$

where Φ_u (resp. Φ_v) denoting the derivative of Φ with respect to u (resp. v) and m > 0 with $m < \frac{n+2}{n-2}$ when n > 2.

Theorem 1.2. Let $F_1, G_1, K_1 \in A_1$, with $K_1(x, 0, 0) = 0$ for all $x \in \Omega$, satisfy the following conditions:

- $\begin{aligned} (k_1) & \text{there is } \eta \in (0, \frac{\lambda_1}{2}) \text{ such that } K_1(x, s, t) \leq \eta(s^2 + t^2) \text{ for all } x \in \Omega, \, s, t \in \mathbb{R}, \\ & \text{where } \lambda_1 = \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} |u|^2 dx}; \\ (f_1) & \lim_{s^2 + t^2 \to +\infty} \frac{\sup_{x \in \Omega} (|F_1(x, s, t)| + |G_1(x, s, t)|)}{s^2 + t^2} = 0; \end{aligned}$
- $(f_2) \ one \ has \ \mathrm{meas}(\{x\in \Omega: |F_1(x,0,0)|^2+|G_1(x,0,0)|^2>0\})>0 \\ and$

$$|F_1(x,0,0)|^2 + |G_1(x,0,0)|^2 \le |F_1(x,s,t)|^2 + |G_1(x,s,t)|^2$$

for all $x \in \Omega$, $s, t \in \mathbb{R}$;

(x,u)

 (f_3) one has

$$\max(\{x \in \Omega : \inf_{(s,t) \in \mathbb{R}^2} (|F_1(x,0,0)| F_1(x,s,t) + |G_1(x,0,0)|^2 G_1(x,s,t)) \\ < |F_1(x,0,0)|^2 + |G_1(x,0,0)|^2 \}) > 0.$$

Then, for every convex set $S_1 \subseteq L^{\infty}(\Omega) \times L^{\infty}(\Omega)$ dense in $L^2(\Omega) \times L^2(\Omega)$, there exists $(\sigma_1, \varsigma_1) \in S_1$ such that the problem

$$\begin{cases} -\Delta u = \sigma_1(x)F_{1u}(x, u, v) + \varsigma_1(x)G_{1u}(x, u, v) + K_{1u}(x, u, v) & \text{in } \Omega, \\ -\Delta v = \sigma_1(x)F_{1v}(x, u, v) + \varsigma_1(x)G_{1v}(x, u, v) + K_{1v}(x, u, v) & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial\Omega \end{cases}$$

has at least three weak solutions, two of which are global minima in $H_0^1(\Omega) \times H_0^1(\Omega)$ of the functional

$$(u,v) \rightarrow \frac{1}{2} \left(\int_{\Omega} |\nabla u|^2 dx + \int_{\Omega} |\nabla v|^2 dx \right)$$
$$- \int_{\Omega} (\sigma_1(x) F_1(x, u, v) + \varsigma_1(x) G_1(x, u, v) + K_1(x, u(x), v(x))) dx.$$

Using Theorem 1.1, the author proved above theorem with the following choices: X is the space $H_0^1(\Omega) \times H_0^1(\Omega)$ and Y is $L^2(\Omega) \times L^2(\Omega)$.

In this paper, motivated by [1, 4], we give an application of Theorem 1.1. Indeed, in Section 2, we will prove a new version of Theorem 1.2 with the choice X =

 $H_0^1(\Omega, h_1) \times H_0^1(\Omega, h_2)$, where $h_i : \Omega \to [0, +\infty)$, $h_i \in L_{loc}^1$ (i = 1, 2). We define the Hilbert spaces $H_0^1(\Omega, h_1)$ and $H_0^1(\Omega, h_2)$ as the closures of $C_0^\infty(\Omega)$ with respect to the norms

$$||u||_{h_1} = \left(\int_{\Omega} h_1(x) |\nabla u|^2 dx\right)^{\frac{1}{2}}$$

for all $u \in C_0^{\infty}(\Omega)$ and

$$||v||_{h_2} = \left(\int_{\Omega} h_2(x) |\nabla v|^2 dx\right)^{\frac{1}{2}}$$

for all $v \in C_0^{\infty}(\Omega)$, respectively. It is clear that $X = H_0^1(\Omega, h_1) \times H_0^1(\Omega, h_2)$ is a Hilbert space under the norm $||w||_X = ||u||_{h_1} + ||v||_{h_2}$ for all $w = (u, v) \in X$.

We denote by \mathcal{A}_2 the class of C^1 functions $A : \Omega \times \mathbb{R}^2 \to \mathbb{R}$ which possess the following properties:

there exist two positive constants c_1 and c_2 such that

(1.1)
$$|A_t(x,s,t)| \le c_1 s^{\gamma} t^{\delta+1}, \qquad |A_s(x,s,t)| \le c_2 s^{\gamma+1} t^{\delta}$$

for all $(t,s) \in \mathbb{R}^2$, a.e $x \in \Omega$ and some constants $\gamma, \delta > 1$ with $\frac{\gamma+1}{p} + \frac{\delta+1}{q} = 1$, $\frac{\gamma+1}{2_{\alpha}^*} + \frac{\delta+1}{2_{\beta}^*} < 1$ and, $\gamma + 1 , <math>\delta + 1 < q < 2_{\beta}^* = \frac{2n}{n-2+\beta}$, where p, q, α, β are positive constants and $\alpha, \beta \in (0, 2)$.

Throughout this paper, we assume the functions h_1 and h_2 satisfying the following conditions:

- (**H**₁) The function $h_1 : \Omega \to [0, +\infty)$ belongs to $L^1_{loc}(\Omega)$ and there exists a constant $\alpha \ge 0$ such that $\liminf_{x \to \infty} |x z|^{-\alpha} h_1(x) > 0$ for all $z \in \overline{\Omega}$,
- (**H**₂) The function $h_2 : \Omega \to [0, +\infty)$ belongs to $L^1_{loc}(\Omega)$ and there exists a constant $\beta \ge 0$ such that $\liminf_{x \to z} |x z|^{-\beta} h_2(x) > 0$ for all $z \in \overline{\Omega}$.

2. Main results

Here, we will prove a new version of Theorem 1.2 with the choice $X = H_0^1(\Omega, h_1) \times H_0^1(\Omega, h_2)$, where $h_i : \Omega \to [0, +\infty)$, $h_i \in L_{loc}^1$ (i = 1, 2).

Theorem 2.1. Assume that the hypotheses $(\mathbf{H_1})$ and $(\mathbf{H_2})$ are satisfied. Also, let $F_2, G_2, K_2 \in \mathcal{A}_2$, with $K_2(x, 0, 0) = 0$ for all $x \in \Omega$, satisfy the following conditions:

 $\begin{aligned} (k_2) \ there \ is \ a \ \in \ (0, \frac{\lambda_1}{2}\theta) \ such \ that \ K_2(x, s, t) \ \le \ a|s|^{\gamma+1}|t|^{\delta+1} \ for \ all \ x \ \in \ \Omega, \\ s, t \ \in \ \mathbb{R}, \ where \ \lambda_1 \ = \ \inf_{w = (u,v) \in X \setminus \{(0,0)\}} \ \frac{\int_{\Omega} \left(\frac{\gamma+1}{p}h_1(x)|\nabla u|^2 + \frac{\delta+1}{q}h_2(x)|\nabla v|^2\right) dx}{\int_{\Omega} |u|^{\gamma+1}|v|^{\delta+1} dx} \\ and \ \theta \ = \ \frac{1}{2\max\left\{\frac{\gamma+1}{p}, \frac{\delta+1}{q}\right\}}, \\ (f_4) \\ \lim_{s^2 + t^2 \to +\infty} \ \frac{\sup_{x \in \Omega} \left(|F_2(x, s, t)| + |G_2(x, s, t)|\right)}{s^2 + t^2} = 0; \end{aligned}$

AN APPLICATION OF RICCERI THEOREM ...

 (f_{5})

meas
$$\left(\left\{x \in \Omega : \left|F_2(x,0,0)\right|^2 + \left|G_2(x,0,0)\right|^2 > 0\right\}\right) > 0$$

and

$$|F_2(x,0,0)|^2 + |G_2(x,0,0)|^2 \le |F_2(x,s,t)|^2 + |G_2(x,s,t)|^2$$

for all $s, t \in \mathbb{R}, x \in \Omega$;

 (f_6) the set of all $x \in \Omega$ that satisfy following condition

$$\inf_{(s,t)\in\mathbb{R}^2} \left(F_2(x,0,0)F_2(x,s,t) + G_2(x,0,0)G_2(x,s,t) \right) \right) < \left| F_2(x,0,0) \right|^2 + \left| G_2(x,0,0) \right|^2$$

has positive measure.

Then, for every convex set $S_2 \subseteq L^{\infty}(\Omega) \times L^{\infty}(\Omega)$ dense in $L^2(\Omega) \times L^2(\Omega)$, there exists $(\sigma_2, \varsigma_2) \in S_2$ such that the problem

(2.1)

$$\begin{cases}
-\operatorname{div}(h_1(x)\nabla u) = \sigma_2(x)F_{2u}(x, u, v) + \varsigma_2(x)G_{2u}(x, u, v) + K_{2u}(x, u, v) & \text{in } \Omega, \\
-\operatorname{div}(h_2(x)\nabla v) = \sigma_2(x)F_{2v}(x, u, v) + \varsigma_2(x)G_{2v}(x, u, v) + K_{2v}(x, u, v) & \text{in } \Omega, \\
u = v = 0 & \text{on } \partial\Omega
\end{cases}$$

has at least three weak solutions, two of which are global minima in X of the functional

$$(u,v) \to \frac{1}{2} \left(\int_{\Omega} h_1(x) |\nabla u|^2 dx + \int_{\Omega} h_2(x) |\nabla v|^2 dx \right) \\ - \int_{\Omega} (\sigma_2(x) F_2(x, u, v) + \varsigma_2(x) G_2(x, u, v) + K_2(x, u(x), v(x))) dx.$$

Proof. In order to apply Theorem 1.1 to our problem, we take $X = H_0^1(\Omega, h_1) \times H_0^1(\Omega, h_2)$, where endowed with the weak topology induced by the scalar product

$$\langle (u,v), (\zeta,\tau) \rangle_X = \int_{\Omega} (h_1(x)\nabla u(x)\nabla\zeta(x) + h_2(x)\nabla v(x)\nabla\tau(x))dx;$$

also, Y is the space $L^2(\Omega) \times L^2(\Omega)$ with the scalar product

$$\langle (\kappa, \omega), (h, k) \rangle_Y = \int_{\Omega} \kappa(x) h(x) dx + \int_{\Omega} \omega(x) k(x) dx$$

and T is $L^\infty(\Omega)\times L^\infty(\Omega).$ We define the functional $I:X\to\mathbb{R}$

$$I(u,v) = \frac{1}{2} \left(\int_{\Omega} h_1(x) |\nabla u|^2 dx + \int_{\Omega} h_2(x) |\nabla v|^2 dx \right) - \int_{\Omega} K_2(x, u(x), v(x)) dx.$$

for all $(u, v) \in X$. Also, let x_0 is the zero of X and φ be the function defined by

$$\varphi(u,v) = \left(F_2(\cdot, u(\cdot), v(\cdot)), G_2(\cdot, u(\cdot), v(\cdot))\right)$$

for all $(u, v) \in X$. We check that the assumptions of Theorem 1.1 are satisfied. At first, from (f_5) , we observe that

$$\|\varphi(0,0)\|_{Y}^{2} = \int_{\Omega} \left|F_{2}(x,0,0)\right|^{2} dx + \int_{\Omega} \left|G_{2}(x,0,0)\right|^{2} dx > 0$$
95

and

$$\|\varphi(0,0)\|_{Y}^{2} \leq \|\varphi(u,v)\|_{Y}^{2}$$

for all $(u, v) \in X$. Moreover, from (k_2) , we obtain that

$$\int_{\Omega} K_2(x, u(x), v(x)) dx \le a \int_{\Omega} (|u(x)|^{\gamma+1} |v(x)|^{\delta+1}) dx$$
$$\le \frac{a}{\lambda_1} \int_{\Omega} \left(\frac{\gamma+1}{p} h_1(x) |\nabla u(x)|^2 + \frac{\delta+1}{q} h_2(x) |\nabla v(x)|^2 \right) dx$$

for all $(u, v) \in X$ and so, one has

(2.2)
$$I(u,v) \ge \frac{\theta}{2} \int_{\Omega} \left(\frac{\gamma+1}{p} h_1(x) |\nabla u(x)|^2 + \frac{\delta+1}{q} h_2(x) |\nabla v(x)|^2 \right) dx$$
$$\ge \frac{\theta}{2} \frac{\gamma+1}{p} ||u||_{h_1}^2 + \frac{\theta}{2} \frac{\delta+1}{q} ||v||_{h_2}^2$$

for all $(u, v) \in X$. Take $K_2(x, 0, 0) = 0$ and $\frac{a}{\lambda_1} < \frac{\theta}{2}$ into account, from (2.2) we obtain (0, 0) is a global minimum of I in X. So, condition (φ_1) of Theorem 1.1 is satisfied. Also, by condition (f_3) , we find (φ_2) is satisfied. Finally, fix $\sigma_2, \varsigma_2 \in \mathbb{R}$. Clearly, the function

$$(x,s,t) \to \sigma_2(x)F(x,s,t) + \varsigma_2(x)G(x,s,t) + K(x,s,t)$$

belongs to \mathcal{A}_2 , and so the functional

$$(u, v) \to I(u, v) + \langle \varphi(u, v), (\sigma_2, \varsigma_2) \rangle_Y$$

is sequentially weakly lower semicontinuous in X. Indeed, let $\{w_m\} = \{(u_m, v_m)\}$ be a sequence that converges weakly to w = (u, v) in X. We have

$$\begin{split} &\int_{\Omega} \sigma_2(x) [F(x, u_m, v_m) - F(x, u, v)] dx + \int_{\Omega} \varsigma_2(x) [G(x, u_m, v_m) - G(x, u, v)] dx \\ &= \int_{\Omega} \sigma_2(x) \nabla F(x, \theta_m(w_m - w))(w_m - w) dx + \\ &\int_{\Omega} \varsigma_2(x) \nabla G(x, \rho_m(w_m - w))(w_m - w) dx \\ &= \int_{\Omega} \sigma_2(x) F_u(x, u + \theta_{1,m}(u_m - u), v + \theta_{2,m}(v_m - v))(u_m - u) dx \\ &+ \int_{\Omega} \sigma_2(x) F_v(x, u + \theta_{1,m}(u_m - u), v + \theta_{2,m}(v_m - v))(v_m - v) dx \\ &+ \int_{\Omega} \varsigma_2(x) G_u(x, u + \rho_{1,m}(u_m - u), v + \rho_{2,m}(v_m - v))(u_m - u) dx \\ &+ \int_{\Omega} \varsigma_2(x) G_v(x, u + \rho_{1,m}(u_m - u), v + \rho_{2,m}(v_m - v))(u_m - v) dx \end{split}$$

where $\theta_m = (\theta_{1,m}, \theta_{2,m}), \rho_m = (\rho_{1,m}, \rho_{2,m})$ and $0 \le \theta_{1,m}(x), \theta_{2,m}(x), \rho_{1,m}(x), \rho_{2,m}(x) \le 1$ for all $x \in \Omega$. Now, take (1.1) and Hölder's inequality into account, we deduce

that there exist $c_1, c_2, c_3, c_4 > 0$ such that

$$\begin{split} & \left| \int_{\Omega} \sigma_{2}(x) [F(x, u_{m}, v_{m}) - F(x, u, v)] dx + \int_{\Omega} \varsigma_{2}(x) [G(x, u_{m}, v_{m}) - G(x, u, v)] dx \right| \\ & \leq \|\sigma_{2}\|_{\infty} \int_{\Omega} \left| F_{u}(x, u + \theta_{1,m}(u_{m} - u), v + \theta_{2,m}(v_{m} - v)) \right| |u_{m} - u| dx \\ & + \|\sigma_{2}\|_{\infty} \int_{\Omega} \left| F_{v}(x, u + \theta_{1,m}(u_{m} - u), v + \theta_{2,m}(v_{m} - v)) \right| |v_{m} - v| dx \\ & + \|\varsigma_{2}\|_{\infty} \int_{\Omega} \left| G_{u}(x, u + \rho_{1,m}(u_{m} - u), v + \rho_{2,m}(v_{m} - v)) \right| |u_{m} - u| dx \\ & + \|\varsigma_{2}\|_{\infty} \int_{\Omega} \left| G_{v}(x, u + \rho_{1,m}(u_{m} - u), v + \rho_{2,m}(v_{m} - v)) \right| |v_{m} - v| dx \\ & \leq c_{1} \|\sigma_{2}\|_{\infty} \int_{\Omega} \left| u + \theta_{1,m}(u_{m} - u) \right|^{\gamma} |v + \theta_{2,m}(v_{m} - v)|^{\delta+1} |u_{m} - u| dx \\ & + c_{2} \|\sigma_{2}\|_{\infty} \int_{\Omega} \left| u + \theta_{1,m}(u_{m} - u) \right|^{\gamma+1} |v + \theta_{2,m}(v_{m} - v)|^{\delta} |v_{m} - v| dx \\ & + c_{3} \|\varsigma_{2}\|_{\infty} \int_{\Omega} \left| u + \rho_{1,m}(u_{m} - u) \right|^{\gamma} |v + \rho_{2,m}(v_{m} - v)|^{\delta+1} |u_{m} - u| dx \\ & + c_{4} \|\varsigma_{2}\|_{\infty} \int_{\Omega} \left| u + \rho_{1,m}(u_{m} - u) \right|^{\gamma+1} |v + \rho_{2,m}(v_{m} - v)|^{\delta} |v_{m} - v| dx. \end{split}$$

So, we have

$$\begin{split} \left| \int_{\Omega} \sigma_{2}(x) [F(x, u_{m}, v_{m}) - F(x, u, v)] dx + \int_{\Omega} \varsigma_{2}(x) [G(x, u_{m}, v_{m}) - G(x, u, v)] dx \right| \\ &\leq c_{1} \|\sigma_{2}\|_{\infty} \|u + \theta_{1,m}(u_{m} - u)\|_{L^{p}(\Omega)}^{\gamma} \|v + \theta_{2,m}(v_{m} - v))\|_{L^{q}(\Omega)}^{\delta+1} \|u_{m} - u\|_{L^{p}(\Omega)} \\ &+ c_{2} \|\sigma_{2}\|_{\infty} \|u + \theta_{1,m}(u_{m} - u)\|_{L^{p}(\Omega)}^{\gamma+1} \|v + \theta_{2,m}(v_{m} - v))\|_{L^{q}(\Omega)}^{\delta} \|v_{m} - v\|_{L^{q}(\Omega)} \\ &+ c_{3} \|\varsigma_{2}\|_{\infty} \|u + \rho_{1,m}(u_{m} - u)\|_{L^{p}(\Omega)}^{\gamma} \|v + \rho_{2,m}(v_{m} - v))\|_{L^{q}(\Omega)}^{\delta} \|u_{m} - u\|_{L^{p}(\Omega)} \\ &+ c_{4} \|\varsigma_{2}\|_{\infty} \|u + \rho_{1,m}(u_{m} - u)\|_{L^{p}(\Omega)}^{\gamma+1} \|v + \rho_{2,m}(v_{m} - v))\|_{L^{q}(\Omega)}^{\delta} \|v_{m} - v\|_{L^{q}(\Omega)}. \end{split}$$

Since $2 < \gamma + 1 < p < 2^*_{\alpha}$ and $2 < \gamma + 1 < q < 2^*_{\beta}$, by the compact embedding $X \hookrightarrow L^p(\Omega) \times L^q(\Omega)$, the sequence $\{w_m\}$ convergence strongly to w = (u, v) in the space $L^p(\Omega) \times L^q(\Omega)$, i.e., the sequence $\{u_m\}$ converges strongly to u in $L^p(\Omega)$ and $\{v_m\}$ converges strongly to v in $L^q(\Omega)$. Hence, it is easy to see that the sequences $\{\|u + \theta_{1,m}(u_m - u)\|_{L^p(\Omega)}\}, \{\|v + \theta_{2,m}(v_m - v)\|_{L^q(\Omega)}\}, \{\|u + \rho_{1,m}(u_m - u)\|_{L^p(\Omega)}\}$ and $\{\|v + \rho_{2,m}(v_m - v)\|_{L^q(\Omega)}\}$ are bounded. Thus, it follows

(2.3)
$$\lim_{m \to \infty} \int_{\Omega} [\sigma_2(x)F(x, u_m, v_m) + \varsigma_2(x)G(x, u_m, v_m)]dx$$
$$= \int_{\Omega} [\sigma_2F(x, u, v) + \varsigma_2G(x, u, v)]dx.$$

Using similar arguments as those used above, we obtain that

(2.4)
$$\lim_{m \to \infty} \int_{\Omega} K(x, u_m, v_m) dx = \int_{\Omega} K(x, u, v) dx$$

By the weak lower semicontinuity of the norms in the spaces $H_0^1(\Omega, h_1)$ and $H_0^1(\Omega, h_2)$ we deduce that

(2.5)
$$\lim_{m \to \infty} \inf \int_{\Omega} [h_1(x) |\nabla u_m|^2 + h_2(x) |\nabla v_m|^2] dx \ge \int_{\Omega} [h_1(x) |\nabla u|^2 + h_2(x) |\nabla v|^2] dx.$$

Hence, relations (2.3), (2.4) and (2.5) imply that the function

$$(u, v) \to I(u, v) + \langle \varphi(u, v), (\sigma_2, \varsigma_2) \rangle_Y$$

is sequentially weakly lower semicontinuous in X.

We now prove that the function

$$(u, v) \to I(u, v) + \langle \varphi(u, v), (\sigma_2, \varsigma_2) \rangle_Y$$

is coercive. Put

$$b = \max\{\|\sigma_2\|_{L^{\infty}(\Omega)}, \|\varsigma_2\|_{L^{\infty}(\Omega)}\}$$

and fix $\epsilon>0$ such that

(2.6)
$$\epsilon < \min\left\{\frac{\lambda_1(h_1)}{b}\frac{\theta(\gamma+1)}{2p}, \frac{\lambda_1(h_2)}{b}\frac{\theta(\delta+1)}{2q}\right\},$$

where

$$\lambda_1(h_i) := \inf_{\phi \in H^1_0(\Omega, h_i) \setminus \{0\}} \frac{\int_\Omega h_i(x) |\nabla \phi|^2}{\int_\Omega |\phi|^2 dx}, \qquad i = 1, 2.$$

From (f_4) , there is $c_{\epsilon} > 0$ such that

$$|F(x, s, t)| + |G(x, s, t)| \le \epsilon(|s|^2 + |t|^2) + c_{\epsilon}$$

for all $(x, s, t) \in \Omega \times \mathbb{R}^2$. Hence, in view of (2.2), for each $(u, v) \in H_0^1(\Omega, h_1) \times H_0^1(\Omega, h_2)$, we conclude that

$$\begin{split} I(u,v) + \langle \varphi(u,v), (\sigma_{2},\varsigma_{2}) \rangle_{Y} &\geq \frac{\theta}{2} \frac{\gamma+1}{p} \|u\|_{h_{1}}^{2} + \frac{\theta}{2} \frac{\delta+1}{q} \|v\|_{h_{2}}^{2} \\ &- \int_{\Omega} |\sigma_{2}(x)F(x,u(x),v(x)) + \varsigma_{2}(x)G(x,u(x),v(x))| dx \\ &\geq \frac{\theta}{2} \frac{\gamma+1}{p} \|u\|_{h_{1}}^{2} + \frac{\theta}{2} \frac{\delta+1}{q} \|v\|_{h_{2}}^{2} - b\epsilon \int_{\Omega} (|u(x)|^{2} + |v(x)|^{2}) dx - bc_{\epsilon} \mathrm{meas}(\Omega) \\ &\geq \frac{\theta}{2} \frac{\gamma+1}{p} \|u\|_{h_{1}}^{2} + \frac{\theta}{2} \frac{\delta+1}{q} \|v\|_{h_{2}}^{2} - b\epsilon \left(\frac{1}{\lambda_{1}(h_{1})} \int_{\Omega} h_{1}(x) |\nabla u(x)|^{2} dx + \frac{1}{\lambda_{1}(h_{2})} \int_{\Omega} h_{2}(x) |\nabla v(x)|^{2} dx \right) - bc_{\epsilon} \mathrm{meas}(\Omega) \\ &\geq \left(\frac{\theta(\gamma+1)}{2p} - \frac{b\epsilon}{\lambda_{1}(h_{1})}\right) \int_{\Omega} h_{1}(x) |\nabla u|^{2} dx \\ &+ \left(\frac{\theta(\delta+1)}{2q} - \frac{b\epsilon}{\lambda_{1}(h_{2})}\right) \int_{\Omega} h_{2}(x) |\nabla v|^{2} dx - bc_{\epsilon} \mathrm{meas}(\Omega). \end{split}$$

bearing in mind the relation (2.6), we have $\frac{\theta(\gamma+1)}{2p} - \frac{b\epsilon}{\lambda_1(h_1)}, \frac{\theta(\delta+1)}{2q} - \frac{b\epsilon}{\lambda_1(h_2)} > 0$, and so

$$\lim_{\|(u,v)\|_X \to +\infty} (I(u,v) + \langle \varphi(u,v), (\sigma_2,\varsigma_2) \rangle_Y) = +\infty,$$

as claimed. In virtue of Eberlein-Smulyan theorem, this also follows that the functional $I(u, v) + \langle \varphi(u, v), (\sigma_2, \varsigma_2) \rangle_Y$ is weakly lower semicontinuous. Thus, the assumptions of Theorem 1.1 are verified. Therefore, for each convex set $S_2 \subseteq L^{\infty}(\Omega) \times L^{\infty}(\Omega)$, there exists $(\sigma_2, \varsigma_2) \in S_2$, such that the functional

$$\begin{aligned} (u,v) \to &\frac{1}{2} \bigg(\int_{\Omega} h_1(x) |\nabla u|^2 dx + \int_{\Omega} h_2(x) |\nabla v|^2 dx \bigg) \\ &- \int_{\Omega} (\sigma_2(x) F_2(x, u, v) + \varsigma_2(x) G_2(x, u, v) + K_2(x, u(x), v(x))) dx. \end{aligned}$$

has at least two global minima in X and by Example 38.25 of [5] it admits at least three critical points. Hence, the conclusion is achieved. \Box

Remark 2.1. Assume that $w = (u, v) \in X$ is a weak solution of problem (2.1), then $u \ge 0$ and $v \ge 0$ in Ω . Indeed, from our assumptions in Theorem 2.1, we have

$$\begin{split} 0 &= \int_{\Omega} (h_1(x)\nabla u \cdot \nabla u^- + h_2(x)\nabla v \cdot \nabla v^-) dx \\ &- \int_{\Omega} \sigma_2(x) (F_{2u}(x, u, v)u^- + F_{2v}(x, u, v)v^-) dx \\ &- \int_{\Omega} \varsigma_2(x) (G_{2u}(x, u, v)u^- + G_{2v}(x, u, v)v^-) dx \\ &+ \int_{\Omega} (K_{2u}(x, u, v)u^- + K_{2v}(x, u, v)v^-) dx \\ &= \|u^-\|_{h_1}^2 + \|v^-\|_{h_2}^2 \ge \lambda_1(h_1) \int_{\Omega} |u^-|^2 dx + \lambda_1(h_2) \int_{\Omega} |v^-|^2 dx, \end{split}$$

which implies that $u(x) \ge 0$ and $v(x) \ge 0$ for a.e. $x \in X$.

A special case of our main result is the following theorem.

Theorem 2.2. Let $K_3 \in A_2$, with $K_3(x, 0, 0) = 0$ for all $x \in \Omega$, satisfies (k_2) . Then, for every convex set $S_3 \subseteq \mathbb{R}^2$, there exists $(\sigma_3, \varsigma_3) \in S_3$ such that the problem

$$\begin{aligned} &-\operatorname{div}(|x|\nabla u) \\ &= (\sigma_3(x)\cos(uv\sqrt{uv}) - \varsigma_3(x)\sin(uv\sqrt{uv}))\frac{3\sqrt{uv^3}}{2} + K_{3u}(x,u,v) & \text{in } \Omega, \\ &-\operatorname{div}(|x|\nabla v) \\ &= (\sigma_3(x)\cos(uv\sqrt{uv}) - \varsigma_3(x)\sin(uv\sqrt{uv}))\frac{3\sqrt{u^3v}}{2} + K_{3v}(x,u,v) & \text{in } \Omega, \\ &u = v = 0, & \text{on } \partial\Omega \end{aligned}$$

has at least three weak solutions, two of which are global minima in $H_0^1(\Omega, |x|) \times H_0^1(\Omega, |x|)$ of the functional

$$(u,v) \rightarrow \frac{1}{2} \left(\int_{\Omega} |x| |\nabla u|^2 dx + \int_{\Omega} |x| |\nabla v|^2 dx \right) \\ - \int_{\Omega} (\sigma_3(x) \sin(uv\sqrt{uv}) + \varsigma_3(x) \cos(uv\sqrt{uv}) + K_3(x,u(x),v(x))) dx.$$

Proof. Apply Theorem 2.1 to the functions $F_2, G_2 : \mathbb{R}^2 \to \mathbb{R}$ defined by $F_2(s,t) = \sin(st\sqrt{st})$ and $G_2(s,t) = \cos(st\sqrt{st})$ for all $(s,t) \in \mathbb{R}^2$.

Conclusion. Due to the generality of the Theorem 1.1, it can be applied to many different situations.

Список литературы

- N. T Chung, H. Q. Toan, "On a class of degenerate and singular elliptic systems in bounded domains", J. Math. Anal. Appl., 360, 422 - 431 (2009).
- [2] R. Dautray, J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology I: Physical Origins and Classical Methods, SpringerVerlag, Berlin (1985).
- [3] M. K. V. Murthy, G. Stampachia, "Boundary value problems for some degenerate elliptic operators", Ann. Mat. Pura Appl., 80, 1 – 122 (1968).
- B. Ricceri, "A class of functionals possessing multiple global minima", Stud. Univ. Babes-Bolyai Math., 66, 75 – 84 (2021).
- [5] E. Zeidler, Nonlinear Functional Analysis and Its Applications, III, Springer-Verlag (1985).

Поступила 15 марта 2022

После доработки 28 июля 2022

Принята к публикации 02 февраля 2023