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1. Introduction

Authors in [1], considered a class of semilinear elliptic systems of the form −div(h1(x)∇u) = λFu(x, u, v) in Ω,
−div(h2(x)∇v) = λFv(x, u, v) in Ω,
u = v = 0 on ∂Ω

where Ω is a bounded domain in RN (N ≥ 2) and λ is a positive parameter. Indeed,

using the Mountain pass theorem, they proved if λ is large enough the above system

has at least two nonnegative solutions. Such problems come from the consideration

of standing waves in anisotropic Schrödinger systems (see [15]). These equations

appear in many topics of applied physics, such as nuclear physics, field theory, solid

waves and problems of false vacuum see ([2, 3]).

Ricceri in [4] established following theorem:

Theorem 1.1. Let X be a topological space, (Y, ⟨·, ·⟩) a real Hilbert space, T ⊆ Y a

convex set dense in Y and I : X → R, φ : X → Y two functions such that, for each

y ∈ T, the function x → I(x) + ⟨φ(x), y⟩ is lower semicontinuous and inf-compact.

Moreover, assume that there exists a point x0 ∈ X, with φ(x0) ̸= 0 such that

(φ1) x0 is a global minimum of both functions I and ∥φ(·)∥;
(φ2) infx∈X⟨φ(x), φ(x0)⟩ < ∥φ(x0)∥2.

Then, for each convex set S ⊆ T dense in Y, there exists ỹ ∈ S such that the

functional x → I(x) + ⟨φ(x), ỹ⟩ has at least two global minima in X.

1This research was supported by a grant from Gonbad Kavous University (No. 6/00/104).
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Then, he presented an application of this theorem in solving a system of elliptic

equations. Indeed, he proved following theorem.

Let Ω ⊆ Rn (n ≥ 2) is a bounded domain with smooth boundary. We denote by

A1 the class of all functions Φ : Ω× R2 → R which are measurable in Ω, C1 in R2

and satisfy

sup
(x,u,v)∈Ω×R2

|Φu(x, u, v)|+ |Φv(x, u, v)|
1 + |u|m + |v|m

< +∞

where Φu (resp. Φv) denoting the derivative of Φ with respect to u (resp. v) and

m > 0 with m < n+2
n−2 when n > 2.

Theorem 1.2. Let F1, G1,K1 ∈ A1, with K1(x, 0, 0) = 0 for all x ∈ Ω, satisfy the

following conditions:

(k1) there is η ∈ (0, λ1

2 ) such that K1(x, s, t) ≤ η(s2 + t2) for all x ∈ Ω, s, t ∈ R,
where λ1 = infu∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx∫

Ω
|u|2dx ;

(f1) lims2+t2→+∞
supx∈Ω(|F1(x,s,t)|+|G1(x,s,t)|)

s2+t2 = 0;

(f2) one has meas({x ∈ Ω : |F1(x, 0, 0)|2 + |G1(x, 0, 0)|2 > 0}) > 0

and

|F1(x, 0, 0)|2 + |G1(x, 0, 0)|2 ≤ |F1(x, s, t)|2 + |G1(x, s, t)|2

for all x ∈ Ω, s, t ∈ R;
(f3) one has

meas({x ∈ Ω : inf
(s,t)∈R2

(|F1(x, 0, 0)|F1(x, s, t) + |G1(x, 0, 0)|2G1(x, s, t))

< |F1(x, 0, 0)|2 + |G1(x, 0, 0)|2}) > 0.

Then, for every convex set S1 ⊆ L∞(Ω) × L∞(Ω) dense in L2(Ω) × L2(Ω), there

exists (σ1, ς1) ∈ S1 such that the problem −∆u = σ1(x)F1u(x, u, v) + ς1(x)G1u(x, u, v) +K1u(x, u, v) in Ω,
−∆v = σ1(x)F1v(x, u, v) + ς1(x)G1v(x, u, v) +K1v(x, u, v) in Ω,
u = v = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0 (Ω)×H1

0 (Ω)

of the functional

(u, v) →1

2

(∫
Ω

|∇u|2dx+

∫
Ω

|∇v|2dx
)

−
∫
Ω

(σ1(x)F1(x, u, v) + ς1(x)G1(x, u, v) +K1(x, u(x), v(x)))dx.

Using Theorem 1.1, the author proved above theorem with the following choices:

X is the space H1
0 (Ω)×H1

0 (Ω) and Y is L2(Ω)× L2(Ω).

In this paper, motivated by [1, 4], we give an application of Theorem 1.1. Indeed,

in Section 2, we will prove a new version of Theorem 1.2 with the choice X =
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H1
0 (Ω, h1)×H1

0 (Ω, h2), where hi : Ω → [0,+∞), hi ∈ L1
loc (i = 1, 2). We define the

Hilbert spaces H1
0 (Ω, h1) and H1

0 (Ω, h2) as the closures of C∞
0 (Ω) with respect to

the norms

∥u∥h1 =

(∫
Ω

h1(x)|∇u|2dx
) 1

2

for all u ∈ C∞
0 (Ω) and

∥v∥h2
=

(∫
Ω

h2(x)|∇v|2dx
) 1

2

for all v ∈ C∞
0 (Ω), respectively. It is clear that X = H1

0 (Ω, h1) × H1
0 (Ω, h2) is a

Hilbert space under the norm ∥w∥X = ∥u∥h1
+ ∥v∥h2

for all w = (u, v) ∈ X.

We denote by A2 the class of C1 functions A : Ω × R2 → R which possess the

following properties:

there exist two positive constants c1 and c2 such that

|At(x, s, t)| ≤ c1s
γtδ+1, |As(x, s, t)| ≤ c2s

γ+1tδ(1.1)

for all (t, s) ∈ R2, a.e x ∈ Ω and some constants γ, δ > 1 with γ+1
p + δ+1

q = 1,
γ+1
2∗α

+ δ+1
2∗β

< 1 and, γ + 1 < p < 2∗α = 2n
n−2+α , δ + 1 < q < 2∗β = 2n

n−2+β , where

p, q, α, β are positive constants and α, β ∈ (0, 2).

Throughout this paper, we assume the functions h1 and h2 satisfying the following

conditions:

(H1) The function h1 : Ω → [0,+∞) belongs to L1
loc(Ω) and there exists a

constant α ≥ 0 such that lim inf
x→z

|x− z|−αh1(x) > 0 for all z ∈ Ω,

(H2) The function h2 : Ω → [0,+∞) belongs to L1
loc(Ω) and there exists a

constant β ≥ 0 such that lim inf
x→z

|x− z|−βh2(x) > 0 for all z ∈ Ω.

2. Main results

Here, we will prove a new version of Theorem 1.2 with the choice X = H1
0 (Ω, h1)×

H1
0 (Ω, h2), where hi : Ω → [0,+∞), hi ∈ L1

loc (i = 1, 2).

Theorem 2.1. Assume that the hypotheses (H1) and (H2) are satisfied. Also, let

F2, G2,K2 ∈ A2, with K2(x, 0, 0) = 0 for all x ∈ Ω, satisfy the following conditions:

(k2) there is a ∈ (0, λ1

2 θ) such that K2(x, s, t) ≤ a|s|γ+1|t|δ+1 for all x ∈ Ω,

s, t ∈ R, where λ1 = infw=(u,v)∈X\{(0,0)}

∫
Ω(

γ+1
p h1(x)|∇u|2+ δ+1

q h2(x)|∇v|2)dx∫
Ω
|u|γ+1|v|δ+1dx

and θ = 1

2max{ γ+1
p , δ+1

q } ,
(f4)

lim
s2+t2→+∞

supx∈Ω(|F2(x, s, t)|+ |G2(x, s, t)|)
s2 + t2

= 0;
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(f5)

meas
({

x ∈ Ω :
∣∣F2(x, 0, 0)

∣∣2 + ∣∣G2(x, 0, 0)
∣∣2 > 0

})
> 0

and ∣∣F2(x, 0, 0)
∣∣2 + ∣∣G2(x, 0, 0)

∣∣2 ≤
∣∣F2(x, s, t)

∣∣2 + ∣∣G2(x, s, t)
∣∣2

for all s, t ∈ R, x ∈ Ω;

(f6) the set of all x ∈ Ω that satisfy following condition

inf
(s,t)∈R2

(
F2(x, 0, 0)F2(x, s, t) +G2(x, 0, 0)G2(x, s, t))

)
<
∣∣F2(x, 0, 0)

∣∣2 + ∣∣G2(x, 0, 0)
∣∣2

has positive measure.

Then, for every convex set S2 ⊆ L∞(Ω) × L∞(Ω) dense in L2(Ω) × L2(Ω), there

exists (σ2, ς2) ∈ S2 such that the problem

(2.1) −div(h1(x)∇u) = σ2(x)F2u(x, u, v) + ς2(x)G2u(x, u, v) +K2u(x, u, v) in Ω,
−div(h2(x)∇v) = σ2(x)F2v(x, u, v) + ς2(x)G2v(x, u, v) +K2v(x, u, v) in Ω,
u = v = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in X of the

functional

(u, v) →1

2

(∫
Ω

h1(x)|∇u|2dx+

∫
Ω

h2(x)|∇v|2dx
)

−
∫
Ω

(σ2(x)F2(x, u, v) + ς2(x)G2(x, u, v) +K2(x, u(x), v(x)))dx.

Proof. In order to apply Theorem 1.1 to our problem, we take X = H1
0 (Ω, h1)×

H1
0 (Ω, h2), where endowed with the weak topology induced by the scalar product

⟨(u, v), (ζ, τ)⟩X =

∫
Ω

(h1(x)∇u(x)∇ζ(x) + h2(x)∇v(x)∇τ(x))dx;

also, Y is the space L2(Ω)× L2(Ω) with the scalar product

⟨(κ, ω), (h, k)⟩Y =

∫
Ω

κ(x)h(x)dx+

∫
Ω

ω(x)k(x)dx

and T is L∞(Ω)× L∞(Ω). We define the functional I : X → R

I(u, v) =
1

2

(∫
Ω

h1(x)|∇u|2dx+

∫
Ω

h2(x)|∇v|2dx
)
−
∫
Ω

K2(x, u(x), v(x))dx.

for all (u, v) ∈ X. Also, let x0 is the zero of X and φ be the function defined by

φ(u, v) =

(
F2(·, u(·), v(·)), G2(·, u(·), v(·))

)
for all (u, v) ∈ X. We check that the assumptions of Theorem 1.1 are satisfied. At

first, from (f5), we observe that

∥φ(0, 0)∥2Y =

∫
Ω

∣∣F2(x, 0, 0)
∣∣2dx+

∫
Ω

∣∣G2(x, 0, 0)
∣∣2dx > 0
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and

∥φ(0, 0)∥2Y ≤ ∥φ(u, v)∥2Y

for all (u, v) ∈ X. Moreover, from (k2), we obtain that∫
Ω

K2(x, u(x), v(x))dx ≤ a

∫
Ω

(|u(x)|γ+1|v(x)|δ+1)dx

≤ a

λ1

∫
Ω

(
γ + 1

p
h1(x)|∇u(x)|2 + δ + 1

q
h2(x)|∇v(x)|2

)
dx

for all (u, v) ∈ X and so, one has

I(u, v) ≥θ

2

∫
Ω

(
γ + 1

p
h1(x)|∇u(x)|2 + δ + 1

q
h2(x)|∇v(x)|2

)
dx

≥θ

2

γ + 1

p
∥u∥2h1

+
θ

2

δ + 1

q
∥v∥2h2

(2.2)

for all (u, v) ∈ X. Take K2(x, 0, 0) = 0 and a
λ1

< θ
2 into account, from (2.2) we

obtain (0, 0) is a global minimum of I in X. So, condition (φ1) of Theorem 1.1 is

satisfied. Also, by condition (f3), we find (φ2) is satisfied. Finally, fix σ2, ς2 ∈ R.
Clearly, the function

(x, s, t) → σ2(x)F (x, s, t) + ς2(x)G(x, s, t) +K(x, s, t)

belongs to A2, and so the functional

(u, v) → I(u, v) + ⟨φ(u, v), (σ2, ς2)⟩Y

is sequentially weakly lower semicontinuous in X. Indeed, let {wm} = {(um, vm)}
be a sequence that converges weakly to w = (u, v) in X. We have∫

Ω

σ2(x)[F (x, um, vm)− F (x, u, v)]dx+

∫
Ω

ς2(x)[G(x, um, vm)−G(x, u, v)]dx

=

∫
Ω

σ2(x)∇F (x, θm(wm − w))(wm − w)dx+∫
Ω

ς2(x)∇G(x, ρm(wm − w))(wm − w)dx

=

∫
Ω

σ2(x)Fu(x, u+ θ1,m(um − u), v + θ2,m(vm − v))(um − u)dx

+

∫
Ω

σ2(x)Fv(x, u+ θ1,m(um − u), v + θ2,m(vm − v))(vm − v)dx

+

∫
Ω

ς2(x)Gu(x, u+ ρ1,m(um − u), v + ρ2,m(vm − v))(um − u)dx

+

∫
Ω

ς2(x)Gv(x, u+ ρ1,m(um − u), v + ρ2,m(vm − v))(vm − v)dx,

where θm = (θ1,m, θ2,m), ρm = (ρ1,m, ρ2,m) and 0 ≤ θ1,m(x), θ2,m(x), ρ1,m(x), ρ2,m(x) ≤
1 for all x ∈ Ω. Now, take (1.1) and Hölder’s inequality into account, we deduce
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that there exist c1, c2, c3, c4 > 0 such that∣∣∣∣∫
Ω

σ2(x)[F (x, um, vm)− F (x, u, v)]dx+

∫
Ω

ς2(x)[G(x, um, vm)−G(x, u, v)]dx

∣∣∣∣
≤ ∥σ2∥∞

∫
Ω

∣∣Fu(x, u+ θ1,m(um − u), v + θ2,m(vm − v))
∣∣|um − u|dx

+ ∥σ2∥∞
∫
Ω

∣∣Fv(x, u+ θ1,m(um − u), v + θ2,m(vm − v))
∣∣|vm − v|dx

+ ∥ς2∥∞
∫
Ω

∣∣Gu(x, u+ ρ1,m(um − u), v + ρ2,m(vm − v))
∣∣|um − u|dx

+ ∥ς2∥∞
∫
Ω

∣∣Gv(x, u+ ρ1,m(um − u), v + ρ2,m(vm − v))
∣∣|vm − v|dx

≤ c1∥σ2∥∞
∫
Ω

∣∣u+ θ1,m(um − u)
∣∣γ∣∣v + θ2,m(vm − v))

∣∣δ+1|um − u|dx

+ c2∥σ2∥∞
∫
Ω

∣∣u+ θ1,m(um − u)
∣∣γ+1∣∣v + θ2,m(vm − v))

∣∣δ|vm − v|dx

+ c3∥ς2∥∞
∫
Ω

∣∣u+ ρ1,m(um − u)
∣∣γ∣∣v + ρ2,m(vm − v))

∣∣δ+1|um − u|dx

+ c4∥ς2∥∞
∫
Ω

∣∣u+ ρ1,m(um − u)
∣∣γ+1∣∣v + ρ2,m(vm − v))

∣∣δ|vm − v|dx.

So, we have∣∣∣∣∫
Ω

σ2(x)[F (x, um, vm)− F (x, u, v)]dx+

∫
Ω

ς2(x)[G(x, um, vm)−G(x, u, v)]dx

∣∣∣∣
≤ c1∥σ2∥∞

∥∥u+ θ1,m(um − u)
∥∥γ
Lp(Ω)

∥∥v + θ2,m(vm − v))
∥∥δ+1

Lq(Ω)
∥um − u∥Lp(Ω)

+ c2∥σ2∥∞
∥∥u+ θ1,m(um − u)

∥∥γ+1

Lp(Ω)

∥∥v + θ2,m(vm − v))
∥∥δ
Lq(Ω)

∥vm − v∥Lq(Ω)

+ c3∥ς2∥∞
∥∥u+ ρ1,m(um − u)

∥∥γ
Lp(Ω)

∥∥v + ρ2,m(vm − v))
∥∥δ+1

Lq(Ω)
∥um − u∥Lp(Ω)

+ c4∥ς2∥∞
∥∥u+ ρ1,m(um − u)

∥∥γ+1

Lp(Ω)

∥∥v + ρ2,m(vm − v))
∥∥δ
Lq(Ω)

∥vm − v∥Lq(Ω).

Since 2 < γ + 1 < p < 2∗α and 2 < γ + 1 < q < 2∗β , by the compact embedding

X ↪→ Lp(Ω)×Lq(Ω), the sequence {wm} convergence strongly to w = (u, v) in the

space Lp(Ω)×Lq(Ω), i.e., the sequence {um} converges strongly to u in Lp(Ω) and

{vm} converges strongly to v in Lq(Ω). Hence, it is easy to see that the sequences

{
∥∥u+ θ1,m(um −u)

∥∥
Lp(Ω)

}, {
∥∥v+ θ2,m(vm − v)

∥∥
Lq(Ω)

}, {
∥∥u+ ρ1,m(um −u)

∥∥
Lp(Ω)

}
and {

∥∥v + ρ2,m(vm − v)
∥∥
Lq(Ω)

} are bounded. Thus, it follows

lim
m→∞

∫
Ω

[σ2(x)F (x, um, vm) + ς2(x)G(x, um, vm)]dx

=

∫
Ω

[σ2F (x, u, v) + ς2G(x, u, v)]dx.(2.3)

Using similar arguments as those used above, we obtain that

lim
m→∞

∫
Ω

K(x, um, vm)dx =

∫
Ω

K(x, u, v)dx.(2.4)
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By the weak lower semicontinuity of the norms in the spaces H1
0 (Ω, h1) and H1

0 (Ω, h2)

we deduce that

lim
m→∞

inf

∫
Ω

[h1(x)|∇um|2 + h2(x)|∇vm|2]dx ≥
∫
Ω

[h1(x)|∇u|2 + h2(x)|∇v|2]dx.

(2.5)

Hence, relations (2.3), (2.4) and (2.5) imply that the function

(u, v) → I(u, v) + ⟨φ(u, v), (σ2, ς2)⟩Y

is sequentially weakly lower semicontinuous in X.

We now prove that the function

(u, v) → I(u, v) + ⟨φ(u, v), (σ2, ς2)⟩Y

is coercive. Put

b = max{∥σ2∥L∞(Ω), ∥ς2∥L∞(Ω)}

and fix ϵ > 0 such that

ϵ < min

{
λ1(h1)

b

θ(γ + 1)

2p
,
λ1(h2)

b

θ(δ + 1)

2q

}
,(2.6)

where

λ1(hi) := inf
ϕ∈H1

0 (Ω,hi)\{0}

∫
Ω
hi(x)|∇ϕ|2∫
Ω
|ϕ|2dx

, i = 1, 2.

From (f4), there is cϵ > 0 such that

|F (x, s, t)|+ |G(x, s, t)| ≤ ϵ(|s|2 + |t|2) + cϵ

for all (x, s, t) ∈ Ω × R2. Hence, in view of (2.2), for each (u, v) ∈ H1
0 (Ω, h1) ×

H1
0 (Ω, h2), we conclude that

I(u, v) + ⟨φ(u, v), (σ2, ς2)⟩Y ≥ θ

2

γ + 1

p
∥u∥2h1

+
θ

2

δ + 1

q
∥v∥2h2

−
∫
Ω

|σ2(x)F (x, u(x), v(x)) + ς2(x)G(x, u(x), v(x))|dx

≥ θ

2

γ + 1

p
∥u∥2h1

+
θ

2

δ + 1

q
∥v∥2h2

− bϵ

∫
Ω

(|u(x)|2 + |v(x)|2)dx− bcϵmeas(Ω)

≥ θ

2

γ + 1

p
∥u∥2h1

+
θ

2

δ + 1

q
∥v∥2h2

− bϵ

(
1

λ1(h1)

∫
Ω

h1(x)|∇u(x)|2dx

+
1

λ1(h2)

∫
Ω

h2(x)|∇v(x)|2dx
)
− bcϵmeas(Ω)

≥
(
θ(γ + 1)

2p
− bϵ

λ1(h1)

)∫
Ω

h1(x)|∇u|2dx

+

(
θ(δ + 1)

2q
− bϵ

λ1(h2)

)∫
Ω

h2(x)|∇v|2dx− bcϵmeas(Ω).
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bearing in mind the relation (2.6), we have θ(γ+1)
2p − bϵ

λ1(h1)
, θ(δ+1)

2q − bϵ
λ1(h2)

> 0, and

so

lim
∥(u,v)∥X→+∞

(I(u, v) + ⟨φ(u, v), (σ2, ς2)⟩Y ) = +∞,

as claimed. In virtue of Eberlein-Smulyan theorem, this also follows that the functional

I(u, v)+ ⟨φ(u, v), (σ2, ς2)⟩Y is weakly lower semicontinuous. Thus, the assumptions

of Theorem 1.1 are verified. Therefore, for each convex set S2 ⊆ L∞(Ω)× L∞(Ω),

there exists (σ2, ς2) ∈ S2, such that the functional

(u, v) →1

2

(∫
Ω

h1(x)|∇u|2dx+

∫
Ω

h2(x)|∇v|2dx
)

−
∫
Ω

(σ2(x)F2(x, u, v) + ς2(x)G2(x, u, v) +K2(x, u(x), v(x)))dx.

has at least two global minima in X and by Example 38.25 of [5] it admits at least

three critical points. Hence, the conclusion is achieved. □

Remark 2.1. Assume that w = (u, v) ∈ X is a weak solution of problem (2.1),

then u ≥ 0 and v ≥ 0 in Ω. Indeed, from our assumptions in Theorem 2.1, we have

0 =

∫
Ω

(h1(x)∇u · ∇u− + h2(x)∇v · ∇v−)dx

−
∫
Ω

σ2(x)(F2u(x, u, v)u
− + F2v(x, u, v)v

−)dx

−
∫
Ω

ς2(x)(G2u(x, u, v)u
− +G2v(x, u, v)v

−)dx

+

∫
Ω

(K2u(x, u, v)u
− +K2v(x, u, v)v

−)dx

= ∥u−∥2h1
+ ∥v−∥2h2

≥ λ1(h1)

∫
Ω

|u−|2dx+ λ1(h2)

∫
Ω

|v−|2dx,

which implies that u(x) ≥ 0 and v(x) ≥ 0 for a.e. x ∈ X.

A special case of our main result is the following theorem.

Theorem 2.2. Let K3 ∈ A2, with K3(x, 0, 0) = 0 for all x ∈ Ω, satisfies (k2).

Then, for every convex set S3 ⊆ R2, there exists (σ3, ς3) ∈ S3 such that the problem
−div

(
|x|∇u

)
= (σ3(x) cos(uv

√
uv)− ς3(x) sin(uv

√
uv)) 3

√
uv3

2 +K3u(x, u, v) in Ω,
−div

(
|x|∇v

)
= (σ3(x) cos(uv

√
uv)− ς3(x) sin(uv

√
uv)) 3

√
u3v
2 +K3v(x, u, v) in Ω,

u = v = 0, on ∂Ω
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has at least three weak solutions, two of which are global minima in H1
0 (Ω, |x|) ×

H1
0 (Ω, |x|) of the functional

(u, v) →1

2

(∫
Ω

|x||∇u|2dx+

∫
Ω

|x||∇v|2dx
)

−
∫
Ω

(σ3(x)sin(uv
√
uv) + ς3(x)cos(uv

√
uv) +K3(x, u(x), v(x)))dx.

Proof. Apply Theorem 2.1 to the functions F2, G2 : R2 → R defined by F2(s, t) =

sin(st
√
st) and G2(s, t) = cos(st

√
st) for all (s, t) ∈ R2. □

Conclusion. Due to the generality of the Theorem 1.1, it can be applied to

many different situations.
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