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1. INTRODUCTION

Let P(R™) be the vector space of all polynomials (of real coefficients) in R™ and
P4(R™) the subspace consisting of all polynomials of degree at most d. It is well-
known that N := dim Py(R") = (”j;d). The vector space P(R™) is endowed with
the norm

1P]loe = max lea| with P(x) = la{:dcax :

A subset X = {x1,...,xy5} of R" that consists of NV distinct points is said to be
unisolvent for P4(R™) (or degree d) if, for every function f defined on X, there exists
a unique P € Py(R™) such that f(x) = P(x) for all x € X. This polynomial is called
the Lagrange interpolation polynomial of f at X and is denoted by L[X; f]. Note
that it is difficult to check whether a certain set of N distinct points is unisolvent
of degree d as soon as n > 2. Some geometric configurations in R™ give unisolvent

sets, e.g., the natural lattices, principal lattices and Bos configurations on algebraic

hypersurfaces [4]. Now we choose a basis B = {p1,...,pn} for P4(R™). Then
VDM(B; X)) = det[p;(x;)]1<i,j<n

is called the Vandermonde determinant. Here j is the row index of the matrix. It
is well-known that X is unisolvent if and only if VDM(B; X) # 0. We have

pEB ’

where B[p < f] means that we substitute f for p in B. We are concerned with the

following problem which was stated in [T].
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Problem. Suppose that the points of the unisolvent set X™ for Py(R™) tend to
the origin when m — co. Determine conditions on X™ such that, for a sufficiently
smooth function f, L[X™; f] converges to TE(f) (the Taylor expansion of f at 0 to
the order d).

In the one dimensional case n = 1, the convergence result holds without any
condition on X™ (see [2, Theorem 1.4]). This fact comes from the Newton representation
of the univariate Lagrange interpolation and the continuity property of divided
difference with respect to the interpolation points. Unfortunately, the analogous
property is not true in the multivariate case (see [I, Example 1.2]). As far as we
have known, there are a few results focusing on the problem. Coatmelec showed
in [5] that when the X™ are images of a fixed unisolvent set X under scalings by
ratio r,, with 7, — 0 composed with a rotation R, of R™, L[X™; f] — Td(f)
for any function f of class C?. In [I], Bloom and Calvi gave a sufficient condition.
The condition is that L[{X™; f] converges to 0 for any homogeneous polynomial f
of degree d + 1. Using the Bloom-Calvi condition, Phung in [8, Proposition 4.6]
showed that the X" ’s can be chosen suitably on concentric circles centered at the
origin. In [6], the authors treated the case when X™ is a natural lattice. Using a
beautiful error formula of de Boor [3], they proved that when X™ satisfies a natural
geometric condition the corresponding Lagrange interpolation polynomial (of fixed
degree) of a sufficient smooth function converges to a Taylor polynomial. In this
paper, we are interested in solving the problem when X™ is a principal lattice.

For convenience, we recall some facts about principal lattices. For d > 1, we set

Sa={B:6=(Fo,.-.0u) N |8 := By + - + B =},

where N is the set of all non-negative integers. Let A = {ay,...,a,} such that the
a;’s form a simplex in R™. For abbreviation, we say that A is a simplex in R™. Let

us denote by PLg(A) the set of points
N W Zn Big .
PLd(A) = {X = 2 Eai : B S Sd}

We call PL;(A) the principal lattice of degree d generated by A. We have known
that PL4(A) is a unisolvent set of degree d in R™. It is the intersections of certain
hyperplanes in R™. Moreover, the fundamental Lagrange interpolation polynomials
are the products of affine polynomials. For a deeper discussion of the principal
lattice and its generalization, we refer the reader to [7] and the references given
there.

Observe that the Lagrange interpolation operator has bad behavior when the

interpolation points tend to a hyperplane. Hence we must give a condition on the
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simplexes A™ such that the principal lattices PL4(A™) do not become more and
more flat. The precise condition is given below.

Let A = {ap,...,a,} be a simplex in R". Let H4\(a,} be the unique affine
hyperplane passing through all points in A\ {a;}. We define the quantities

Dy= onBx la;, —a;|| and Ha= orgniign dist(a;, Ha\fa;});

where we denote by ||a|| the Euclidean norm of a € R™. Our first main result focuses

on a special kind of simplex in R".

Theorem 1.1. Let 6 > 1 and A ={ay,...,a,} be a simplex in R™ such that

. i — < i i ; ).
(1.2) lrg%xn la; — ao|| < 611Sniléln dist(a;, Ha\{a;})

Then there exists a constant € > 1 depending only on n and & such that
(1.3) Dy <eHy,

Conversely, if holds, then there exists § > 1 such that and stmilar

relations corresponding to a;, 1t =1,...,n, also hold.
The above theorem gives the definition of admissible simplexes.

Definition 1.1. The sequence A™ = {a',...,a"} of simplexes in R™ is said to

be admissible if there exists € > 1 such that

(1.4) Dagm < eHpm, Vm >1.
The following theorem is another main result of our paper.

Theorem 1.2. For d € N*, let A™ = {af',...,a""} be a sequence of admissible
simplezes in R™ such that, for i = 0,...,n, a* = 0 as m — oco. Then for every

function f of class C?1 in a neighborhood of 0 we have
Tim L[PLy(A™): f] = T4(f).
where PLy(A™) is the principal lattice of degree d generated by A™.

Note that an error formula for the Lagrange interpolation polynomial at the
principal lattice is available (see for instance [7]). But it quite difficult to use it
to prove Theorem Now we outline the method of the proof. Observe that a
principal lattice in R™ can be regarded as the image of the standard principal
lattice under a linear or an affine transformation of R™. Here the standard principal
lattice is the lattice spanned by the standard simplex in R™. Hence, we can use [I,
Corollary 2.2] to reduce the convergence property in Theoremto a condition on

certain linear transforms. We show that the condition on linear transforms holds
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when the principal lattices are generated by a sequence of admissible simplexes,

and the theorem follows.

2. PROOFS OF THE MAIN RESULTS

In this section, we give the proofs of the two theorems stated in the previous

section.

Proof of Theorem[I_1. The reverse conclusion is obviously true. Assume that (1.2))
holds. For convenience, we set
0 __ 0 __ . .
D° = max la; —ap|| and H® = i, dist(a;, Ha\fa,})-
By definition, we have D < §HY. It is easily seen that
D°< Dy <2D" and Hyu = min{H",dist(ag, H A\ {a})}-

Therefore, it suffices to show that there exists a constant ¢, > 0 depending only on

n and d such that
(2.1) DY < endist(ag, Hay fa,})-

To prove above claim, we will verify that there is a positive constant ¢,, depending

only on n and § such that

(2.2) vol(A) > ¢, (D))",
where vol(A) is the volume of the polyhedron in R™ generated by A. The proof is
by induction on n. If n = 2, then it is obvious that we can take cy = 2—15, because

when D% = ||ag — ag|| we can write

1 . 1 _.DO D)2
vol(A) = §||a2 —ap|| - dISt(a17H{a2,a0}) > 5DOT _ ( 25)

Assume the estimate holds for n — 1; we will prove it for n. Observe that

1
lla; — ao|| > dist(ai,”H,A\{ai}) > SDO, 1=1,...,n.

It follows that

~ 1

(2.3) D°>D° > SDO,

where

(2.4) D%:= max |la;—ay.
1<i<n—1

For B C A, we will denote by Hp the (card(B) — 1)-dimensional plane passing
through all points in B. Evidently, if B C B’ C A, then dist(a, Hp) > dist(a, Hp)
for every a € R™. Therefore,

(2.5) min dist(a;, Ha\{a;a,}) > H® > <D°.

1<i<n—1

| =
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We now consider the (n — 1)-dimensional space H := H4\[a,}- Looking at (2.3),
(2.5) and using the induction hypothesis for H, we find that

vol(A\ {an}) > cno1 (Eo)nil > gz: (Do)nil'

It follows that

vol(4) = %VOl(A \ {a,})dist(an, Ha\{a,})
]. Cn_ n—1 .DO n Cn_
= E(S”_i (DO) T = Cn (DO) y, Cnp = n(Snl’

which completes the proof of the estimate. Now since |la; — a;|| < 2D° for every
1 # 7, we have
vol(A\ {ap}) < (2D°)" .
Combining the last relation with we obtain
nvol (A -
vol(A (\ a)o) = 2720*1 D%,
which gives , and the proof is complete. [

dist(ao, HA\{ao}) =

The tool to prove Theorem 1.2 comes from a result of Bloom and Calvi [I]. Note

that the rate of convergence is obtained from the proof of the result.

Theorem 2.1. (Bloom-Calvi) Let X = {x1,...,Xn} be a unisolvent set of degree
d in R™. Let {®,,} be a sequence of linear automorphism of R™. Assume that
| @ ||| @84 — 0 as m — oo, where || - || is any matriz norm. Then for every

function f of class C4t1 in a neighborhood of 0 we have

lim L[®(X): f] = T§(f).

m—r 00

Furthermore,
IL[®,, (X); £] = TG(F)loo = O(|@m | 127,11),

where the constant in O depends on n,d, X and f.

To use Theorem it is necessary to study the norm of the inverse matrix. Let
{a1,...,a,} be n distinct points in R™ with a; = (a;1,...,a:,) such that Ay :=
{0,ay,...,a,} is a simplex in R™. This condition holds if and only if {a;,...,a,}
is linearly independent. We consider the square matrix M = [a; ag---a,], where

a; is the j-th column of M. Let us define the following two norms of M
[M]c =max{[lal,..., [an]l} and [[M]|r=[M"]|c,

where M7 is the transpose of M. We always denote by {ey,...,e,} the standard
basis for R™.
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Lemma 2.1. We have
1

minlgign dist(al-, HAO\{ai}) '

1M | =

Proof. Let C be the cofactor matrix of M and adj(M) = C7, the adjugate of
M. We have
1
M= dj(M).
det 7 VM)
It is easily seen that the first row of adj(M) is the vector

el e2 e en

a21 Qa22 - A2
(2.6) u; = det(e,aq,...,a,) = det

an1 aAn2 st Qpp

Here the determinant in is taken pointwisely according to the first row. Since
{ag,...,a,} is linearly independent, u; is nonzero. Moreover, it is a normal vector
of the hyperplane H 4,\(a,}, because (a,u;) = det(a,ay,...,a,) for a € R", and
hence (a;,u;) =0 for j = 2,...,n. We thus get H4,\(a,} = {X € R": (u1,x) =0}

and
[(ar,u1)| _ [det M|

diSt(al ) HAO\{al } ) =

[
The same relation holds for the k-th row uy of adj(M). It follows that
1
Mg = ————ladj(M
e = o O]
1
= mmaX{HulHa ) Hun||}
N 1
= max .
1<i<n dist(a;, H 4.\ {a;})
The proof is complete. U

Proof of Theorem[I.3. The proof will be divided into two steps.
Step 1. We first assume that aj’ = 0 for every m > 1. Let ®,, be the unique

invertible linear automorphism of R™ such that ®,,,(e;) = a!" for i = 1,...,n. Then
the matrix of ®,, is the square matrix M, = [a* a}*---a"]. By definition, we
have ||Mp,|c = maxi<i<n ||a}"||. Using Lemma 2.1} we get
_ 1
1M | r =

ming <<, dist(a]”, Ham\ fam})”

Let E4 be the principal lattice of degree d generated by {0,eq,...,e,}. Then Ey
is a unisolvent set of degree d in R™. Evidently, ®,,(E;) = PL4(A™). Theorem
and the hypothesis that the sequence of simplexes is admissible now yield

(2.7)

ILIPLA(A™): 1] = T4 ow = O((IMlle) 1M 1)) = O masx "),
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where the constant in O depends on n,d, e and f. In particular, L[PLy(A™); f] —
Td(f) as m — oo.

Step 2. We prove the theorem in the general case. Using arguments in the first step,
we conclude from that

(2.8) ILPLa(A™); ] = Tap ()l = O(max fla;" —ag'|])

ag

On the other hand, since f is of class C%t! in a neighborhood of 0, we easily seen
that

1

ITag (f) = TG(f) oo = max —|D* f(ag") — D £(0)] = O([lag")-

From what has already been proved, we have

ILPLa(A™); f1 = TH(Hllse < ILPLa(A™); f] = Tag (Nl + ITag (F) = TH) I

— O(max [la7 — af'[}) + O(a§'|)

= m
O(max [la"|):

It follows that
lim L[PLq(A™); f] = T3(f),

m—r oo

and the proof is complete. O
The following result is a direct consequence of the proof of Theorem [1.2

Corollary 2.1. For d € N*, let A]* := {0,a7",...,a"} be a sequence of simplexes
in R™ such that

d+1
. (maxi<i<p [a"])
lim : : =0
m—eo (mlnlgigd dlSt(Zi;-n,/HAvUn\{a;n}))

Then for every function f of class C?t! in a neighborhood of 0 we have
Jim L[PL(A7); f] = T5(f)-

Example 1. This example generalizes [I, Example 1.2]. It shows that the condition
to be admissible of {A™} in Theorem |1.2| can not be removed.

Let B = {1,z1,...,2,} be a basis for P;(R"). Let us take a' = 0, a” = Le;
fori =1,...,n—1and a™ = (0,...,0, 2, 1) with 3 > 2a > 2. Then A™ :=

Y me Y mB

{af,...,a"'} is a simplex in R™ for m > 1. We have

. 1 V2
HATVL S dlSt(aZL,HA'm\{aZL}) = m and DAm = E.
Hence, the sequence {A™} is not admissible. Easily computations give
1
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If we choose f(x) = 22_;, then

n—1»
1 1 1
mn—2 (m2a+1 T et )-

Consequently, in view of (1.1)), we see that the coefficient of z,, in L[X™; f] is equal

VDM(Blz, + f]; A™) =

to
VDM(B[z,, « f]; A™) _ mT}er - riu
VDM(B; Am) L
which tends to —oo when m — oo. On the other hand, since A™ is a unisolvent set
of degree 1 in R™, we have T}(f) = 0. Hence L[X™; f] does not convege to T4(f)

as m — oQ.
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