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1. Introduction

Let P(Rn) be the vector space of all polynomials (of real coefficients) in Rn and

Pd(Rn) the subspace consisting of all polynomials of degree at most d. It is well-

known that N := dimPd(Rn) =
(
n+d
d

)
. The vector space P(Rn) is endowed with

the norm

∥P∥∞ = max
|α|≤d

|cα| with P (x) =
∑
|α|≤d

cαx
α.

A subset X = {x1, . . . ,xN} of Rn that consists of N distinct points is said to be

unisolvent for Pd(Rn) (or degree d) if, for every function f defined on X, there exists

a unique P ∈ Pd(Rn) such that f(x) = P (x) for all x ∈ X. This polynomial is called

the Lagrange interpolation polynomial of f at X and is denoted by L[X; f ]. Note

that it is difficult to check whether a certain set of N distinct points is unisolvent

of degree d as soon as n ≥ 2. Some geometric configurations in Rn give unisolvent

sets, e.g., the natural lattices, principal lattices and Bos configurations on algebraic

hypersurfaces [4]. Now we choose a basis B = {p1, . . . , pN} for Pd(Rn). Then

VDM(B;X) = det[pi(xj)]1≤i,j≤N

is called the Vandermonde determinant. Here j is the row index of the matrix. It

is well-known that X is unisolvent if and only if VDM(B;X) ̸= 0. We have

(1.1) L[X; f ](x) =
∑
p∈B

VDM(B[p← f ];X)

VDM(B;X)
p,

where B[p← f ] means that we substitute f for p in B. We are concerned with the

following problem which was stated in [1].
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Problem. Suppose that the points of the unisolvent set Xm for Pd(Rn) tend to

the origin when m→∞. Determine conditions on Xm such that, for a sufficiently

smooth function f , L[Xm; f ] converges to Td
0(f) (the Taylor expansion of f at 0 to

the order d).

In the one dimensional case n = 1, the convergence result holds without any

condition on Xm (see [2, Theorem 1.4]). This fact comes from the Newton representation

of the univariate Lagrange interpolation and the continuity property of divided

difference with respect to the interpolation points. Unfortunately, the analogous

property is not true in the multivariate case (see [1, Example 1.2]). As far as we

have known, there are a few results focusing on the problem. Coatmelec showed

in [5] that when the Xm are images of a fixed unisolvent set X under scalings by

ratio rm with rm → 0 composed with a rotation Rm of Rn, L[Xm; f ] → Td
0(f)

for any function f of class Cd. In [1], Bloom and Calvi gave a sufficient condition.

The condition is that L[Xm; f ] converges to 0 for any homogeneous polynomial f

of degree d + 1. Using the Bloom-Calvi condition, Phung in [8, Proposition 4.6]

showed that the Xm’s can be chosen suitably on concentric circles centered at the

origin. In [6], the authors treated the case when Xm is a natural lattice. Using a

beautiful error formula of de Boor [3], they proved that when Xm satisfies a natural

geometric condition the corresponding Lagrange interpolation polynomial (of fixed

degree) of a sufficient smooth function converges to a Taylor polynomial. In this

paper, we are interested in solving the problem when Xm is a principal lattice.

For convenience, we recall some facts about principal lattices. For d ≥ 1, we set

Sd =
{
β : β = (β0, . . . , βn) ∈ Nn+1 : |β| := β0 + · · ·+ βn = d

}
,

where N is the set of all non-negative integers. Let A = {a0, . . . ,an} such that the

ai’s form a simplex in Rn. For abbreviation, we say that A is a simplex in Rn. Let

us denote by PLd(A) the set of points

PLd(A) :=
{
x =

n∑
i=0

βi

d
ai : β ∈ Sd

}
.

We call PLd(A) the principal lattice of degree d generated by A. We have known

that PLd(A) is a unisolvent set of degree d in Rn. It is the intersections of certain

hyperplanes in Rn. Moreover, the fundamental Lagrange interpolation polynomials

are the products of affine polynomials. For a deeper discussion of the principal

lattice and its generalization, we refer the reader to [7] and the references given

there.

Observe that the Lagrange interpolation operator has bad behavior when the

interpolation points tend to a hyperplane. Hence we must give a condition on the
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simplexes Am such that the principal lattices PLd(A
m) do not become more and

more flat. The precise condition is given below.

Let A = {a0, . . . ,an} be a simplex in Rn. Let HA\{ai} be the unique affine

hyperplane passing through all points in A \ {ai}. We define the quantities

DA = max
0≤i<j≤n

∥ai − aj∥ and HA = min
0≤i≤n

dist(ai,HA\{ai}),

where we denote by ∥a∥ the Euclidean norm of a ∈ Rn. Our first main result focuses

on a special kind of simplex in Rn.

Theorem 1.1. Let δ > 1 and A = {a0, . . . ,an} be a simplex in Rn such that

(1.2) max
1≤i≤n

∥ai − a0∥ ≤ δ min
1≤i≤n

dist(ai,HA\{ai}).

Then there exists a constant ϵ > 1 depending only on n and δ such that

(1.3) DA ≤ ϵHA,

Conversely, if (1.3) holds, then there exists δ > 1 such that (1.2) and similar

relations corresponding to ai, i = 1, . . . , n, also hold.

The above theorem gives the definition of admissible simplexes.

Definition 1.1. The sequence Am = {am0 , . . . ,amn } of simplexes in Rn is said to

be admissible if there exists ϵ > 1 such that

(1.4) DAm ≤ ϵHAm , ∀m ≥ 1.

The following theorem is another main result of our paper.

Theorem 1.2. For d ∈ N∗, let Am = {am0 , . . . ,amn } be a sequence of admissible

simplexes in Rn such that, for i = 0, . . . , n, ami → 0 as m → ∞. Then for every

function f of class Cd+1 in a neighborhood of 0 we have

lim
m→∞

L[PLd(A
m); f ] = Td

0(f),

where PLd(A
m) is the principal lattice of degree d generated by Am.

Note that an error formula for the Lagrange interpolation polynomial at the

principal lattice is available (see for instance [7]). But it quite difficult to use it

to prove Theorem 1.2. Now we outline the method of the proof. Observe that a

principal lattice in Rn can be regarded as the image of the standard principal

lattice under a linear or an affine transformation of Rn. Here the standard principal

lattice is the lattice spanned by the standard simplex in Rn. Hence, we can use [1,

Corollary 2.2] to reduce the convergence property in Theorem 1.2 to a condition on

certain linear transforms. We show that the condition on linear transforms holds
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when the principal lattices are generated by a sequence of admissible simplexes,

and the theorem follows.

2. Proofs of the main results

In this section, we give the proofs of the two theorems stated in the previous

section.

Proof of Theorem 1.1. The reverse conclusion is obviously true. Assume that (1.2)

holds. For convenience, we set

D0 = max
1≤i≤n

∥ai − a0∥ and H0 = min
1≤i≤n

dist(ai,HA\{ai}).

By definition, we have D0 ≤ δH0. It is easily seen that

D0 ≤ DA ≤ 2D0 and HA = min{H0,dist(a0,HA\{a0})}.

Therefore, it suffices to show that there exists a constant ϵn > 0 depending only on

n and δ such that

(2.1) D0 ≤ ϵndist(a0,HA\{a0}).

To prove above claim, we will verify that there is a positive constant cn depending

only on n and δ such that

(2.2) vol(A) ≥ cn(D
0)n,

where vol(A) is the volume of the polyhedron in Rn generated by A. The proof is

by induction on n. If n = 2, then it is obvious that we can take c2 = 1
2δ , because

when D0 = ∥a2 − a0∥ we can write

vol(A) =
1

2
∥a2 − a0∥ · dist(a1,H{a2,a0}) ≥

1

2
D0D

0

δ
=

(D0)2

2δ
.

Assume the estimate holds for n− 1; we will prove it for n. Observe that

∥ai − a0∥ ≥ dist(ai,HA\{ai}) ≥
1

δ
D0, i = 1, . . . , n.

It follows that

(2.3) D0 ≥ D̃0 ≥ 1

δ
D0,

where

(2.4) D̃0 := max
1≤i≤n−1

∥ai − a0∥.

For B ⊂ A, we will denote by HB the (card(B) − 1)-dimensional plane passing

through all points in B. Evidently, if B ⊂ B′ ⊂ A, then dist(a,HB) ≥ dist(a,HB′)

for every a ∈ Rn. Therefore,

(2.5) min
1≤i≤n−1

dist(ai,HA\{ai,an}) ≥ H0 ≥ 1

δ
D0.

87



N. VAN MINH

We now consider the (n − 1)-dimensional space H := HA\{an}. Looking at (2.3),

(2.5) and using the induction hypothesis for H, we find that

vol
(
A \ {an}

)
≥ cn−1

(
D̃0

)n−1 ≥ cn−1

δn−1

(
D0

)n−1
.

It follows that

vol(A) =
1

n
vol

(
A \ {an}

)
dist(an,HA\{an})

≥ 1

n

cn−1

δn−1

(
D0

)n−1D0

δ
= cn

(
D0

)n
, cn =

cn−1

nδn
,

which completes the proof of the estimate. Now since ∥ai − aj∥ ≤ 2D0 for every

i ̸= j, we have

vol
(
A \ {a0}

)
≤

(
2D0

)n−1
.

Combining the last relation with (2.2) we obtain

dist(a0,HA\{a0}) =
nvol

(
A
)

vol
(
A \ a0

) ≥ ncn
2n−1

D0,

which gives (2.1), and the proof is complete. □

The tool to prove Theorem 1.2 comes from a result of Bloom and Calvi [1]. Note

that the rate of convergence is obtained from the proof of the result.

Theorem 2.1. (Bloom-Calvi) Let X = {x1, . . . ,xN} be a unisolvent set of degree

d in Rn. Let {Φm} be a sequence of linear automorphism of Rn. Assume that

∥Φm∥d+1∥Φ−1
m ∥d → 0 as m → ∞, where ∥ · ∥ is any matrix norm. Then for every

function f of class Cd+1 in a neighborhood of 0 we have

lim
m→∞

L[Φm(X); f ] = Td
0(f).

Furthermore,

∥L[Φm(X); f ]−Td
0(f)∥∞ = O

(
∥Φm∥d+1∥Φ−1

m ∥d
)
,

where the constant in O depends on n, d, X and f .

To use Theorem 2.1, it is necessary to study the norm of the inverse matrix. Let

{a1, . . . ,an} be n distinct points in Rn with ai = (ai1, . . . , ain) such that A0 :=

{0,a1, . . . ,an} is a simplex in Rn. This condition holds if and only if {a1, . . . ,an}
is linearly independent. We consider the square matrix M = [a1 a2 · · ·an], where

aj is the j-th column of M . Let us define the following two norms of M

∥M∥C = max{∥a1∥, . . . , ∥an∥} and ∥M∥R = ∥MT ∥C ,

where MT is the transpose of M . We always denote by {e1, . . . , en} the standard

basis for Rn.
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Lemma 2.1. We have

∥M−1∥R =
1

min1≤i≤n dist(ai,HA0\{ai})
.

Proof. Let C be the cofactor matrix of M and adj(M) = CT , the adjugate of

M . We have

M−1 =
1

detM
adj(M).

It is easily seen that the first row of adj(M) is the vector

(2.6) u1 = det(e,a2, . . . ,an) := det


e1 e2 · · · en
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


Here the determinant in (2.6) is taken pointwisely according to the first row. Since

{a2, . . . ,an} is linearly independent, u1 is nonzero. Moreover, it is a normal vector

of the hyperplane HA0\{a1}, because ⟨a,u1⟩ = det(a,a2, . . . ,an) for a ∈ Rn, and

hence ⟨aj ,u1⟩ = 0 for j = 2, . . . , n. We thus get HA0\{a1} = {x ∈ Rn : ⟨u1,x⟩ = 0}
and

dist(a1,HA0\{a1}) =
|⟨a1,u1⟩|
∥u1∥

=
|detM |
∥u1∥

.

The same relation holds for the k-th row uk of adj(M). It follows that

∥M−1∥R =
1

|detM |
∥adj(M)∥R

=
1

|detM |
max

{
∥u1∥, . . . , ∥un∥

}
= max

1≤i≤n

1

dist(ai,HA0\{ai})
.

The proof is complete. □

Proof of Theorem 1.2. The proof will be divided into two steps.

Step 1. We first assume that am0 = 0 for every m ≥ 1. Let Φm be the unique

invertible linear automorphism of Rn such that Φm(ei) = ami for i = 1, . . . , n. Then

the matrix of Φm is the square matrix Mm = [am1 am2 · · ·amn ]. By definition, we

have ∥Mm∥C = max1≤i≤n ∥ami ∥. Using Lemma 2.1, we get

∥M−1
m ∥R =

1

min1≤i≤n dist(ami ,HAm\{am
i })

.

Let Ed be the principal lattice of degree d generated by {0, e1, . . . , en}. Then Ed

is a unisolvent set of degree d in Rn. Evidently, Φm(Ed) = PLd(A
m). Theorem 2.1

and the hypothesis that the sequence of simplexes is admissible now yield

(2.7)

∥L[PLd(A
m); f ]−Td

0(f)∥∞ = O
(
(∥Mm∥C)d+1(∥M−1

m ∥R)d
)
= O( max

1≤i≤n
∥ami ∥),
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where the constant in O depends on n, d, ϵ and f . In particular, L[PLd(A
m); f ]→

Td
0(f) as m→∞.

Step 2. We prove the theorem in the general case. Using arguments in the first step,

we conclude from (2.7) that

(2.8) ∥L[PLd(A
m); f ]−Td

am
0
(f)∥∞ = O( max

1≤i≤n
∥ami − am0 ∥).

On the other hand, since f is of class Cd+1 in a neighborhood of 0, we easily seen

that

∥Td
am
0
(f)−Td

0(f)∥∞ = max
|α|≤d

1

α!
|Dαf(am0 )−Dαf(0)| = O(∥am0 ∥).

From what has already been proved, we have

∥L[PLd(A
m); f ]−Td

0(f)∥∞ ≤ ∥L[PLd(A
m); f ]−Td

am
0
(f)∥∞ + ∥Td

am
0
(f)−Td

0(f)∥∞

= O( max
1≤i≤n

∥ami − am0 ∥) +O(∥am0 ∥)

= O( max
0≤i≤n

∥ami ∥).

It follows that

lim
m→∞

L[PLd(A
m); f ] = Td

0(f),

and the proof is complete. □

The following result is a direct consequence of the proof of Theorem 1.2.

Corollary 2.1. For d ∈ N∗, let Am
0 := {0,am1 , . . . ,amn } be a sequence of simplexes

in Rn such that

lim
m→∞

(
max1≤i≤n ∥ami ∥

)d+1(
min1≤i≤d dist(ami ,HAm

0 \{am
i })

)d = 0.

Then for every function f of class Cd+1 in a neighborhood of 0 we have

lim
d→∞

L[PLd(A
m
0 ); f ] = Td

0(f).

Example 1. This example generalizes [1, Example 1.2]. It shows that the condition

to be admissible of {Am} in Theorem 1.2 can not be removed.

Let B = {1, x1, . . . , xn} be a basis for P1(Rn). Let us take am0 = 0, ami = 1
mei

for i = 1, . . . , n − 1 and amn = (0, . . . , 0, 1
mα ,

1
mβ ) with β > 2α > 2. Then Am :=

{am0 , . . . ,amn } is a simplex in Rn for m ≥ 1. We have

HAm ≤ dist(amn ,HAm\{am
n }) =

1

mβ
and DAm =

√
2

m
.

Hence, the sequence {Am} is not admissible. Easily computations give

VDM(B;Am) =
1

mn+β−1
.

90



A NOTE ON LAGRANGE INTERPOLATION AT ...

If we choose f(x) = x2
n−1, then

VDM(B[xn ← f ];Am) =
1

mn−2
(

1

m2α+1
− 1

mα+2
).

Consequently, in view of (1.1), we see that the coefficient of xn in L[Xm; f ] is equal

to
VDM(B[xn ← f ];Am)

VDM(B;Am)
=

1
m2α+1 − 1

mα+2

1
mβ+1

,

which tends to −∞ when m→∞. On the other hand, since Am is a unisolvent set

of degree 1 in Rn, we have T1
0(f) = 0. Hence L[Xm; f ] does not convege to T1

0(f)

as m→∞.
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