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Abstract. This paper considers the well known Erdös-Lax and Turán-type inequalities that
relate the uniform norm of a univariate complex coefficient polynomial to that of its derivative on
the unit circle in the plane. Here, we establish some new inequalities that relate the uniform norm
of a polynomial and its polar derivative while taking into account the placement of the zeros and
the extremal coefficients of the polynomial. The obtained results strengthen some recently proved
Erdös-Lax and Turán-type inequalities for constrained polynomials and also produce various
inequalities that are sharper than the previous ones known in the literature on this subject.

MSC2020 numbers: 30A10; 30C10; 30D15.
Keywords: Bernstein inequality; polar derivative of a polynomial; Schwarz lemma;
zeros.

1. Introduction

The inequalities for polynomials and their derivatives generalizing the classical

inequalities for various norms and with various constraints on using different methods

of the geometric function theory is a fertile area in analysis. Various inequalities in

both directions relating the norm of the derivative and the polynomial itself play a

key role in the literature for proving the inverse theorems in approximation theory

and, of course have their own intrinsic interest. These inequalities for constrained

polynomials have been the subject of many research papers which is witnessed by

many recent articles (for example, see [8], [12], [14], [15], [19]-[23]). The unit disk

in the complex plane serves as the prototype of a bounded domain for studying

extremal properties of polynomials and their derivatives. If one is interested in how

“big” a polynomial or its derivative can be in the unit disk, then, because of the

maximum modulus principle, it suffices to study the values on the boundary. A

well-known classical result is the Bernstein-inequality [4] for the uniform norm on

the unit circle in the plane: namely, if P (z) is a polynomial of degree n, then

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|.(1.1)
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Equality holds in (1.1) if and only if P (z) has all its zeros at the origin. It might

easily be observed that the restriction on the zeros of P (z) imply an improvement

in (1.1). It turns out that to have any hope of a lower bound or an improved upper

bound, one must have some control over the location of the zeros of polynomial

P (z). It was conjectured by P. Erdös and later proved by Lax [16] that if P (z) is a

polynomial of degree n having no zeros in |z| < 1, then

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|.(1.2)

On the other hand, in 1939 (see [26]), Turán obtained a lower bound for the

maximum of |P ′(z)| on |z| = 1, by proving that if P (z) is a polynomial of degree n

having all its zeros in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥ n

2
max
|z|=1

|P (z)|.(1.3)

Thus in (1.2) and (1.3) equality holds for those polynomials of degree n having all

their zeros on |z| = 1. As a generalization of (1.3), Govil [10] proved that if P (z)

has all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥ n

1 + kn
max
|z|=1

|P (z)|,(1.4)

whereas, for the class of polynomials not vanishing in |z| < k, k ≤ 1, the precise

estimate of maximum of |P ′(z)| on |z| = 1 is not easily obtainable. In 1980, it was

again Govil [9], who generalized (1.2) by proving that if P (z) does not vanish in

|z| < k, k ≤ 1, then

max
|z|=1

|P ′(z)| ≤ n

1 + kn
max
|z|=1

|P (z)|,(1.5)

provided |P ′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, where

Q(z) = znP
(
1
z

)
. As is easy to see that (1.4) and (1.5) become equalities if P (z) =

zn + kn, one would expect that if we exclude the class of polynomial having all

zeros on |z| = k, then it may be possible to improve the bounds in (1.4) and (1.5).

In this connection, it was shown by Govil [11] that if P (z) is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥ n

1 + kn

{
max
|z|=1

|P (z)|+ min
|z|=k

|P (z)|
}
,(1.6)

whereas, the corresponding improvement of (1.5) was obtained by Aziz and Ahmad

[3] in 1997. In fact, they proved that if P (z) is a polynomial of degree n having no

zeros in |z| < k, k ≤ 1, then

max
|z|=1

|P ′(z)| ≤ n

1 + kn

{
max
|z|=1

|P (z)| − min
|z|=k

|P (z)|
}
,(1.7)
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provided |P ′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1.

Over the last four decades many different authors produced a large number of

different versions and generalizations of the above inequalities by introducing restrictions

on the multiplicity of zero at z = 0, the modulus of largest root of P (z), restriction

on coefficients etc. The one such generalization is moving from the domain of

ordinary derivative to their polar derivative. Let us remind that the polar derivative

of a polynomial P (z) of degree n with respect to point α ∈ C (see [17]) is defined

as

DαP (z) := nP (z) + (α− z)P ′(z).

Note that DαP (z) is a polynomial of degree at most n − 1 and it generalizes the

ordinary derivative in the following sense:

lim
α→∞

{
DαP (z)

α

}
= P ′(z),

uniformly with respect to z for |z| ≤ R, R > 0.

For more information on the polar derivative of polynomials, one can consult

the comprehensive books of Marden [17], Milovanonić et al. [18] or Rahman and

Schmeisser [25]. In 1998, Aziz and Rather [2] established the polar derivative generalization

of (1.4) by proving that if P (z) is a polynomial of degree n having all its zeros in

|z| ≤ k, k ≥ 1, then for every complex number α with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n

(
|α| − k

1 + kn

)
max
|z|=1

|P (z)|,(1.8)

whereas, the corresponding polar derivative analogue of (1.6) and a refinement of

(1.8) was given by Dewan et al. [7]. They proved that if P (z) is a polynomial of

degree n having all its zeros in |z| ≤ k, k ≥ 1, then for any complex number α with

|α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n

1 + kn

{
(|α| − k) max

|z|=1
|P (z)|+

(
|α|+ 1

kn−1

)
min
|z|=k

|P (z)|
}
.

(1.9)

In 2010, Dewan et al. [5] established an interesting generalization of (1.9) and proved

that if P (z) = zs(a0 + a1z + a2z
2 + ... + an−sz

n−s), 0 ≤ s ≤ n, is a polynomial

of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for any complex number α

with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n

1 + kn−s

{
(|α| − k) max

|z|=1
|P (z)|+

(
|α|
ks

+
1

kn−1

)
min
|z|=k

|P (z)|
}
.

(1.10)

Very recently, Kumar and Dhankhar [15] used a new version of Schwarz lemma

and obtained some inequalities for the derivative of constrained polynomials giving
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extensions and refinements of (1.4) and (1.5) in the form of the following results.

Theorem A. If P (z) = zs(a0 + a1z + a2z
2 + ... + an−sz

n−s), 0 ≤ s ≤ n, is a

polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥
(

n

1 + kn−s
+

n(kn|an−s| − ks|a0|)(k − 1)

2(1 + kn−s)(kn|an−s|+ ks+1|a0|)

)
max
|z|=1

|P (z)|.

(1.11)

Equality in (1.11) holds for P (z) = zn + kn.

Theorem B. Let P (z) = a0 + a1z + a2z
2 + ... + anz

n, be a polynomial of degree

n having no zeros in |z| < k, k ≤ 1, and Q(z) = znP
(
1
z

)
. If |P ′(z)| and |Q′(z)|

attain maximum at the same point on |z| = 1, then

max
|z|=1

|P ′(z)| ≤
(

n

1 + kn
− nkn−1(|a0| − kn|an|)(1− k)

2(1 + kn)(|a0|+ kn−1|an|)

)
max
|z|=1

|P (z)|.(1.12)

Equality in (1.12) holds for P (z) = zn + kn.

In the same paper, Kumar and Dhankhar also obtained the polar derivative generalizations

of (1.11) and (1.12) in the form of the following results.

Theorem C. Let P (z) = zs(a0 + a1z + a2z
2 + ... + an−sz

n−s), 0 ≤ s ≤ n, be a

polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for any complex

number α with |α| ≥ k,

max
|z|=1

|DαP (z)|

≥
(
n(|α| − k)

1 + kn−s
+

n(|α| − k)(kn|an−s| − ks|a0|)(k − 1)

2(1 + kn−s)(kn|an−s|+ ks+1|a0|)

)
max
|z|=1

|P (z)|.(1.13)

Theorem D. Let P (z) = a0 + a1z + a2z
2 + ...+ anz

n, be a polynomial of degree

n having no zeros in |z| < k, k ≤ 1, and Q(z) = znP
(
1
z

)
. If |P ′(z)| and |Q′(z)|

attain maximum at the same point on |z| = 1, then for any complex number α with

|α| ≥ 1,

max
|z|=1

|DαP (z)|

≤
(
n(|α|+ kn)

1 + kn
− n(|α| − 1)kn−1(|a0| − kn|an|)(1− k)

2(1 + kn)(|a0|+ kn−1|an|)

)
max
|z|=1

|P (z)|.(1.14)

Note: Dividing both sides of (1.13) and (1.14) by |α| and let |α| → ∞, we get

respectively (1.11) and (1.12).

The purpose of this paper is to further strengthen the inequalities (1.8)–(1.14).

Besides, the obtained results produce refinements of inequalities (1.6), (1.7) and

related Erdös-Lax and Turán-type inequalities as well. Moreover, some concrete

numerical examples are presented, showing that in some situations, the bounds

obtained by our results can be considerably sharper than the ones previously known.
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2. Main results

In this section, we state our main results and their proofs are given in the next

section. We begin by presenting the following strengthening of (1.10) and (1.13).

Theorem 1. Let P (z) = zs(a0 + a1z + a2z
2 + ... + an−sz

n−s), 0 ≤ s ≤ n, be a

polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for any complex

number α with |α| ≥ k,

max
|z|=1

|DαP (z)|

≥ n

1 + kn−s

{
(|α| − k) max

|z|=1
|P (z)|+

(
|α|
ks

+
1

kn−1

)
m

}
+

n(|α| − k)(kn|an−s| − ks|a0| −m)(k − 1)

2(1 + kn−s)(kn|an−s|+ ks+1|a0| −m)

{
max
|z|=1

|P (z)| − m

kn

}
,(2.1)

where here and throughout this paper m = min|z|=k |P (z)|.
Taking s = 0 in Theorem 1, we get the following refinement of (1.9).

Corollary 1. Let P (z) =
n∑

v=0
avz

v, is a polynomial of degree n having all its zeros

in |z| ≤ k, k ≥ 1, then for any complex number α with |α| ≥ k,

max
|z|=1

|DαP (z)|

≥ n

1 + kn

{
(|α| − k) max

|z|=1
|P (z)|+

(
|α|+ 1

kn−1

)
m

}
+

n(|α| − k)(kn|an| − |a0| −m)(k − 1)

2(1 + kn)(kn|an|+ k|a0| −m)

{
max
|z|=1

|P (z)| − m

kn

}
.(2.2)

If we divide both sides of (2.1) and (2.2) by |α| and let |α| → ∞, we easily get the

following refinements of (1.11) and (1.6) respectively.

Corollary 2. Let P (z) = zs(a0 + a1z + a2z
2 + ... + an−sz

n−s), 0 ≤ s ≤ n, be a

polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,

max
|z|=1

|P ′(z)|

≥ n

1 + kn−s

{
max
|z|=1

|P (z)|+ m

ks

}
+

n(kn|an−s| − ks|a0| −m)(k − 1)

2(1 + kn−s)(kn|an−s|+ ks+1|a0| −m)

{
max
|z|=1

|P (z)| − m

kn

}
.(2.3)
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Corollary 3. If P (z) =
n∑

v=0
avz

v, is a polynomial of degree n having all its zeros

in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)|

≥ n

1 + kn

{
max
|z|=1

|P (z)|+m

}
+

n(kn|an| − |a0| −m)(k − 1)

2(1 + kn)(kn|an|+ k|a0| −m)

{
max
|z|=1

|P (z)| − m

kn

}
.(2.4)

Equality in (2.4) holds for P (z) = zn + kn.

Remark 1. It may be remarked that, in general, for any polynomial of degree n of

the form P (z) = zs(a0+a1z+a2z
2+ ...+an−sz

n−s), 0 ≤ s ≤ n, having all its zeros

in |z| ≤ k, k ≥ 1, the inequalities (2.1) and (2.3) would give improvements over the

bounds obtained from the inequalities (1.13) and (1.11) respectively, excepting the

case when some or all the zeros of P (z) lie on |z| = k. For the class of polynomials

having a zero on |z| = k and k ̸= 1, the inequalities (2.2) and (2.4) will give bounds

that are sharper than obtainable from the inequalities (1.9) and (1.6) respectively.

Also, (2.1) implies a considerable improvement of (1.10) for k ̸= 1. One can also

observe that for the class of polynomials having all their zeros in |z| < k, the

inequalities (2.2) and (2.4) respectively improve the inequalities (1.9) and (1.6)

considerably when kn|an| − |a0| − m ̸= 0 and k > 1. We shall illustrate this by

means of the following example.

Example 1. Let P (z) = z2(z4−2z3+4z−4). Then P (z) is a polynomial of degree

6 having a zero of order 2 at z = 0 and the remaining zeros {−
√
2,

√
2, 1− i, 1+ i}

on the circle |z| =
√
2. For this polynomial, we find that

max
|z|=1

|P (z)| = 9.614 (approximately)

and

m = min
|z|=k

|P (z)| = k2(k2 − 2)[(k − 1)2 + 1].

If we take k = 2, so that P (z) has all its zeros in |z| ≤ k = 2. Taking α = 7+i
√
11

2 ,

so that |α| = 3.873 (approximately). By Theorem C, we obtain

max
|z|=1

|DαP (z)| ≥ 7.944,

while as Theorem 1 yields

max
|z|=1

|DαP (z)| ≥ 10.414.
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Also, by Theorem A, we obtain

max
|z|=1

|P ′(z)| ≥ 4.241,

while as Corollary 2 gives

max
|z|=1

|P ′(z)| ≥ 5.560.

This shows that (2.1) and (2.3) give considerable improvements over the bounds

obtained from (1.13) and (1.11) respectively.

Note. For the same polynomial P (z) as in Example 1, if we take k =
√
2, then

the bound obtained in Theorem 1 will be same as the bound obtained in Theorem

C and the bound obtained in Corollary 2 will be same as the bound obtained in

Theorem A.

Our next result is a polar derivative generalization of (1.7) which also provides a

refinement of Theorem D. The obtained inequality gives a refinement of Theorem

B as well.

Theorem 2. Let P (z) = a0 + a1z + a2z
2 + ... + anz

n, be a polynomial of degree

n having no zeros in |z| < k, k ≤ 1, and Q(z) = znP
(
1
z

)
. If |P ′(z)| and |Q′(z)|

attain maximum at the same point on |z| = 1, then for any complex number α with

|α| ≥ 1, we have

max
|z|=1

|DαP (z)|

≤ n

1 + kn

{
(|α|+ kn) max

|z|=1
|P (z)| − (|α| − 1)m

}
− n(|α| − 1)kn−1(|a0| − kn|an| −m)(1− k)

2(1 + kn)(|a0|+ kn−1|an| −m)

{
max
|z|=1

|P (z)| −m

}
.(2.5)

Dividing both sides of (2.5) by |α| and let |α| → ∞, we get the following refinement

of Theorem B.

Corollary 4. Let P (z) = a0 + a1z + a2z
2 + ... + anz

n, be a polynomial of degree

n having no zeros in |z| < k, k ≤ 1, and Q(z) = znP
(
1
z

)
. If |P ′(z)| and |Q′(z)|

attain maximum at the same point on |z| = 1, then

max
|z|=1

|P ′(z)|

≤ n

1 + kn

{
1− kn−1(|a0| − kn|an| −m)(1− k)

2(|a0|+ kn−1|an| −m)

}{
max
|z|=1

|P (z)| −m

}
.(2.6)

Equality in (2.6) holds for P (z) = zn + kn.

Remark 2. The condition that |P ′(z)| and |Q′(z)| attain maximum at the same
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point on |z| = 1 in Theorem 2 and Corollary 4 is needed only for 0 < k < 1. For

k = 1, both these results hold with out this condition, for example see Dewan et

al. ([7], Theorem 1 for k = t = 1) and Aziz and Dawood [1].

Remark 3. In fact, excepting the case when some or all the zeros of P (z) lie on

|z| = k, the bounds obtained in (2.5) and (2.6) are always sharper than the bounds

obtained from (1.14) and (1.12) respectively. As an illustration we consider the

following example to compare the bounds.

Example 2. Let P (z) = z3 − z2 + z − 1. Clearly P (z) has all its zeros {1, i,−i}
which all lie on |z| = 1. Also Q(z) = P

(
1
z

)
= −P (z), so that |P ′(z)| and |Q′(z)|

attain maximum at the same point on |z| = 1. For this polynomial, we find that

max
|z|=1

|P (z)| = 4 and m = min
|z|=k

|P (z)| = (1− k)(1 + k2),

with 0 ≤ k ≤ 1. If we take k = 1
2 , we have P (z) ̸= 0 in |z| < k = 1

2 .

Taking α = 3 + 4i, so that |α| = 5. By Theorem D, we obtain

max
|z|=1

|DαP (z)| ≤ 52.80,

while as Theorem 2 gives

max
|z|=1

|DαP (z)| ≤ 47.10.

Also, by Theorem B, we obtain

max
|z|=1

|P ′(z)| ≤ 10.20,

while as Corollary 4 yields

max
|z|=1

|P ′(z)| ≤ 7.425.

3. Auxiliary results

We need the following lemmas to prove our theorems. The following lemma is

due to Mir et al. [24].

Lemma 1. If P (z) =
n∑

v=0
avz

v is a polynomial of degree n having no zeros in |z| < 1,

then for R ≥ 1 and 0 ≤ t ≤ 1, we have

max
|z|=R

|P (z)| ≤
(
(1 +Rn)(|a0|+R|an| − tm1)

(1 +R)(|a0|+ |an| − tm1)

)
max
|z|=1

|P (z)|

−
(
(1 +Rn)(|a0|+R|an| − tm1)

(1 +R)(|a0|+ |an| − tm1)
− 1

)
tm1,(3.1)

where m1 = min|z|=1 |P (z)|. Equality in (3.1) holds for P (z) = α+βn

2 , |α| = |β| = 1.

Lemma 2. Let P (z) = zs(a0 + a1z + a2z
2 + ... + an−sz

n−s), 0 ≤ s ≤ n, be a
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polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for 0 ≤ t ≤ 1, we

have

max
|z|=k

|P (z)| ≥
[

2kn

1 + kn−s
+

kn(kn|an−s| − ks|a0| − tm)(k − 1)

(1 + kn−s)(kn|an−s|+ ks+1|a0| − tm)

]
max
|z|=1

|P (z)|

+

[
kn−s − 1

kn−s + 1
− (kn|an−s| − ks|a0| − tm)(k − 1)

(1 + kn−s)(kn|an−s|+ ks+1|a0| − tm)

]
tm.

(3.2)

Equality in (3.2) holds for P (z) = zn + kn.

Proof of Lemma 2. Let T (z) = P (kz). Since P (z) has all its zeros in |z| ≤ k, k ≥
1, the polynomial T (z) has all its zeros in |z| ≤ 1. Let H(z) = znT

(
1
z

)
be the

reciprocal polynomial of T (z), then H(z) is a polynomial of degree n− s having no

zeros in |z| < 1. Hence applying (3.1) of Lemma 1 to the polynomial H(z), we get

for k ≥ 1 and 0 ≤ t ≤ 1,

max
|z|=k

|H(z)| ≤ (1 + kn−s)(kn|an−s|+ ks+1|a0| − tm∗)

(1 + k)(kn|an−s|+ ks|a0| − tm∗)
max
|z|=1

|H(z)|

−
(
(1 + kn−s)(kn|an−s|+ ks+1|a0| − tm∗)

(1 + k)(kn|an−s|+ ks|a0| − tm∗)
− 1

)
tm∗,(3.3)

where m∗ = min|z|=1 |H(z)|.
Since |H(z)| = |T (z)| on |z| = 1, therefore,

m∗ = min
|z|=1

|H(z)| = min
|z|=1

∣∣∣∣znP (
k

z

)∣∣∣∣ = min
|z|=k

|P (z)| = m,

max
|z|=1

|H(z)| = max
|z|=1

|T (z)| = max
|z|=k

|P (z)|,

and

max
|z|=k

|H(z)| = max
|z|=k

∣∣∣∣znP (
k

z

)∣∣∣∣ = kn max
|z|=1

|P (z)|.

The above when substituted in (3.3) gives

max
|z|=k

|P (z)| ≥
(

(1 + k)(kn|an−s|+ ks|a0| − tm)

(1 + kn−s)(kn|an−s|+ ks|a0| − tm)

)
kn max

|z|=1
|P (z)|

+

(
1− (1 + k)(kn|an−s|+ ks|a0| − tm)

(1 + kn−s)(kn|an−s|+ ks+1|a0| − tm)

)
tm.(3.4)

Using the fact that
(1 + k)(kn|an−s|+ ks|a0| − tm)

(1 + kn−s)(kn|an−s|+ ks+1|a0| − tm)

=
2

1 + kn−s
+

(kn|an−s| − ks|a0| − tm)(k − 1)

(1 + kn−s)(kn|an−s|+ ks+1|a0| − tm)
,

in (3.4), we get

max
|z|=k

|P (z)| ≥
(

2kn

1 + kn−s
+

kn(kn|an−s| − ks|a0| − tm)(k − 1)

(1 + kn−s)(kn|an−s|+ ks+1|a0| − tm)

)
max
|z|=1

|P (z)|

+

(
kn−s − 1

kn−s + 1
− (kn|an−s| − ks|a0| − tm)(k − 1)

(1 + kn−s)(kn|an−s|+ ks+1|a0| − tm)

)
tm,

72



EXTREMAL PROBLEMS FOR A POLYNOMIAL ...

which is (3.2) and this completes the proof of Lemma 2.

Lemma 3. If P (z) is a polynomial of degree n and, Q(z) = znP
(
1
z

)
, then on

|z| = 1,

|P ′(z)|+ |Q′(z)| ≤ nmax
|z|=1

|P (z)|.

The above lemma is due to Govil and Rahman [13].

Lemma 4. If P (z) is a polynomial of degree n, then for R ≥ 1,

max
|z|=R

|P (z)| ≤ Rn max
|z|=1

|P (z)|.

The above lemma is a simple consequence of the Maximum Modulus Principle (e.g,

see [18]).

Lemma 5. If P (z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then

for any complex number α with |α| ≥ 1,

max
|z|=1

|DαP (z)| ≥ n

2

{
(|α| − 1)max

|z|=1
|P (z)|+ (|α|+ 1) min

|z|=1
|P (z)|

}
.

The above lemma is due to Aziz and Rather [2].

4. Proofs of the main results

Proof of Theorem 1. Recall that P (z) has all its zeros in |z| ≤ k, k ≥ 1,

therefore, all the zeros of the polynomial G(z) = P (kz) lie in |z| ≤ 1. Applying

Lemma 5 to the polynomial G(z) and noting that |α|
k ≥ 1, we get

max
|z|=1

∣∣Dα
k
G(z)

∣∣ ≥ n

2

{(
|α|
k

− 1

)
max
|z|=1

|G(z)|+
(
|α|
k

+ 1

)
m

}
.(4.1)

where m = min|z|=1 |G(z)| = min|z|=1 |P (kz)| = min|z|=k |P (z)|.
The above inequality (4.1) is equivalent to

max
|z|=1

∣∣∣nP (kz) +
(α
k
− z

)
kP ′(kz)

∣∣∣
≥ n

2k
(|α| − k) max

|z|=k
|P (z)|+ n

2k
(|α|+ k)m.(4.2)

Using the fact that

max
|z|=1

∣∣∣nP (kz) +
(α
k
− z

)
kP ′(kz)

∣∣∣ = max
|z|=k

|DαP (z)|,
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and on applying Lemma 2 (for t = 1), the above expression (4.2) gives

max
|z|=k

|DαP (z)|

≥ n

2k
(|α| − k)

{[
2kn

1 + kn−s
+

kn(kn|an−s| − ks|a0| −m)(k − 1)

(1 + kn−s)(kn|an−s|+ ks+1|a0| −m)

]
×max

|z|=1
|P (z)|+

[
kn−s − 1

kn−s + 1
− (kn|an−s| − ks|a0| −m)(k − 1)

(1 + kn−s)(kn|an−s|+ ks+1|a0| −m)

]
m

}

+
n

2k
(|α|+ k)m.

(4.3)

Since DαP (z) is a polynomial of degree at most n− 1, and k ≥ 1, applying Lemma

4 to the polynomial DαP (z), we get

max
|z|=k

|DαP (z)| ≤ kn−1 max
|z|=1

|DαP (z)|,

which on using in (4.3) gives

kn−1 max
|z|=1

|DαP (z)| ≥ n

2k(1 + kn−s)

{
2kn(|α| − k) max

|z|=1
|P (z)|

+ (kn−s − 1)(|α| − k)m+ (kn−s + 1)(|α|+ k)m

}
+

nkn(|α| − k)(kn|an−s| − ks|a0| −m)(k − 1)

2k(1 + kn−s)(kn|an−s|+ ks+1|a0| −m)

{
max
|z|=1

|P (z)| − m

kn

}
.

The above inequality is equivalent to

max
|z|=1

|DαP (z)| ≥ n

1 + kn−s

{
(|α| − k) max

|z|=1
|P (z)|+

(
|α|
ks

+
1

kn−1

)
m

}
+

n(|α| − k)(kn|an−s| − ks|a0| −m)(k − 1)

2(1 + kn−s)(kn|an−s|+ ks+1|a0| −m)

{
max
|z|=1

|P (z)| − m

kn

}
,

which is exactly (2.1). This completes the proof of Theorem 1.

Proof of Theorem 2. Let Q(z) = znP
(
1
z

)
. Since P (z) ̸= 0 in |z| < k, k ≤ 1,

the polynomial Q(z) of degree n has all its zeros in |z| ≤ 1
k ,

1
k ≥ 1. On applying

Corollary 3 to Q(z), we get

max
|z|=1

|Q′(z)| ≥ n

1 + 1
kn

{
max
|z|=1

|P (z)|+ m

kn

}

+
n
(

|a0|
kn − |an| − m

kn

) (
1
k − 1

)
2
(
1 + 1

kn

) ( |a0|
kn + |an|

k − m
kn

){max
|z|=1

|P (z)| −m

}
,(4.4)

because

min
|z|= 1

k

|Q(z)| = min
|z|= 1

k

∣∣∣∣∣znP
(
1

z

)∣∣∣∣∣ = 1

kn
min
|z|=k

|P (z)| = m

kn
,
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and

max
|z|=1

|Q(z)| = max
|z|=1

|P (z)|.

The above inequality (4.4) is equivalent to

max
|z|=1

|Q′(z)| ≥ nkn

1 + kn

{
max
|z|=1

|P (z)|+ m

kn

}

+
nkn−1(|a0| − kn|an| −m)(1− k)

2(1 + kn)(|a0|+ kn−1|an| −m)

{
max
|z|=1

|P (z)| −m

}
.(4.5)

Since |P ′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, we have

max
|z|=1

(|P ′(z)|+ |Q′(z)|) = max
|z|=1

|P ′(z)|+max
|z|=1

|Q′(z)|.(4.6)

On combining (4.5), (4.6) and Lemma 3, we get

nmax
|z|=1

|P (z)| ≥ max
|z|=1

|P ′(z)|+ nkn

1 + kn

{
max
|z|=1

|P (z)|+ m

kn

}

+
nkn−1(|a0| − kn|an| −m)(1− k)

2(1 + kn)(|a0|+ kn−1|an| −m)

{
max
|z|=1

|P (z)| −m

}
,

which gives

max
|z|=1

|P ′(z)| ≤ n

1 + kn

{
max
|z|=1

|P (z)| −m

}

− nkn−1(|a0| − kn|an| −m)(1− k)

2(1 + kn)(|a0|+ kn−1|an| −m)

{
max
|z|=1

|P (z)| −m

}
.(4.7)

Also, it is easy to verify that for |z| = 1,

|Q′(z)| = |nP (z)− zP ′(z)|.(4.8)

Note that for any complex number α, the polar derivative of P (z) with respect to

α is

DαP (z) = nP (z) + (α− z)P ′(z),

which implies by (4.8) with |α| ≥ 1 and |z| = 1, that

|DαP (z)| ≤ |nP (z)− zP ′(z)|+ |α||P ′(z)|

= |Q′(z)|+ |α||P ′(z)|

= |Q′(z)|+ |P ′(z)| − |P ′(z)|+ |α||P ′(z)|

≤ nmax
|z|=1

|P (z)|+ (|α| − 1)|P ′(z)|. (by Lemma 3)
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This gives by using (4.7), that

max
|z|=1

|DαP (z)| ≤ n

1 + kn

{
(|α|+ kn) max

|z|=1
|P (z)| − (|α| − 1)m

}
− n(|α| − 1)kn−1(|a0| − kn|an| −m)(1− k)

2(1 + kn)(|a0|+ kn−1|an| −m)

{
max
|z|=1

|P (z)| −m

}
,

which is (2.5) and this completes the proof of Theorem 2.

Concluding remark: In the past few years, a series of papers related to some

Erdös-Lax and Turán-type inequalities has been published and significant advances

have been achieved. This type of inequalities are of interest both in mathematics

and in the application areas such as physical systems. In this paper, we continue

the study of this type of inequalities for a certain class of polynomials, following up

on a study started by various authors in the recent past. More precisely, the author

establishes for a certain class of polynomials some new lower and upper bounds for

the derivative and polar derivative of a polynomial on the unit disk while taking

into account the placement of the zeros and extremal coefficients of the underlying

polynomial. Moreover, some concrete numerical examples are presented, showing

that in some situations, the bounds obtained by our results can be considerably

sharper than the ones previously known.

Список литературы

[1] A. Aziz and Q. M. Dawood, “Inequalities for a polynomial and its derivative”, J. Approx.
Theory, 54, 306 – 313 (1988).

[2] A. Aziz and N. A. Rather, “A refinement of a theorem of Paul Turán concerning polynomial”,
J. Math. Inequal. Appl., 1, 231 – 238 (1998).

[3] A. Aziz and N. Ahmad, “Inequalities for the derivative of a polynomial”, Proc. Indian Acad.
Sci. (Math. Sci.), 107, 189 – 196 (1997).

[4] S. Bernstein, “Sur l’ordre de la meilleure approximation des fonctions continues par des
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[26] P. Turán, Über die Ableitung von Polynomen, Compositio Math., 7, 89 – 95 (1939).

Поступила 18 февраля 2022

После доработки 03 апреля 2022

Принята к публикации 11 апреля 2022

77


	1. Introduction
	2. Main results
	3. Auxiliary results
	4. Proofs of the main results
	Список литературы

