Uszsecrust HAH Apmennu, Maremaruka, Tom 58, u. 3, 2023, crp. 47 — 63.

WEIGHTED NORM INEQUALITIES FOR
CALDERON-ZYGMUND OPERATORS OF ¢-TYPE AND THEIR
COMMUTATORS

LI HANG, J. ZHOU

Xinjiang University, Urumgqi, Republic of C'hineﬂ
E-mails: hangli@stu.xju.edu.cn;  zhoujiang@xju.edu.cn

Abstract. In this paper, we introduce new weighted Morrey spaces Lg:f}(@ associated with
a nondecreasing function ¢ of upper type 8 with 8 > 0, where w € Ag(gﬁ) and ¢(at) < Calo(t),
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1. INTRODUCTION

The groundbreaking work of Calderén and Zygmund in the 1950s [1] is basis for
what is today named after them Calderén-Zygmund theory, it has an important role
in harmonic analysis. And they proved that Calderén-Zygmund singular integral
operator is bounded on LP(R™),1 < p < 0.

Since the pioneering work of Calderén [2] in 1965, many researchers have been
interested in commutators. In 1976, Coifman, Rochberg and Weiss [3] introduced

the commutators which are defined by

[b, T]f () := b(x)T(f)(x) = T(bf)(x),

where b is a locally integrable function in R™, usually called the symbol, and T
is a Calderén-Zygmund singular integral operator. They also proved that if b €
BMO(R™), then [b,T] is a bounded operator on LP(R™),1 < p < o0.

It is well known that Morrey [4] first introduced the classical Morrey spaces
LPA(R™) to investigate the local behavior of solutions to second-order elliptic partial
differential equations in 1938. Subsequently, there has been an explosion of interest

in studying the boundedness of operators on Morrey-type spaces.

IThis project is supported by National Natural Science Foundation of China (Grant
No.12061069).
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In 1969, Peetre [5] proved that the Calderén-Zygmund singular integral operator
is bounded on the classical Morrey spaces LP*(R™). In 1991, Fazio and Ragusa [6]
obtained the boundedness of commutators of Calderén-Zygmund operators on the
classical Morrey spaces LP*(R™).

On the other hand, in 1991, Mizuhara [7] introduced the generalized Morrey
spaces LP¥?(R™) and established the boundedness of Calderén-Zygmund operators,
where ¢ is a positive increasing function in (0, co) and satisfies the doubling condition.
In 1994, Nakai [8] used the nonnegative function 1 to replace doubling condition of
 and obtained the boundedness of Calderén-Zygmund operators on the generalized
Morrey spaces LP*¥(R™). In 2009, Komori and Shirai [9] introduced the weighted
Morrey spaces LP%(w) (0 < k < 1l,w is a nonnegative and locally integrable
function) and studied the boundedness of some classical operators in harmonic
analysis on their Morrey spaces.

In 2018, Wu and Wang [10] introduced new classes of weights, new BMO functions
and obtained the weighted norm inequalities for Calderén-Zygmund operators of ¢-
type and their commutators. We will give the definition of the new class of weights
Ag(gé) and new BMO spaces BMO? (¢) and their related properties in the second
section.

In 2021, Zhao and Zhou [II] studied the new Morrey-type spaces Mg:‘i(mw)
(A €10,1), @ € (—00,00), u,w be two weights) and obtained the some weighted
norm inequalities for certain classes of multilinear operators and their commutators.
The purpose of this paper is to study the Calderén-Zygmund singular integral
operator of ¢-type on a new class of weighted Morrey spaces Lg:f) (4).

We recall following necessary definition. For a nonnegative and nondecreasing
function ¢ mapping from [0, c0) to [1,00), we shall mean that it is of upper type S

with 8 > 0, if there exists a positive constant C' such that

(1.1) dlat) < CaPo(t),

for all @ > 1 and t > 0. We always assume that ¢(1) > 1.

Definition 1.1. Let 1 < p < 00,0 < £ < 1 and w be a weight, function ¢ is of

<
upper type 8 with 8 > 0. For given 0 < 6§ < oo, the weighted Morrey space Lg:z (¢)
is defined as the set of all measurable functions f on R"™ satisfing Hf||Lg,~(¢) < 00,

where
1
w(Q)"

where the supremum is taken over all cubes Q. Define L2, (¢) := Uy~ Lp ., (¢)-
48
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Let w = 1, this new space is the space LP*¥(R") defined in [8]. If we take § = 0,
then L5 (¢) = LP*(w), which was first defined by Komori and Shirai in [9].

Definition 1.2. Let p = 1,0 < k¥ < 1 and w be a weight, function ¢ is of upper type
B with 8 > 0. For given 0 < 6 < oo, the weighted weak Morrey space WLé:Z (9) is
defined as the set of all measurable functions f on R™ satisfing ||f||WL;,N(¢) < 00,

where

1
— -0 .
||fHWLé:Z(¢) = SgP¢(|Q|) w(Q)F iggtw({x €Q:[f(z)| >1}) < oo.

where the supremum is taken over all cubes Q. Define WLL", (¢) := Uy~ WLé:Z ().

If we take 6 = 0, this space is the weighted weak Morrey space W L1*(w) in [12].
According to the above definitions, we have LP*(w) C LY" (¢) C L" (¢) and

01, 02w
WLY(w) C WL;fw(qﬁ) C WLé;'j"w(gb) for 0 < 6; < 6y < co. Hence LV (w) C
L2 () for (p, k) € [1,00) % [0,1) and WL (w) € WLL,(¢) for 0 < & < 1.
Next, we introduce the Calderén-Zygmund operators of ¢-type in [10]. Let T be
an operator initially defined on Schwartz space S(R™) and take values into the space
of tempered distributions §'(R™), T : S(R™) — S’(R™). We study the Calderén-

Zygmund operators of ¢-type T which satisfies the following conditions:

(1) If there exists a function K(z,y) defined on R™ x R™ \ {(z,z) : = € R"}
such that

T)a) = | Klzy)fy)dy,
for all f € C*(R™) and = ¢ suppf;

(2) For any N > 0, there exists a positive constant C such that

C .
|z —y|"o(lz —y[")N
(3) For some ¢ > 0 and any N > 0, there exists a positive constant C' such that

Cle —2'|°

o=yl + o =) =0 ((je — ol + Ja7 —w))™

max{|z —yl|, |z’ —y|} and

|K(z,y)| <

|K($7y) - K(l‘l,y” <

(
whenever |z —2/| < 1
Cly—y'I
(lz =yl + |z =y teo((lo =yl + |z —y'])")
whenever [y — /| < gmax{|a —y|, |z — y'[};

(4) T is a bounded linear operator on L?(R™).

|K($,y)7K(l’,y/)| < N

It is clear that if T satisfies (2)-(4), then T falls within the scope of the Calderén-
Zygmund theory. Since T has an extension that maps L!'(R") into LY*°(R"), and

by interpolation and duality, T' also maps LP(R™) into itself for 1 < p < oo.
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If the operator T satisfies (2)-(4) and ¢(t) = 1+t, we know that pseudodifferential
operators with smooth symbols are only the special case of T, see [13, [14] [15].
The aim of this paper is to obtain the weighted norm inequalities of Calderén-

Zygmund operators of ¢-type and their commutators on new weighted Morrey

spaces Lp" (¢).
Next, we state our main results as follows.

Theorem 1.1. Assume that T satisfies (2) — (4). Let 0 < k < 1, and function ¢ is
of upper type B with 5 > 0.
(1) If1<p<oo, andw € Ay°(¢), then

ITf o) < CllfIEes, )

(2) If p=1, and w € A°(9), then for all X > 0 and any cube Q,
1
w(Q)"
Theorem 1.2. Assume that T satisfies (2) — (4). Let 1 < p < 00, 0 < k <1 and

function ¢ is of upper type B with 3 > 0. If b € BMO™(¢) and w € Ay*(¢), then
[b,T] is a bounded operator from LB, (¢) to LR, (9).

A(fz e Q:|Tf(x)] > A}) < Co(IQD I fll L1, (4)-

Theorem 1.3. Assume that T satisfies (2) — (4). Let 0 < k < 1,0 < 0 < 00 and
function ¢ is of upper type B with § > 0. If b € BMO™(¢) and w € A®(¢), then

for any A > 0 and any cube Q, there exist positive constants C' and v such that
1

(z
G @('fA”)

holds for those functions f such that ®(|f|) € Lé:f}(gﬁ), where ®(t) = t(1 + log™ t).

sw({z e Qb Tf(x)] > A}) < Co(lQ])"

Ly5(9)

2. SOME PRELIMINARIES AND NOTATIONS

In this section, we first recall some notations. For a measurable set E, we define
|E| as the Lebesgue measure of E and x g as the characteristic function of E. Q(x,r)
denotes the cube centered at x with the sidelength r and aQ(z,r) = Q(z, ar). For
a locally integrable function f, fo denotes the average fo := ﬁ fQ fly)dy. A
weight is a locally integrable function on R™ which takes values in (0, 00) almost
everywhere. For a weight w and a measurable set E, we define w(E) := [, w(y)dy.
The letter C' will denote a positive constant not necessarily the same at each

occurrence.
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2.1. A%(¢) and A*(¢) Weights. In this section, we recall the definition of the
new class of weights introduced by [10].

A weight will always mean a positive function which is locally integrable. We say
that a weight w belongs to the class A%(¢) for 0 < § < co and 1 < p < oo, if there

is a positive constant C' such that for all cubes @

1 p71
(¢<|Q|>0|Q|/Q°"(y’dy) Q) IQI/ <C.

In particular case, when p = 1, A9(¢) is understood

1
QI /Q“’(y SO jahw(@).

We also write A% (¢) = U,>o0 Al(9), A(o) = U0 Ab(¢) and AZ(¢) :=
Ups1 457 (#). If 6 = 0, remark that AY(¢) coincides with the Muckenhoupt’s class
of weightes A, in [19], for all 1 < p < co. When ¢ is a constant function, AZ(d))
also coincides with A, for any 6 € [0, 00). However, in general, the class A°°(¢) is
strictly larger than the class A, for all 1 < p < oo. Let # > 0 and 0 < v < nd, it
is easy to check that w(z) = (1 + |z])~"+") ¢ A, and w(z)dz is not a doubling
measure, but w(z) = (1 + |z)~"T7) € A9 (¢)(see [13]).

The following Lemma hold for the new classes A%(¢), see Proposition 15 in [I0].

Lemma 2.1. [I0] Let 6 > 0, the following statements hold:

(i) If1<p1 <pa2 <oo, then AS (¢) C A% (¢).

(11) w e Ag(qﬁ) if and only if WP € Ag,(gb), where 1/p+1/p' = 1.
(i1i) If wi,wo € AD(¢),p > 1, then wwy T € Ab(¢) for any 0 < a < 1.
(iv) If w € AY(¢) for 1 < p < oo, then

1 1 , 1/p
s(Qnrlel /Q Fldy < © (w(m) / LW w(y)dy> .

(v) Ifw € Ag(qzﬁ) with p > 1, then there exist positive numbers §,n, and C such that
for all cubes @

(5] w(x)wdx)”“”) <c(g | wtwas) st

(vi) If w € AS° (@) with p > 1 then there evists € > 0 such that w € A3 _(¢).

Applying Lemma 2.1(v) and the Holder inequality, we can get Lemma 2.2.
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Lemma 2.2. Let 0 < 0 < 00,1 < p < 0o. If w € AY(@), then there eist positive
constants 0 < § < 1,n and C' such that

w(B) n(1ELY?
@) <o (i)

for any measurable subset E& of a ball Q).

Lemma 2.3. Let 0 < 6 < 00,1 < p < o0. Ifw € Ag((b), then there exist two
positive constants p > 1 and C' such that

w(pQ) < Co(|pQ))" w(Q).

Proof. For 1 < p < oo, by Hélder’s inequality and the definition of AZ(d)), we

obtain
i L 1l < - ( / @ty W( /. (o) i "
< WS)/( / ) f<x>|Pw<x>dx)1/p¢<|pcz|>0.

If we take f(x) := xq(z), then

w(pQ) < Co(|pQ))" w(Q).

For p = 1, from the definition of A9(¢), it follows that

- Zr)ex ¢ - inf w(x 2)dax 0
7 /pQ'ﬂ e < Sogy T nh <>< /lef( )Id )¢<|pc2|>

< oy ([ @kt o)’

Taking f(x) = xq(x), yields w(pQ) < C(1pQ))'w(Q). O

2.2. BMO?(¢) and BMO™>(¢) spaces.

In this section, we will recall the definition and some basic properties of the new

BMO function spaces. According to [I0], we say a locally integrable function b is in
BMOZ((;S) with p > 1 and 0 > 0, if there exists a positive constant C such that for
any cube Q

1 » 1/P 0
(2.1) (|Q /Q b(y) — bl dy) < os(Q))’,

where bg = ﬁ fQ b(y)dy. A norm for b € BMOz(gé), denoted by ||b||BMog(¢)» is
given by the infimum of the constants satisfying (2.1).

When 6 = 0 or ¢ is a constant function, BMO?(¢) = BMO(R"); and BMO" (¢) C
BMO”(¢) for 0 < 6y < 6. We define BMO™(¢) := yso BMO’(¢). In [I6],
Morvidone proved that these spaces are independent of the scale p, so we denote
BMO?(¢) simply.
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The following result can be considered to be a variant of John-Nirenberg inequality
for the spaces BMOY(¢).

Lemma 2.4. [10] Let g > 1. Ifb € BMO®(¢), then for all cubes Q
L ) — boltdy) ' < C 2
(g1, 1#0) ~belran) " < coqan
N 1 %
(ii) (W o Ib(y) — bQ|qdy) < Cke(|28Q))°, for all k € N,

Lemma 2.5. [I8] If f € BMO®(), then there exist positive constants Cy and Cy
such that, for given any cube @Q in R™ and any vy > 0,

|{£E€Q:|f(x)—fQ|>7}|<C1|QeXp{— Cay (IQ)G}'

I £l Baroe ()@

The proof of this lemma is similar to the Property 4.2 of [I8], so we omit it.

Lemma 2.6. If f € BMO’(¢) and w € AX(@), then there exist positive constants
C and s such that, for every cube Q,

1 1/p
(w(Q) /Q S lepw<w>dw) < C3(1QN"* I I znror (o)

Proof. Applying Lemma 2.2 and Lemma 2.5, we find that

Oy }6w<cz>
osor@aqan?  “@

w({z € Q: If(@) — fal > 7}) < CCIH(QI)" exp {—
Let s = n + pf, then for any cube @,

! Po(a)de = —L— Oop_lwa: S f(x) —
3 |11 = fabeteyin = b [l €@ 156) ~ fol > )

5 N _ Coy }601 c a
< cetpa@” [t e { S b i < CoQ I Mo

Lemma 2.7. [10] Supposing that f € BMO?(¢), there exist positive constants ¢,

- alf(z) = fol p
i \cz|/ ° {||f||BMoe<¢ (QW} TS

2.3. Orlicz Norms.
For ®(t) = t(1+log™ t) and a cube @ in R™, we will consider the average | f||s.q

and co such that

of a function f given by the Luxemburg norm

s .1 |/ (@)l
(2.2) Iflle.0 .—1nf{)\>0. |Q|/Q(I)< 5y )dajgl}.
We also have the equivalent definition of (2.2) (see [I7]).
B y f(@)
(23) Il inf {3+ 2 Q@( ) ac .
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As we know, ¥U(t) = ¢! — 1 is also a young function, the corresponding average

is denoted by || fllw,@ = || fllexp ,o- Then there is a generalized Holder inequality

(24) |Q‘ / |f |d$ 2||f||expL Q”g”LlogL Q-

By Lemma 2.7 and (2.4), it shows that

(25) = / 1F(@) — Fallg@)dz < 260QD° 1 lsnon) 9] 108 1.a-
s

To get to Theorems 1.3 — 1.5, we need the following lemmas.

Lemma 2.8. [I0] Assume that T' satisfies (2)—(4). Letw € A3°(¢) with1 < p < oo,
then T is bounded from LP(w) to LP(w) for 1 < p < oo and L*(w) to LY (w).

Lemma 2.9. [10] Assume that T satisfies (2) — (4). Let b € BMO%(¢) for 6 >0
and w € Ago(gb) with 1 < p < oo, then there exists a positive constant C' such that

10, T)(f)|lrw) < CllfllLe(w)-

Lemma 2.10. [10] Assume that T satisfies (2) — (4). Let b € BMO®(¢) for 6 >0
and w € AS°(¢), then there exists a positive constant C such that

. IO o
slo e @) > ) <0 [ o H2)wan

3. PROOF OF THE MAIN RESULTS

3.1. Proof of Theorem (i) Let 1<p<oo,0<k<1andwe AX(d), we

only need to show that there exist positive constants C' and v such that for any

given cube Q = Q(z, 1),
1/p
/ T(F) ()P >dx) < Co(Q)”

(3.1) (@

holds for any function f € LES, ().
Suppose that f € Ly (¢) for some 6 > 0 and w € Ag/((b) for some 0" > 0. We
split f = f1 + f2, where fi = fxuqg and f2 = fxgrn\a@- Then, the linearity of T'

gives us that

(e o)
<z | T @)Pu(z)de Up* ﬁ IT(f2)(2)[Pw(x)dx v =I+IL
< (Q) /Q > (@) Jg
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For the term I. Since w € AZ/ (¢) with 1 < p < oo and 6’ > 0, then by Lemma
2.3, we obtain

tco—a ([ fl(x)lpw(x)dx)l/p ~o—a( ) Puta)ds) "

w(4Q)"/P

< OW¢(I4QI)"I\f||L5;z<¢> < OD(1QD” 112356

where v/ = k0’ + 6. Notice that the first inequality we have used Lemma 2.8.
For the term II. From the size condition (2) of K, it follows that

/()]
TEl s [ el < [ ot
)
<C ,
2.

akr1g\arg [T —y|"o(|lz — y[)N

1
=¢ dy.
< kZ::l S([AFFIQNNAFHQ] s |f(y)|dy

8

oo

From the definition of AZ/ (¢) and Holder’s inequality, then conclude that

o

4k+1Q|)9’ 1/p
T(F2) (@) < CZ ¢ |4k+1Q| YNw(4k+1Q)1/p </4k+1Q |f(y)|pw(y)dy)
- (45 QN o141 Q)) W (4F T Q)
(3.2) CZ H([AFH1Q|) N w(4k+1Q)1/p ||f||L§:Z(¢)

Since w € Ag,(¢). Then from Lemma 2.2 and let §' + 6 + W - % <N <
0 + 6 + 1= “) , it follows that

(lﬁ / |T<f2><x>|pw<x>dx)l/p

O(14"1QN” G141 Q) Pw (41 Q) P (@) /7
<oy gt Wiz

$(|14F1Q) 7 p(|4H1 Q) w(Q) 1 —/P
- CZ B([AFH1Q[)Nw(4k+1Q)(1=r)/p ||fHL§;ZZ(¢)

°°¢|4’f+162|>9’ (141Q))" Lo _1QL )T
e R e () I

We see that ¢(|4¥11Q|) < C4F+D8¢(|Q|), therefore,

1/p
- (WE) /Q |T(f2)<x>|pw<x>dx) < C(1Q" g o

Wherevzﬁ’—l—e—i—w—N.
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Combining this inequality with the estimate of I and making v := max{v/, v},
we get the desired result (3.1).
(ii) As for the case p = 1. For A > 0, by Chebyshev inequality we have

1
s Wz e Q:ITI@)] > A}
1 1
< W)\W({x €Q:|ThH(x) >A/2}) + W)\w({x €Q:|Tf(z) > A/2})
s¢ z)lw()d + C / T fa()|w(z

The rest of the proof is similar to the case p > 1, so we omit it. This finishes the

proof of Theorem 1.3.

3.2. Proof of Theorem 1.4. Let 1 < p < o0, 0 <k <1, w € A(¢) and
b € BMO™(¢), we only need to show that there exist positive constants C' and v
such that for any given cube Q = Q(z, 1),

(33) (oo A G >dx>1/p<c¢<|cz|>”

holds for any function f € L& (¢).

Suppose that f € Ly () for some 0 > 0, w € Agl (¢) for some 6" > 0 and
b e BMOQU (¢) for some 9" > 0. We split f = f1 + fo, where f; = fxaq and
J2 = fXrr\4q, then

( /“’T 0P (w)da )Up
< <w(Q)n/Q|[b,T]f1(x)|pw(x)dx>l/p n (w(ég)n/QHb»T]fz(m)Pw(x)dx)l/p

=TI+ 1IV.

For the term III. By Lemma 2.9 and Lemma 2.3, we conclude that

meo ([ |f1<y>pw<y>dy)l/p

40)%/p ,
AR 14Dl ) < CHURD” I Nazn

(3.4) <C o

where v/ = k0" + 0.
For the term IV. Notice that

[0, T1f(x) = (b(z) — bo)T f(z) = T((b - bq) f)(x)-
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Hence,

6.7 |—\/ 2) — b fa(x) — T((b— bo) fo) (x)dz

< [b(x)  bo| / K(x,y) faly)ldy + / 1b(y) — bl (2. 9) fo(y) dy
=1V, + 1V,

Next, for IV;. From the estimate (3.2) and Lemma 2.6, we see that

(w(é)n /Q |IV1|”w(at)dx) v

1 ) /e & 1 p
< Ow(Q)”/T’(/Q“)(x) —le w(£)dl‘> ,;¢(|4k+1Q|)N|4k+1Q‘ 4k+1Q|f(y)| Y

W(Q)l/p ) oo (b(‘4k+1Q|)9’¢(‘4k+1Q|)9w(4k+1Q)5/p
< Cw(Q)N/p s(Ql) Z B(|4FH1Q|)Nw(4k+1Q)1/p Hf”Lg;g(@

= B 1541G) (@)1
#(1Q)) /pz A S

Fllzz=s)-

By Lemma 2.2 and let ¢’ + 6 + 20 — 2 o N < g7 g4 2009 4 2 Then

(35) (z0

Wherev’:9/+9+w+%—N,
For IV,. From the size condition (2) of K, it follows that

b(y) — bollf (W)l
re\10 |7 — Y@ (|z — y|")N

1/p
3 MAPalo)te) < 0oQD” Iflzgzco

v, — / 1b(y) — bol|K (2, y) f(y)|dy < C
R™\4Q

—b
CZ/ by) — ballf w)]

4R +1Q\4FQ |93 —y|"o(lzr —y[")N

CZ |4k+1QDN|4k+1Q| 4k+1Q|b(y)—bQ||f(y)|dy

1
S ¢ b — bkt d
; ([ AFFIQ) N 4R H1Q)] 4)€+1Q| (y) = bar+1g|f(y)|dy
o~ |barig — b
+ Cz ¢ GAFIQNNEFHIQ] Jyusng |f(y)|dy.

The Hélder inequality implies that

/ 1b() — bl £ () |dy
4k+1Q

, , 1/p' 1/p
@6) < ([ 1) =busgP st ) ([ betid)
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Since w € Af,l (¢), the Lemma 2.1 (ii) gives us that w™*'/? ¢ Azi(qb). From Lemma
2.6 and (3.6), it follows that

o0

1
\b(y) - b4k+1Q|\f(y)|d2U < ; ¢(|4k+1Q|)N|4k+1Q|

1
; P([4FHI QN 4R Q)

4k+1Q

, , 1/p’ 1/p
S R e e ) I O R
4k+1Q 4RH1Q
H(4* Q1) (4* Q)" b v
CZ ¢ 4k+1Q| N|4k+1Qw (4k+1Q)1/P ([lk-HQ W)l w(y)dy)

S(14 QD o (14 QD ¢4 Q) w (4 Q)P

<oy e g Wiz
Further, by Lemma 2.2 and let
1— 6(1— 1-—
oo tE=r) s =R N g g IR s
p p pp p p
we get
(3.7)

= 1
2 GTTQYNTQ] Jysg ")~ Pl )1y

(wé»n/ o)

(@ )”” S(I4* QN PH (|45 Q) 9 (|45 Q) w(4F 1 Q)P
( )K/p (‘4k+1Q|)N|4k+1Q|w(4k+1Q)1/p ||fHL’”’“(¢>)

= () o1 Q) (1 QO
ST QN 41 Qlu (451 Q)=

(IQI)” 1f1lzz= (6)

M

Il x )

Wherev’:9’+9+@+§_]\ﬁ
Furthermore, by the definition of BMO? (¢), Lemma 2.4 (ii) and Hlder’s inequality,

we obtain

1
[AMH1Q| Jarrg

1 1P y
39 < (g ., - tarir) < Craat i)

|b4k+1Q - bQ‘ = |b($) - bQ|d.%’
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Combining (3.2) and (3.8), by Lemma 2.2 and let 0" +6'+60+ "(lp_”) +2 6(26@ <
N<0"+0 +0+2125 4 2 Then

(3.9)

(o

<C

0o 1/p
|bar+1g — bol b

d d
4k+1Q| N|4k+1Q| 4k+1Q| (y)\ y| w(z)dz

w(Q)W p(|451Q))%" p(|4F1Q))*/Pp(|4FH1Q))? p(|4FH1Q|)Pw(4F+1Q)/P
w(Q)"/? kZ P([4FHIQ)N 4R HQw (4+1Q) /P

ko(41 QD S|4 Q1) (145 1 QN $(|45 Q) w (@) /P
||f||Lp’” (@) S CZ G(|4FH1Q)N [4FH1Q|w(4F+1Q) (1= /p

1fllzpn o) < C¢(|Q|)“ 1l

Wherev”zﬁ”+9’+6+%fﬁ)+§—lv.
Therefore, by (3.7) and (3.9), setting U := max{v’,v"}, then

Ly (#)

1 e 5
(3.10) (G / el ) < ColQ7 gz o

Finally, summing up (3.4), (3.5) and (3.10) and letting v := max{v',U}, we
obtain the desired estimate (3.3). We complete the proof of Theorem 1.4.

3.3. Proof of Theorem 1.5. Let 0 < kx < 1, 0 > 0, w € A¥(¢) and b €
BMO®™(¢), we only need to show that there exist positive constants C' and v such

@(‘f(;)')

that for any given cube Q = Q(z,r),

(3.11) w({z € Q: b, TI(f)(@)] > A}) < Co(|Q1)”

1
w(@)"
holds for any function f such that ®(|f]) € Léfj((ﬁ)

Suppose that w € Ai)l (¢) for some 6’ > 0 and b € BMO? (¢) for some 6" > 0.
We split f = f1 + f2, where f1 = fxaq and fo = fXgn\aq- Then for any A > 0, we

Ly5(9)

can write
1 1
Sl € Q: L TI@)] > A < Sogmelle € QTR @) > 3/2) +
1
s (@ € Q: B T12@)] > A/2)) =V + VI

For the term V. By Lemma 2.10 and Lemma 2.3, we obtain

w({z € Q:|[b,T]fi(x)] > A/2}) <C

(If(;c)l)

(flA )
(f(x )

(Q)
w(4Q)"
T w(Q)r

where v/ = k0’ + 0.

(14Q|)’ Co(|QD”

L;;:(qs) Ly
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For the term VI. Notice that

.71 fa()| < [b(z) — b / K(2,y) fo(y)ldy + / 1b(y) — bl (. 9) fo (y) dy
=TV, + Vs,

Then we have

w{ze@:IVy > \/4}) +

w(;)KW({x €Q:IVa> \/4}) :=VI; + VI,.

For VI;. From the pointwise inequality (3.2) and Lemma 2.6, it follows that

1 4
< —
VI; < Q) /thw(x)dx

C = /(W)
S0 n/‘b( — bolw(z Z 41<:+1Q| NFFIQ[ Jprig A W

If(y>|dy.
4k+1Q A

< C |Q| SZ k N k
250 +1Q| ]

Since w € A{'(¢) for some 6’ > 0, by Lemma 2.1 (iv), yields

= 1 £ ()]
2 GGG Jug A

dy

1 £ (W)l
<CZ H([AFFIQ) N [4F+1Q) 4k+1Q(I)</\ )dy

S p(|45+1 Q)" ol
<02 P([4FH1Q[)Nw (5 - 4k+1Q) /5_4HIQ (I)( )w(y)dy

oo

)
k=1
o (14 1Q)Y ¢(J5 - 441 Q))° |f ()]

(8.12) C}; S(AFIQ) Neo(5 - A1)~ () .

Notice that the first inequality above here because of

(3.13) t <t(1+logtt)=®(t), foranyt>0.
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Therefore, by Lemma 2.2 and let 9“1—9-1—77(1—;1)—@ < N < 0'4+0+n(1—k)+s,

we obtain

w(Q) 1 |/ (v)]
VL < C— % w(Q)F ¢(1Q1)° Zd, QNN AR1Q] Sy A ——dy
= o([4EHLQ) Y (|5 - 45 H1Q))° |f(2)]
ol Z¢ ([4FH1QN)Nw(5 - 4k+1Q)1 = (I)( A ) L1 (6)
o(1Q)*p(|4* Q)7 (|5 - 4"1Q)°w(Q) " || /1 f(2)|
<Ck:1 H([4FH1Q)Nw(5 - 4-+H1Q) 1+ ‘1)< A )lezw)
= o(1Q)*p(|4*1Q) " (|5 - 471Q|)? (|5 - 45 +1 Q)1
<02 (TGN
Q1 N\ 1f @)
><(|5.4k'+1Q> (I)( A )Li’;w)
s11) <caan|e(L2D))
A Ly ()

where p=60"+0+n(1 —k)+s— N.
For VI,. From the estimate of IV, in Theorem 1.4, it follows that

1 4
L < —— I
VI, w(Q)"“)\/Q Vo w(z)dx

Lf ()l
< - 10| —2=d
‘@ K,Z(b (GG Sy ")~ el 55

- byrt1g — bq If(y)]
2 dy = A+ B.
n Z ¢ |4k+1Q| N|4k+1Q| 441 A y +

For A. Since w € A (¢) for some ¢’ > 0, from (2.5), (2.3) and Lemma 2.1(iv),

we deduce that

> 1 /()]
b(y) — byrt1g| - ———d
I; H([4F+1Q)N |4+ +1Q)| 4k+1Q| (y) = barsig] N W

<03 A o 2,y o
) C,il 2&”;111%'))9 20 {” TG g Lo <1 * f(yyﬂ) y}
CoyUETATALTA [ (1 )
<oy AN AN ol A o100

k=1 Ly (#)
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Let 0/ +60'+0+n(1—k)— w <N <0"+6+0+n(1—k). Applying Lemma
2.2 and (1.1) yield that

(3.15)
o P4 QDT B4 QN 6 (15 - 41 QN w(Q) | o 1/ ()]
A< C}; ¢(|4k+1Q|)Nw(5 . 4k+1Q)1—n (I)( by ) L (9)

P([451QN)" p([45+1Q|)Y ¢(|5 - 451 Q) (|5 - 4R+ Q|1

p([4F QNN
QL " p( @) (@)
(|5-4k+1Q *(37) *(37)
where p' =60" + 60"+ 60+ n(l — k) — N.

For the term of B, similar to (3.12). Let 6" + 60"+ 0+ n(1 — k) — 6(16 " < N <
0" 4+0 40+ n(1 — k), by Lemma 2.2 and (3.8), we have

/AN
aQ
M8

b
Il
—

Co(1QN”

X

Ly (¢) Ly5(9)

k(1451 QD o(1451QN% ¢(15 - 41 Q) w(Q) " || o (1 ()]
s CZ P([4HH1Q))Nw(5 - 4++1Q) 1= q’( A ) b 9
< o3 RIS RDT B4 RD” 6(15 - 451 Q1) (15 - 44+ Q)
Z S(AFFIQNN
Q1 N\ @) N (1 @)
X(|5-4k+1Q> o (5 )Lm) calal”|o(*5) .

where p' = 60" +60"+0+n(1 — k) — N.

Summing up the above estimates for VI; and VI,. Let p := max{p, p’'}, we obtain
(3.16)
1 7l (1f (@)
VI = w({z € Q:|[b,Tlf2(x)] > A/2}) < Co(|Q])"| @ :
w(@Q)" Ay
Therefore, combining (3.16) with the estimate of V and letting v := {V/, p}, we
get the desired inequality (3.11). The proof of Theorem 1.5 is finished.
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