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1. Introduction and main results

In recent years, Heisenberg group has attracted the attention of many scholars,

and in quantum mechanics, partial differential equations, harmonic analysis, number

theory and other branches plays an important role. The first mathematicians who

study of subelliptic analysis on the Heisenberg group were Folland and Stein in

[15], who consistently created a generalisation of the analysis for more general

stratified groups [12]. And it can also be noted that Rothschild and Stein generalised

these results for general vector fields satisfying the Hormander’s conditions, see [26].

These results were published in the famous book by Folland and Stein [14] which

laid the anisotropic analysis. And it is worth noting that homogeneous Lie group

is nilpotent.

In the present paper, we are concerned the following Schrödinger–Poisson system

in the Heisenberg:

(1.1)


−∆Hu− ϕ|u|u = µ|u|q−2u, in Ω,

−∆Hϕ = |u|3, in Ω,

ϕ = u = 0, on ∂Ω,

where ∆H is the Kohn-Laplacian on the first Heisenberg group H1 and Ω ⊂ H1

is a smooth bounded domain, 2 < q < 4 and µ > 0 some real parameters. Q∗ :=

2Q/(Q− 2) = 4 is Sobolev critical exponent for Ω ⊂ H1, Q = 4 is the homogeneous

dimension of H1.

1“The research of the first author is partially supported by NSFLN(2021-MS-275) and
EFLN(LJKQZ2021093)”.
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In the last few decades, Schrödinger–Poisson systems have been studied extensively

due to its strong physical background. For more detailed physical aspects of Schrödinger–Poisson

systems and for further mathematical and physical interpretation, we refer to

[2, 6, 7] and the references therein.

The investigation of (1.1) was motivated by some works appeared in recent years.

In [3], An and Liu studied the following Schrödinger-Poisson type system on the

Heisenberg group:

(1.2)


−∆Hu+ λϕu = µ|u|q−2u+ |u|2u, in Ω,

−∆Hϕ = u2, in Ω,

ϕ = u = 0, on ∂Ω,

by the Green’s representation formula and the critical point theory, they obtained at

least two positive solutions and a positive ground state solution. In [22], A. Loiudice

proved that problem (1.2) with q = 2 and λ = 0 admits at least one positive solution.

And then, this result was extended to a critical semilinear boundary problem with

singular nonlinearities, see [20]. On some recent results recovering the Heisenberg

group, we refer to [10, 19, 22, 23, 24] and the references therein.

On the other hand, in the Euclidean case, in [5], Azzollini et al. have been studied

the following Schrödinger–Poisson system with critical growing

(1.3)


−∆u = λu+ qϕ|u|3u, in BR,

−∆ϕ = q|u|5, in BR,

ϕ = u = 0, on ∂BR,

where λ ∈ R and BR is the ball in R3 centered in 0 with radius R.

Inspired by the works in the above references, our main purpose in this paper is

to study the existence of ground state solution for problem (1.1). In addition, since

the first equation of (1.1) contains a nonlocal term ϕ|u|u, proving the existence of

two solutions to (1.1) be much more complicated and more difficult than proving

the case of a single equation with a critical nonlinearity. However, we can prove the

existence of ground state solution for problem (1.1) by using the classical techniques

of Brézis–Nirenberg [11], the Green’s representation formula of [8] and some more

accurate estimates for related expressions.

We are now in position to state the existence result of ground state solution as

follows.

Theorem 1.1. Let Ω ⊂ H1 be a smooth bounded domain, 2 < q < 4, then problem

(1.1) has ground state solution.
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The plan of the paper is as follows. In Section 2, we present some necessary

preliminary knowledge on the Heisenberg group functional setting. In Section 3, we

prove the some basic lemmas. In Section 4, we complete the proof of Theorem 1.1.

2. Variational setting and preliminaries

In this section we briefly recall some basic facts on the first Heisenberg group and

the functional space S1
0(Ω). For a complete treatment, we refer to [13, 16, 18, 21].

Let H1 = (R3, ◦) be the first Heisenberg group. If ξ = (x, y, t) ∈ H1 and ξ′ =

(x′, y′, t′) ∈ H1, then the group law is defined by

τ : H1 −→ H1, τξ(ξ
′
) = ξ ◦ ξ

′
,

where

ξ ◦ ξ′ = (x+ x′, y + y′, t+ t′ + 2(x′y − y′x)).

A natural group of dilations on H1 is given by δs(ξ) = (sx, sy, s2t) for any s > 0.

Hence, δs(ξ0 ◦ ξ) = δs(ξ0) ◦ δs(ξ). The homogeneous dimension of H1 is Q = 4. The

gauge norm | · |H in H1 is defined as

|ξ|H = [(x2 + y2)2 + t2]
1
4

for any ξ ∈ H1. It is also the Korányi norm. Although the Korányi distance dose

not refect the sub-Riemannian structure of the Heisenberg group, the calculation

is relatively simple. The Kohn – Laplacian ∆H on H1 is defined as

∆Hu = divH(∇Hu),

where

∇Hu = (X,Y ), X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
,

and ∇H is the horizontal gradient,X and Y is a basis for Lie algebra of left-invariant

vector fields on H1. The left-invariant distance dH on H1 is accordingly defined by

dH(ξ0 ◦ ξ) = |ξ−1 ◦ ξ|H ,

where ξ−1 = −ξ. It is well known that ∆H is a very degenerate elliptic operator

and Bony’s maximum principle is satisfed (see [9]).

Also, the Heisenberg ball of radius r centered at ξ0 is the set

BH(ξ0, r) =

{
ξ ∈ H1 : dH(ξ0 ◦ ξ) < r

}
.

The natural volume in H1 is the Haar measure, which coincides with the Lebesgue

measure L3 in R3 (see [25]); then BH(ξ0, r) = αQr
Q, where αQ = |BH(0, 1)|. It
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implies τξ(Br(0)) = Br(ξ) and δr(B1(0)) = Br(0). As a consequence, for every

0 ≤ a < b and for every measurable function f : [a, b] → R, we have∫
Bd(0,b)\Bd(0,a)

f(d0(ξ))dξ = Q|Bd(0, 1)|
∫ b

a

f(r)rQ−1dr.

The Folland–Stein space S1
0(Ω) is defined as the closure of C∞

0 (Ω) with respect to

the norm

∥u∥2S1
0(Ω) =

∫
Ω

|∇Hu|2dξ.

For brevity, we use the notation ∥u∥ = ∥u∥S1
0(Ω) and |·|p denotes the usual Lp-norm,

that is,

|u|pp =

∫
Ω

|u|pdξ, u ∈ Lp(Ω).

We denote by Bρ the closed ball of radius ρ centered at zero in the Folland-Stein

space S1
0(Ω), and by Sρ its relative boundary, that is,

Bρ =

{
u ∈ S1

0(Ω) : ∥u∥ ≤ ρ

}
, Sρ =

{
u ∈ S1

0(Ω) : ∥u∥ = ρ

}
.

By [15], the Folland–Stein space (S1
0(Ω), ∥ · ∥) is a Hilbert space and the embedding

S1
0(Ω) ↪→ Lp(Ω) is compact when 1 ≤ p < Q∗ = 4, while it is only continuous

if p = Q∗ = 4. In particular, Jerison and Lee [17] proved that the best Sobolev

constant

(2.1) S = inf
u∈S1

0(H1)

∫
H1 |∇Hu|2dξ

(
∫
H1 |u|Q∗dξ)

2
Q∗

is achieved by the C∞ function

U(x, y, t) =
c0√

(1 + x2 + y2)2 + t2
,

where c0 is a suitable positive constant. In other words, the function U is a positive

solution of the following equation:

(2.2) −∆Hu = u3, u ∈ S1
0(Ω)

and satisfies ∫
H1

|∇HU |2dξ =
∫
H1

|U |4dξ = S2.

Let

(2.3) uε(ξ) = η(ξ)Uε(ξ) =
c0εη(ξ)√

(ε+ x2 + y2)2 + t2
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where η ∈ C∞
0 (BH(0, r0)), 0 ≤ η ≤ 1 and η = 1 in BH(0, r02 ). Then, one has

∥uε∥2 = S2 +O(ε2) and

|uε|pp =


O(εp), if 0 < p < 2,

O(ε1+α), if p = 2,

O(ε4−p), if 2 < p < 4,

S2 +O(ε4), if p = 4,

(2.4)

as ε→ 0, where 0 < α < 1 (see [3]).

In addition, we say that (u, ϕ) ∈ S1
0(Ω)× S1

0(Ω) is a solution of problem (1.1) if

and only if ∫
Ω

∇Hu∇Hvdξ −
∫
Ω

ϕ|u|uvdξ − µ

∫
Ω

|u|q−2uvdξ = 0

and ∫
Ω

∇Hϕ∇Hwdξ −
∫
Ω

w|u|3dξ = 0

for any v, w ∈ S1
0(Ω). Further, if u and ϕ are both positive, then we say that (u, ϕ)

is positive solution of problem (1.1). We define the functional J(u, ϕ) : S1
0(Ω) ×

S1
0(Ω) → R, ∀ (u, ϕ) ∈ S1

0(Ω)× S1
0(Ω),

J(u, ϕ) =
1

2

∫
Ω

|∇Hu|2dξ +
1

6

∫
Ω

|∇Hϕ|2dξ −
1

3

∫
Ω

ϕ|u|3dξ − µ

q

∫
Ω

|u|qdξ.

Then J is C1 on S1
0(Ω) × S1

0(Ω) and its critical points are the solutions of (1.1).

Indeed, let J ′
u(u, ϕ), J ′

ϕ(u, ϕ) denote the partial derivatives of J at (u, ϕ), that is,

for any (v, w) ∈ S1
0(Ω)× S1

0(Ω),

J ′
u(u, ϕ)[v] =

∫
Ω

∇Hu∇Hvdξ −
∫
Ω

ϕ|u|uvdξ − µ

∫
Ω

|u|q−2uvdξ,

J ′
ϕ(u, ϕ)[w] =

1

3

∫
Ω

∇Hϕ∇Hwdξ − 1

3

∫
Ω

w|u|3dξ.

By Sobolev inequalities and that S1
0(Ω) is continuously embedded into L4(Ω), then

standard computations show that J ′
u (respectively J ′

ϕ) maps continuously S1
0(Ω)×

S1
0(Ω) in S−1(Ω), where S−1(Ω) denotes the dual space of S1

0(Ω). So we conclude

that J is C1 on S1
0(Ω)× S1

0(Ω) and

J ′
u(u, ϕ) = J ′

ϕ(u, ϕ) = 0

if and only if (u, ϕ) is a solution of problem (1.1).

The properties of the function ϕ are given in the following lemma. It is similar

to the properties of the function ϕ in Euclidean case, see [4, Lemma 2.1].

Lemma 2.1. If u ∈ S1
0(Ω), then there exists a unique nonnegative function ϕu ∈

S1
0(Ω) satisfying

(2.5)

{
−∆Hϕ = |u|3, in Ω,

ϕ = 0, on ∂Ω.
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Moreover, ϕu > 0 if u ̸= 0 and:

(1) For any positive constant s, then ϕsu = s3ϕu and

(2.6)
∫
Ω

ϕu|u|3dξ =
∫
Ω

|∇Hϕ|2dξ ≤ S−1|u|64.

(2) For every u, v ∈ S1
0(Ω), ∫

Ω

ϕu|v|3dξ =
∫
Ω

ϕv|u|3dξ.

(3) For every u, u1 · · · , uk ∈ S1
0(Ω),∣∣∣∣ϕu −

k∑
i=1

ϕui

∣∣∣∣
4

≤ 1

S

∣∣∣∣|u|3 − k∑
i=1

|ui|3
∣∣∣∣
4
3

.

(4) If {un} ⊂ S1
0(Ω) and u ∈ S1

0(Ω) are such that un ⇀ u in S1
0(Ω), then, up to

subsequences, ϕun
⇀ ϕu in S1

0(Ω) and strongly in Lp(Ω) for all p ∈ [1, 4). Moreover

(2.7)
∫
Ω

ϕun
|un|3dξ −

∫
Ω

ϕun−u|un − u|3dξ =
∫
Ω

ϕu|u|3dξ + on(1).

(5) ∥ϕu∥ ≤ S−2∥u∥3, where S is the best Sobolev constant.

Proof. For each u ∈ S1
0(Ω), define Tu : S1

0(Ω) → R,

Tu(w) =

∫
Ω

|u|3wdξ, ∀ w ∈ S1
0(Ω).

Set wn → w ∈ S1
0(Ω) as n→ ∞. By the Hölder’s inequality, we have

|Tu(wn)− Tu(w)| ≤
(∫

Ω

|wn − w|4
) 1

4
(∫

Ω

|u|4
) 3

4

≤ S− 1
2 |u|34∥wn − w∥ → 0,

as n → ∞. This means that Tu is a continuous linear functional. It follows from

the Lax–Milgram theorem that there exists a unique ϕu ∈ S1
0(Ω) such that∫

Ω

∇Hϕu∇Hwdξ =
∫
Ω

w|u|3dξ, ∀ w ∈ S1
0(Ω),

this is, ϕu is the unique solution of (2.5). Furthermore, by the principle of maximum,

we get ϕu > 0 and ϕu ≥ 0 if u ̸= 0.

Next, we prove (1). In fact, for any positive constant s, we have

−∆Hϕsu = s3|u|3 = s3(−∆Hϕu) = −∆H(s3ϕu).

It follows from the uniqueness that ϕsu = s3ϕu. At the same time, since ϕu ∈ S1
0(Ω),

ϕu can be taken as a test function in (2.5). Then, from the Hölder inequality and
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(2.1), one has∫
Ω

|∇Hϕu|2dξ ≤
(∫

Ω

|ϕu|4
) 1

4
(∫

Ω

|u|4
) 3

4

≤ S− 1
2

(∫
Ω

|∇Hϕu|2dξ
) 1

2

|u|34,

which implies (2.6). To obtain (2) we observe that∫
Ω

ϕu|v|3dξ =
∫
Ω

∇ϕu∇ϕvdξ =
∫
Ω

ϕv|u|3dξ.

By (2), we derive that∣∣∣∣ϕu −
k∑

i=1

ϕui

∣∣∣∣2
4

≤ 1

S

∥∥∥∥ϕu −
k∑

i=1

ϕui

∥∥∥∥2

=
1

S

∫
Ω

∣∣∣∣∇ϕu −
k∑

i=1

∇ϕui

∣∣∣∣2dξ
=

1

S

∫
Ω

(
|∇ϕu|2 − 2ϕu

k∑
i=1

∇ϕui
+

k∑
i=1

k∑
j=1

∇ϕui
∇ϕuj

)
dξ

=
1

S

∫
Ω

(
ϕu −

k∑
i=1

ϕui

)(
|u|3 −

k∑
i=1

|ui|3
)

dξ

≤ 1

S

∣∣∣∣ϕu −
k∑

i=1

ϕui

∣∣∣∣
4

∣∣∣∣|u|3 − k∑
i=1

|ui|3
∣∣∣∣
4
3

and (3) follows.

Furthermore, by applying (2), we get∫
Ω

ϕun |un|3dξ −
∫
Ω

ϕun−u|un − u|3dξ

=

∫
Ω

(ϕun
− ϕun−u)(|un|3 − |un − u|3)dξ +

∫
Ω

ϕun−u|un|3dξ

+

∫
Ω

ϕun
|un − u|3 − 2ϕun−u|un − u|3dξ

=

∫
Ω

(ϕun − ϕun−u)(|un|3 − |un − u|3)dξ

+ 2

∫
Ω

(ϕun
− ϕun−u)|un − u|3dξ.

An easy variant of the classical Brezis–Lieb Lemma yields that

|un|3 − |un − u|3 → |u|3 in L
4
3 (Ω) as n→ ∞

and applying (3), we get that

(2.8) ϕun
− ϕun−u → ϕu in L4(Ω) as n→ ∞.

So ∫
Ω

(ϕun − ϕun−u)(|un|3 − |un − u|3)dξ →
∫
Ω

ϕu|u|3dξ as n→ ∞.
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Moreover, we get |un − u|3 ⇀ 0 in L
4
3 (Ω). Hence, since ϕu ∈ L4(Ω) and (2.8), we

have ∫
Ω

(ϕun
− ϕun−u)|un − u|3dξ

=

∫
Ω

(ϕun − ϕun−u − ϕu)|un − u|3dξ +
∫
Ω

ϕu|un − u|3dξ −→ 0

as n→ ∞. This completes the proof of (4).

Finally, multiplying the second equation of (1.1) by ϕu and integrating we have

∥ϕu∥2 =

∫
Ω

ϕu|u|3dξ ≤ |ϕu|4|u|34 ≤ S−2∥u∥3∥ϕu∥

and then (5). □

Lemma 2.2. ([3, Lemma3.2]) Let Ψ(u) = ϕu for any u ∈ S1
0(Ω), where ϕu is as

in Lemma 2.1. Let

X =

{
(u, ϕ) ∈ S1

0(Ω)× S1
0(Ω) : J

′
ϕ(u, ϕ) = 0

}
.

Then Ψ is C1 and X is the graph of Ψ.

We define the functional Iµ as follows

Iµ(u) = J(u, ϕu)

=
1

2

∫
Ω

|∇Hu|2dξ −
1

6

∫
Ω

ϕu|u|3dξ −
µ

q

∫
Ω

|u|qdξ

for u ∈ S1
0(Ω).

Lemma 2.3. ([3, Lemma 3.3]) Let (u, ϕ) ∈ S1
0(Ω)×S1

0(Ω). Then (u, ϕ) is a critical

point of J if and only if u is a critical point of Iµ and ϕ = Ψ(u), where Ψ is as in

Lemma 2.2.

Hence, we know that a critical point u of the functional Iµ with ϕ = Ψ(u)

corresponds to a solution (u, ϕu) of problem (1.1) and

I ′µ(u)[v] =

∫
Ω

∇Hu∇Hvdξ −
∫
Ω

ϕu|u|uvdξ − µ

∫
Ω

|u|q−2uvdξ.

Based on the above arguments, we will strive to prove the existence of critical

points of the functional Iµ by critical point theory and some analytical techniques.

In addition, in this paper, where we say that (u, ϕu) with u ∈ S1
0(Ω) is a ground

state solution of problem (1.1), we mean that (u, ϕu) is a solution of problem (1.1)

which has the least energy among all solutions of problem (1.1), that is, I ′µ(u) = 0

and

Iµ(u) = inf

{
Iµ(v) : v ∈ S1

0(Ω)\{0}, ⟨I ′µ(u), v⟩ = 0

}
.
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3. Some basic lemmas

In this section, we prove that the functional Iµ satisfy the Palais-Smale condition

in the cases 2 < q < 4. First, we recall that a C1 functional Iµ on Banach space

S1
0(Ω) is said to satisfy the Palais-Smale condition at level c ((PS)c in short) if

every sequence {un}n ⊂ S1
0(Ω) satisfying Iµ(un) → c and I ′µ(un) → 0 (n→ ∞) has

a convergent subsequence.

We first begin giving the following general mountain pass theorem (see[1]).

Theorem 3.1. Let X is a real Banach space and Iµ ∈ C1(X,R), with Iµ(0) = 0.

Assume that

(1) there exist r, α > 0 such that Iµ(u) ≥ α for all u ∈ X, with ∥u∥ = r;

(2) there exist ∥e∥ > r satisfying ∥u∥X > r such that Iµ(e) < 0.

Define Γ := {γ ∈ C([0, 1], X) : γ(0) = 0 and I(γ(1)) < 0}.

(3.1) c = inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t)) ≥ α,

and there exists a (PS)c sequence {un}n ∈ X.

Now, we begin proving that Iµ satisfies the assumptions of the mountain pass

theorem.

Lemma 3.1. Suppose that 2 < q < 4 is satisfied. Then the functional Iµ satisfies

the mountain pass geometry, that is,

(1) there exist r, α > 0 such that Iµ(u) ≥ α for any u ∈ S1
0(Ω) such that ∥u∥ = r;

(2) there exists e ∈ S1
0(Ω) with ∥u∥ > r such that Iµ(e) < 0.

Proof. By the Hölder inequality, (2.1) and (2.6), we have

Iµ(u) =
1

2

∫
Ω

|∇Hu|2dξ −
1

6

∫
Ω

ϕu|u|3dξ −
µ

q

∫
Ω

|u|qdξ

≥ 1

2
∥u∥2 − 1

6
S−4∥u∥6 − µ

q

∫
Ω

|u|qdξ

≥ 1

2
∥u∥2 − 1

6
S−4∥u∥6 − µ

q
S− q

2 |Ω|
4−q
4 ∥u∥q.

(3.2)

Since 2 < q < 4, then we can choose r, α > 0 such that Iµ(u) ≥ α for ∥u∥ = r.

On the other hand, let u ∈ S1
0(Ω)\{0}, and 2 < q < 4, we have

Iµ(tu) =
t2

2
∥u∥2 − t6

6

∫
Ω

ϕu|u|3dξ −
µtq

q

∫
Ω

|u|qdξ.

It is obvious that Iµ(tu) → −∞ as t→ +∞. Thus, there exists e ∈ S1
0(Ω)\{0} such

that Iµ(e) < 0. This completes the proof of Lemma 3.1. □
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Lemma 3.2. Assume that 2 < q < 4 is satisfied. Then for each µ > 0, there exists

a positive constant M which is independent of µ such that

lim sup
n→∞

∥un∥ ≤M.

Proof. We assume that {un} ⊂ S1
0(Ω) satisfies

c+ on(1) = Iµ(un)

=
1

2

∫
Ω

|∇Hun|2dξ −
1

6

∫
Ω

ϕun |un|3dξ −
µ

q

∫
Ω

|un|qdξ
(3.3)

and

on(1)∥un∥ = ⟨I ′µ(un), v⟩ =
∫
Ω

∇Hun∇Hvdξ −
∫
Ω

ϕun
|un|unvdξ

− µ

∫
Ω

|un|q−2unvdξ.
(3.4)

So, by (2.6), (3.3) and (3.4), we have

c+ on(1)∥un∥ = Iµ(un)−
1

q
⟨I ′µ(un), un⟩

=
q − 2

2q
∥un∥2 −

q − 6

6q

∫
Ω

ϕun
|un|3dξ

=
q − 2

2q
∥un∥2 +

6− q

6q
∥ϕun∥2 ≥ q − 2

2q
∥un∥2.

(3.5)

This means that {un} is also bounded in S1
0(Ω) since 2 < q < 4. Thus for each

µ > 0, there exists a positive constant M which is independent of µ such that

lim sup
n→∞

∥un∥ ≤M.

This completes the proof of Lemma 3.2. □

Lemma 3.3. Assume that 2 < q < 4 is satisfied. Then for each µ > 0, the

functional Iµ satisfies the (PS)c condition with c <
1

3
S2.

Proof. Let {un} be a (PS)c sequence for Iµ at c < 1
3S

2, by Lemma 3.2, {un}
is bounded in S1

0(Ω). Since S1
0(Ω) is reflexible. Therefore, we may still assume that

un ⇀ u0 weakly in S1
0(Ω) and un → u0 strongly in Lp(Ω) with 1 ≤ p < 4.

Next, inspired by [4], we set f(s) := |s|s. Since {un} is bounded in L4(Ω), then

{f(un)} is bounded in L2(Ω) and so, in a standard way, it follows that f(un)⇀ f(u)

in L2(Ω). Then, for all φ ∈ C∞
0 (Ω), using (4) of Lemma 2.1, Hölder and Sobolev

inequalities, and since ϕuφ ∈ L2(Ω),∣∣∣∣ ∫
Ω

f(un)ϕun
φdξ −

∫
Ω

f(u)ϕuφdξ
∣∣∣∣

≤
∣∣∣∣ ∫

Ω

(ϕun − ϕu)f(un)φdξ
∣∣∣∣+ ∣∣∣∣ ∫

Ω

(f(un)− f(u))ϕuφdξ
∣∣∣∣

≤ C|φ|∞∥un∥2|ϕun
− ϕu|2 + on(1) → 0
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as n→ ∞.

Since un ⇀ u0 in S1
0(Ω), we get

∥un∥2 = ∥un − u0∥2 + ∥u0∥2 + on(1).

Then, by using the strong convergence un → u0 in L2(Ω) and (2.7) we get

(3.6) Iµ(un) = Iµ(u0) + I(un − u0) + on(1)

with

I(u) =
1

2
∥u∥2 − 1

6
∥ϕu∥2.

Furthermore,
on(1) = I ′µ(un)[un − u0] = (I ′µ(un)− I ′µ(u0))[un − u0]

= ∥un − u0∥2 −
∫
Ω

ϕunf(un)(un − u0)dξ

+

∫
Ω

ϕu0
f(u0)(un − u0)dξ − µ|un − u0|q.

(3.7)

Since un ⇀ u0 in L4(Ω) and ϕu0
f(u0) ∈ L

4
3 (Ω),

(3.8)
∫
Ω

ϕu0
f(u0)(un − u0)dξ = on(1).

Moreover ∫
Ω

ϕunf(un)(un − u0)dξ =
∫
Ω

ϕun |un|3dξ −
∫
Ω

ϕu0 |u0|3dξ

−
∫
Ω

(ϕun
− ϕu0

)f(un)u0dξ −
∫
Ω

ϕu0
u0(f(un)− f(u0))dξ.

(3.9)

Since the sequence ((ϕun
− ϕu0

)f(un)) is bounded in L
4
3 (Ω), ϕun

→ ϕu0
and

f(un) → f(u0) a.e. in Ω, by [27, Proposition 5.4.7] we have

(3.10)
∫
Ω

(ϕun − ϕu0)f(un)u0dξ = on(1).

Analogously, we prove that

(3.11)
∫
Ω

ϕu0u0(f(un)− f(u0))dξ = on(1).

Then, using (2.7), (3.10) and (3.11) in (3.9), we obtain

(3.12)
∫
Ω

ϕun
f(un)(un − u0)dξ =

∫
Ω

ϕun−u0
|un − u0|3dξ + on(1).

Moreover, by (3.7), (3.8) and (3.12) we get

(3.13) ∥un − u0∥2 −
∫
Ω

ϕun−u0
|un − u0|3dξ = on(1)

and so

I(un − u0) =
1

2
∥un − u0∥2 −

1

6
∥un − u0∥2 + on(1)

=
1

3
∥un − u0∥2 + on(1).

(3.14)

43



ZH. GUO, Q. SHI

On the other hand,

I ′µ(un)[φ] → I ′µ(u)[φ]

and, by density, we get

0 = I ′µ(u)[u] = ∥u∥2 − ∥ϕu∥2 − µ|u|qq,

from which

(3.15) Iµ(u) =
q − 2

2q
∥u∥2 + 6− q

6q
∥ϕu∥2 ≥ 0.

From (3.6) and (3.15), we get

I(un − u0) = Iµ(un)− Iµ(u0) + on(1) ≤ c+ on(1) <
1

3
S2.

Then it follows that

lim sup
n→∞

∥un − u0∥2 < S2,

by (3.13) and (5) of Lemma 2.1,

on(1) = ∥un − u0∥2 −
∫
Ω

ϕun−u0
|un − u0|3dξ ≥ ∥un − u0∥2 − S−4∥un − u0∥6

= ∥un − u0∥2
[
1− ∥un − u0∥4

S4

]
≥ C∥un − u0∥2.

(3.16)

Hence un → u0 in S1
0(Ω). This ends the proof. □

4. Proof of Theorem 1.1

In this section, we prove that problem (1.1) has a positive ground state solution,

where 2 < q < 4. To this end, we define

(4.1) ψ = inf
u∈N

Iµ(u),

where N = {u ∈ S1
0(Ω)\{0} : ⟨I ′µ(u), u⟩ = 0}.

Proof of Theorem 1.1. Obviously, if u ∈ N , we has Iµ(|u|) = Iµ(u), so we consider

a nonnegative minimizing sequence {un} ⊂ N and such that

(4.2) Iµ(un) → ψ, as n→ ∞.

By Iµ(uλ) < 0 and Lemma 3.2, we can see that ψ < 0 and {un} is bounded in

S1
0(Ω). We may assume that un ⇀ u1 weakly in S1

0(Ω) and un → u1 strongly in

Lp(Ω) with 1 ≤ p < 4, then u1 ̸= 0. If u1 ≡ 0 then lim
n→∞

∥un∥2 = 0, furthermore

lim
n→∞

Iµ(un) = 0, this is a contradiction from (4.2). Therefore, we have u1 ̸= 0 in

S1
0(Ω).

It follows from Lemma 3.3 that un → u1 in S1
0(Ω). It means that u1 is a positive

solution of problem (1.1) and Iµ(u1) ≥ ψ.
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On the other hand, we prove Iµ(u1) ≤ ψ. By Fatou’s Lemma, we have

ψ = lim
n→∞

(
Iµ(un)−

1

6
⟨I ′µ(un), un⟩

)
= lim

n→∞

(
1

3
∥un∥2 −

µ(6− q)

6q

∫
Ω

|un|qdξ
)

≥ lim inf
n→∞

(
1

3
∥un∥2 −

µ(6− q)

6q

∫
Ω

|un|qdξ
)

≥ 1

3
∥u1∥2 −

µ(6− q)

6q

∫
Ω

|u1|qdξ

= Iµ(u1)−
1

6
⟨I ′µ(u1), u1⟩ = Iµ(u1).

This means that Iµ(u1) ≤ ψ and thus Iµ(u1) = ψ. Obviously, this proves that u1 is

a positive ground state solution of problem (1.1). □
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