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Abstract. In this paper, we investigate uniqueness of finite-order transcendental meromorphic
solutions of the following two equations:

f(z + 1)− f(z − 1) + a(z)
f ′(z)

f(z)
= R(z, f) =

∑3
m=0 amfm(z)∑2
n=0 bnf

n(z)
,

and

f(z + 1)f(z − 1) + a(z)
f ′(z)

f(z)
= R(z, f) =

∑4
m=0 amfm(z)∑3
n=0 bnf

n(z)
,

where R(z, f) is an irreducible rational function in f(z), a(z), am and bn are small functions
of f(z). Such solutions f(z) are uniquely determined by their poles and the zeros of f(z) − ej

(counting multiplicities) for two complex numbers e1 ̸= e2.
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1. Introduction and main results

We assume the reader is familiar with the elementary Nevanlinna theory, see,

e.g. [3, 9, 12]. As usual, the abbreviation CM stands for “counting multiplicities”,

while IM means “ignoring multiplicities”.

In 1929, Nevanlinna [10] raised the classic results in the uniqueness theory of

meromorphic functions. He obtained:

Theorem A (five-point theorem). If two meromorphic functions f , g share five

distinct values in the extended complex plane IM, then f ≡ g.

Theorem B (four-point theorem). If two meromorphic functions f , g share four

distinct values in the extended complex plane CM, then f ≡ T ◦ g, where T is a

Möbius transformation.

Nevanlinna value distribution theory is a useful tool to research the uniqueness

of meromorphic functions. Many scholars got many important results, see, e.g. [13].

In the last decade, Nevanlinna value distribution theory is widely used in complex

1This research was supported by the NNSF of China no. 11201014. This research was also
supported by the youth talent program of Beijing no. 29201443.
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difference and difference equations [4, 5]. Recently, Qi et al. [11] studyed some shared

value properties for finite-order meromorphic solutions of the difference Painlevé IV

equation. They showed that:

Theorem C ([11]). Suppose that f(z) is a finite-order transcendental meromorphic

solution of

(f(z + 1) + f(z))(f(z) + f(z − 1)) = R(z, f) =

∑4
m=0 amfm(z)∑2
n=0 bnf

n(z)
,

where R(z, f) is an irreducible rational function in f(z), am, bn are small functions

of f(z) with a4b2 ̸= 0. Let e1, e2 be two distinct finite numbers such that Φ(z, e1) ̸≡
0, Φ(z, e2) ̸≡ 0. Here

Φ(z, f) = (f(z + 1) + f(z))(f(z) + f(z − 1))

2∑
n=0

bnf
n(z)−

4∑
m=0

amfm(z).

If f(z) and another meromorphic function g(z) share the values e1, e2 and ∞ CM,

then f(z) ≡ g(z).

Recently, Halburd and Korhonen researched some properties of the following

delay differential equation

(1.1) w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= R(z, w(z)) =

P (z, w(z))

Q(z, w(z))
.

One of the main conclusions is as follows:

Theorem D ([7]). Suppose that w(z) is a non-rational meromorphic solutions of

(1.1), where a(z) is rational, P (z, w) is a polynomial in w with rational coefficients

in z, and Q(z, f) is a polynomial in w(z) with roots that are nonzero rational

functions of z and not roots of P (z, f). If the hyper-order of w(z) is less than one,

then

degw(P ) = degw(Q) + 1 ≤ 3 or degw(R) ≤ 1.

In this paper, we consider the sharing value of meromorphic solutions of (1.1).

In particular, we assume degw P (z, w(z)) = 3, degw Q(z, w(z)) = 2, and obtained

the following result:

Theorem 1.1. Suppose that f(z) is a finite-order transcendental meromorphic

solution of

(1.2) f(z + 1)− f(z − 1) + a(z)
f ′(z)

f(z)
=

P (z, f(z))

Q(z, f(z))
=

∑3
m=0 amfm(z)∑2
n=0 bnf

n(z)
,

P (z, f), Q(z, f) are coprime rational functions in f(z), a(z), am and bn are small

functions of f(z) satisfying b2 = 1, a3 ̸= 0. Let e1, e2 be two distinct finite numbers
22



ON UNIQUENESS OF MEROMORPHIC SOLUTIONS ...

such that P (z, e1) ̸≡ 0, P (z, e2) ̸≡ 0. If f(z) and another meromorphic function

g(z) share the values e1, e2 and ∞ CM, then f(z) ≡ g(z).

Lately, we researched the following equation

f(z + 1)f(z − 1) + a(z)
f ′(z)

f(z)
=

P (z, f(z))

Q(z, f(z))
,

where a(z) is rational, P (z, f) and Q(z, f) are coprime rational functions of f(z).

The roots of Q(z, f) are all rational functions of f(z). And obtained that degf (P ) ≤
4 and degf (Q) ≤ 3 [2]. As for the uniqueness of meromorphic solutions of the above

equation, we get

Theorem 1.2. Suppose that f(z) is a finite-order transcendental meromorphic

solution of

(1.3) f(z + 1)f(z − 1) + a(z)
f ′(z)

f(z)
=

P (z, f)

Q(z, f)
=

∑4
m=0 amfm(z)∑3
n=0 bnf

n(z)
,

where P (z, f) and Q(z, f) are coprime rational functions of f(z). a(z), am, bn

are small functions of f(z) and b3 = 1, a4 ̸= 0. Let e1, e2 be two distinct finite

numbers such that Ψ(z, e1) ̸≡ 0, Ψ(z, e2) ̸≡ 0, where Ψ(z, f) = [f(z)f(z + 1)f(z −
1)+a(z)f ′(z)]

∑3
n=0 bnf

n(z)−
∑4

m=0 amfm+1(z). If f(z) and another meromorphic

function g(z) share the values e1, e2 and ∞ CM, then f(z) ≡ g(z).

2. Lemmas

In this section, we present some lemmas which play an important role in the

following proofs. The first lemma is an analogue of the logarithmic derivative lemma

on difference.

Lemma 2.1 ([1], [5]). Let f(z) be a meromorphic function of finite order σ(f).

Then we have

m(r,
f(z + c)

f(z)
) +m(r,

f(z)

f(z + c)
) = S(r, f),

where S(r, f) any quantity satisfying S(r, f) = o (T (r, f)) as r tends to infinity

outside of an exceptional set E of finite logarithmic measure, i.e.,

lim
r→∞

∫
E∩[1,r)

dt/t < ∞.

Lemma 2.2 is an analogue of Clunie lemma on delay differential equation.

Lemma 2.2 ([8]). Let f be a transcendental meromorphic solution of hyper-order

σ2(f) < 1 of

R(f)Q(f) = P (f),
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with degP (f) ≤ degQ(f), where P (f) and R(f) are differential difference polynomials

of f , Q(f) is a difference polynomial of f . Assume that there is only unique monomial

of degree degQ(f) in Q(f). Then

m(r,R(f)) = S(r, f)

holds possibly outside an exceptional of finite logarithmic measure.

Lemma 2.3 ([11]). If f(z) is a meromorphic function of finite order, then

N(r, f(z + c)) ≤ N(r + |c|, f) = N(r, f) + S(r, f),

and

N(r,
1

f(z + c)
) ≤ N(r + |c|, 1

f
) = N(r,

1

f
) + S(r, f).

Lemma 2.4 ([12]). Suppose that fj(z)(j = 1, · · · , n)(n ≥ 2) are meromorphic

functions and gj(z)(j = 1, · · · , n) are entire functions satisfying the following

conditions:

(1)

n∑
j=1

fj(z)e
gj(z) = 0.

(2) 1 ≤ j ≤ k ≤ n, gj(z)− gk(z) are not constants for 1 ≤ j ≤ k ≤ n.

(3) For 1 ≤ j ≤ n, 1 ≤ h ≤ k ≤ n,

T (r, fj) = o{T (r, egh−gk)}, r → ∞, r ̸∈ E,

where E ⊂ (1,∞) is of linear measure. Then fj = 0 for j = 1, · · · , n.

The following lemma is an analogue of Mohon’ko theorem on delay differential

equation (see [6, Remark 5.3]).

Lemma 2.5. Let w(z) be a non-rational meromorphic solution of P (z, w) = 0,

where P (z, w) is a differential difference polynomial in w(z) with rational coefficients,

and let a(z) be a rational function satisfying P (z, a(z)) ̸≡ 0. If ρ2(w) < 1, then

m(r, 1
w−a ) = S(r, w).

Lemma 2.6. Let f(z) be a finite order transcendental meromorphic solution of

(1.2), then

N(r, f) ≥ 1

2
T (r, f) + S(r, f),

namely,

m(r, f) ≤ 1

2
T (r, f) + S(r, f).
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Proof. Taking the Nevanlinna characteristic function of both sides of (1.2), by

Lemmas 2.1, 2.3 and standard Valiron-Mohon’ko identity, we have

3T (r, f) = T (r,

∑m=3
m=0 amfm(z)∑n=2
n=0 bnf

n(z)
) + S(r, f) = T (r, f(z + 1)− f(z − 1) + a(z)

f ′(z)

f(z)
)

≤ m(r, f(z)(
f(z + 1)

f(z)
− f(z − 1)

f(z)
)) +m(r, a(z)

f ′(z)

f(z)
)

+N(r, f(z + 1)− f(z − 1) + a(z)
f ′(z)

f(z)
) + S(r, f)

≤ m(r, f) + 2N(r, f) +N(r, f) +N(r,
1

f
) + S(r, f).

Then

2T (r, f) ≤ 2N(r, f) +N(r,
1

f
) + S(r, f), N(r, f) ≥ 1

2
T (r, f) + S(r, f).

3. Proofs of the Theorems

In this section, the proofs of our results are given. Some ideas in the proofs come

from [11], but we do not have m(r, f) = S(r, f) in Theorem 1.1.

Proof of Theorem 1.1. From the assumptions that P (z, e1) ̸≡ 0, P (z, e2) ̸≡ 0 and

Lemma 2.5, we have

(3.1) m(r,
1

f − e1
) = S(r, f), m(r,

1

f − e2
) = S(r, f).

f(z) and g(z) sharing e1, e2 CM gives that

(3.2)
f − e1
g − e1

= eA(z),
f − e2
g − e2

= eB(z),

where A(z) and B(z) are two entire functions. It follows from [12, Theorem 5.1]

that

T (r, g) = O(T (r, f)) (r → ∞, r ̸∈ E),

T (r, eA(z)) = O(T (r, f)) (r → ∞, r ̸∈ E),

T (r, eB(z)) = O(T (r, f)) (r → ∞, r ̸∈ E),

where E is a set of finite linear measure. Then A(z) and B(z) are two polynomials

since the order of f(z) is finite.

Obviously f(z) ≡ g(z) if eA(z) ≡ 1 or eB(z) ≡ 1 or eB(z)−A(z) ≡ 1. Next, we

assume that eA(z) ̸≡ 1, eB(z) ̸≡ 1 and eB(z)−A(z) ̸≡ 1. Rewrite (3.2) into the

following forms:

(3.3) f(z) = e1 + (e2 − e1)
eB(z) − 1

eC(z) − 1
,
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or

(3.4) f(z) = e2 + (e2 − e1)
eA(z) − 1

eC(z) − 1
eC(z),

where C(z) = B(z)− A(z). We claim that degA(z) = degB(z) = degC(z). First,

we prove degB(z) = degC(z). Suppose that degB(z) > degC(z), then from (3.3),

T (r, f) = T (r, eB) + S(r, f), T (r, eC) = S(r, eB), N(r, f) = S(r, f),

which contradicts with Lemma 2.6. If degB(z) < degC(z), then

T (r, f) = T (r, eC) + S(r, f), T (r, eB) = S(r, eC),

N(r,
1

f − e1
) = N(r,

1

eB − 1
) + S(r, f) = S(r, f),

which implies m(r, 1
f−e1

) ̸= S(r, f), and this contradicts with (3.1). So,

(3.5) degB(z) = degC(z).

Next we prove degA(z) = degC(z). Since A(z) = B(z) − C(z), then degA(z) ≤
degB(z). If degA(z) < degB(z), by (3.4) and (3.5),

T (r, f) = T (r, eC) + S(r, f), T (r, eA) = S(r, eC),

N(r,
1

f − e2
) = N(r,

1

eA − 1
) + S(r, f) = S(r, f),

which also contradicts with (3.1). Therefore degA(z) = degC(z). Let

(3.6) degA(z) = degB(z) = degC(z) = k > 0.

The value sharing assumption and the Nevanlinna second fundamental theorem

lead to

T (r, f) ≤ N(r, f) +N(r,
1

f − e1
) +N(r,

1

f − e2
) + S(r, f)

≤ N(r, g) +N(r,
1

g − e1
) +N(r,

1

g − e2
) + S(r, f)

≤ 3T (r, g) + S(r, f).(3.7)

Similarly,

(3.8) T (r, g) ≤ 3T (r, f) + S(r, g).

Therefore,

(3.9) S(r, g) = S(r, f)

By (3.2) and (3.7) to (3.9),

T (r, eA) ≤ 4T (r, f) + S(r, f),(3.10)

T (r, eB) ≤ 4T (r, f) + S(r, f).(3.11)
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And by (3.3), we have

(3.12) T (r, f) ≤ T (r, eB) + T (r, eC) + S(r, f).

The above equation together with (3.6), (3.10) and (3.11), gives

(3.13) S(r, f) = S(r, eA) = S(r, eB) = S(r, eC).

For convenience, we define f = f(z + 1), f = f(z − 1). Substituting (3.3) into

(1.2), we obtain

{(e2 − e1)(
eB − 1

eC − 1
− eB − 1

eC − 1
)[e1 + (e2 − e1)

eB − 1

eC − 1
]

+a(z)(e2 − e1)
(B′ − C ′)eBeC −B′eB + C ′eC

(eC − 1)2
}

·
2∑

n=0

bn[e1 + (e2 − e1)
eB − 1

eC − 1
]n =

3∑
m=0

am[e1 + (e2 − e1)
eB − 1

eC − 1
]m+1.

Multiplying both sides of the last equality by (eC − 1)(eC − 1)(eC − 1)4, we get

{(e2 − e1)[(e
B − 1)(eC − 1)− (eB − 1)(eC − 1)][e1(e

C − 1)2

+(e2 − e1)(e
B − 1)(eC − 1)] + a(z)(e2 − e1)[(B

′ − C ′)eBeC −B′eB + C ′eC ]

·(eC − 1)(eC − 1)}
2∑

n=0

bn[e1(e
C − 1) + (e2 − e1)(e

B − 1)]n(eC − 1)2−n

= (eC − 1)(eC − 1)

3∑
m=0

am[e1(e
C − 1) + (e2 − e1)(e

B − 1)]m+1(eC − 1)3−m.(3.14)

We denote:

B = B + s1, B = B + s2,

C = C + t1, C = C + t2,

si, ti (i = 1, 2) are polynomials of degree at most k−1. Then, (3.14) can be rewritten

as

(3.15)
4∑

µ=0

6∑
ν=0

Mµ,νe
µB+νC = 0,

where Mµ,ν is either 0 or a polynomial in a(z), am, bn, e1, e2 and esi(z), eti(z). We

get

(3.16) M0,0 = Φ(z, e2) ̸= 0,

where Φ(z, f) = ((f(z+1)−f(z−1))f(z)+a(z)f ′(z))
∑2

n=0 bnf
n(z)−

∑3
m=0 amfm+1(z).

Let B1, C1 be the highest degree terms of B and C respectively. We claim that

there exist some 1 ≤ µ0 ≤ 4, 1 ≤ ν0 ≤ 6 such that

(3.17) µ0B1 + ν0C1 = 0
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or

(3.18) µ0B1 − ν0C1 = 0.

Otherwise, by (3.15) and Lemma 2.4, Mµ,ν=0 for all 0 ≤ µ ≤ 4, 0 ≤ ν ≤ 6, which

contradicts with (3.16). Set α = B1

C1
, then α is a rational number and

|α| ∈ {1, 2, 3, 4, 5, 6, 1
2
,
3

2
,
5

2
,
1

3
,
2

3
,
4

3
,
5

3
,
1

4
,
3

4
,
5

4
}.

Moreover, degA(z) = k, therefore α ̸= 1. On the other hand, from (1.2) we obtain

(f̄ − f − a3f)f
3 = H(z, f),

H(z, f) is a differential difference polynomial of f , with degree at most 3. Set

G = f − f − a3f

= (e2 − e1)
eB − 1

eC − 1
− (e2 − e1)

eB − 1

eC − 1
− a3e1 − a3(e2 − e1)

eB − 1

eC − 1
.

From Lemma 2.2, we have

m(r,G) = S(r, f).

Set

(3.19) G1 =
eB − 1

eC − 1
− eB − 1

eC − 1
− a3

eB − 1

eC − 1
.

Obviously,

(3.20) m(r,G1) = S(r, f).

G1 can be rewritten into the form:

G1 =
A1e

B1 − 1

A2eC1 − 1
− D1e

B1 − 1

D2eC1 − 1
− a3

E1e
B1 − 1

E2eC1 − 1

=
F1 − F2 − F3

(A2eC1 − 1)(D2eC1 − 1)(E2eC1 − 1)
,(3.21)

where F1 = (A1e
B1−1)(D2e

C1−1)(E2e
C1−1), F2 = (D1e

B1−1)(A2e
C1−1)(E2e

C1−
1), F3 = a3(E1e

B1 − 1)(A2e
C1 − 1)(D2e

C1 − 1), A1, A2, D1, D2, E1, E2 are small

functions of eB1 and eC1 . We discuss the following three cases.

Case 1. Suppose that 0 < α < 1, then

f = e1 + (e2 − e1)
eB − 1

eC − 1
= e1 + (e2 − e1)

H1e
αC1 − 1

H2eC1 − 1
,

where H1, H2 are small functions of eC1 . The numerator and denominator of f may

cancel some common items, for example, when α = 1
2 and H1 = H2 = 1. Even so,

by standard Valiron-Mohon’ko identity, we can still get T (r, f) = N(r, f) + S(r, f)

since α is rational. Then m(r, f) = S(r, f).
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Next, we prove that

(3.22) T (r, eA) = T (r, eB) + S(r, f) = T (r, eC) + S(r, f).

Let the greatest common factor of eB(z) − 1 and eC(z) − 1 be D(z), then

eB(z) − 1 = D(z)B1(z), eC(z) − 1 = D(z)C1(z),

where B1(z), C1(z) and D(z) are entire functions. So (3.3) can be rewritten as

f(z) = e1 + (e2 − e1)
B1(z)

C1(z)
.

Since

T (r, f) = m(r,
1

f − e1
) +N(r,

1

f − e1
) + S(r, f) = N(r,

1

B1
) + S(r, f),

T (r, f) = m(r, f) +N(r, f) + S(r, f) = N(r,
1

C1
) + S(r, f),

we have

N(r,
1

B1
) = N(r,

1

C1
).

By also considering that

T (r, eB) = N(r,
1

eB − 1
) + S(r, f) = N(r,

1

B1
) +N(r,

1

D
) + S(r, f),

and

T (r, eC) = N(r,
1

eC − 1
) + S(r, f) = N(r,

1

C1
) +N(r,

1

D
) + S(r, f),

we obtain:

T (r, eC) = T (r, eB) + S(r, f).

Similarly, by (3.4) we can prove

T (r, eC) = T (r, eA) + S(r, f).

So (3.22) holds.

If (3.17) holds, then deg(µ0B+ν0C) < k. By (3.6), eµ0B+ν0C is a small function

of eA and f(z). Then by (3.6), (3.13) and (3.22),

T (r, eµ0B+ν0C · e−µ0A) = T (r, e−µ0A) + S(r, f) = µ0T (r, e
A) + S(r, f).

On the other hand,

T (r, eµ0B+ν0C · e−µ0A) = T (r, e(µ0+ν0)C) = (µ0 + ν0)T (r, e
A) + S(r, f).

From the above two equations, we get ν0 = 0, which contradicts with 1 ≤ ν0 ≤ 6.

Similarly, if (3.18) holds, then deg(µ0B − ν0C) < k. We have

T (r, eµ0B−ν0C · e−µ0A) = T (r, e−µ0A) + S(r, f) = µ0T (r, e
A) + S(r, f),

and

T (r, eµ0B−ν0C · e−µ0A) = T (r, e(µ0−ν0)C) = (µ0 − ν0)T (r, e
A) + S(r, f),
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which also deduce a contradiction.

Case 2. Suppose that α < 0. Set β = −α. Substituting B1 = −βC1 into (3.21)

and multiplying both numerator and denominator by eβC1 , we have

G1 =
I1 − I2 − I3

(A2eC1 − 1)(D2eC1 − 1)(E2eC1 − 1)eβC1
,

where I1 = (A1−eβC1)(D2e
C1−1)(E2e

C1−1), I2 = (D1−eβC1)(A2e
C1−1)(E2e

C1−
1), I3 = a3(E1 − eβC1)(A2e

C1 − 1)(D2e
C1 − 1). From standard Valiron-Mohon’ko

identity, we have

T (r,G1) = (3 + β)T (r, eC1) + S(r, eC1),

N(r,G1) = 3T (r, eC1) + S(r, eC1),

which implies that m(r,G1) = βT (r, eC1)+S(r, f) ̸= S(r, f). Even if the numerator

and denominator of G1 can cancel some items, we can still get the same conclusion,

which contradicts with (3.20).

Case 3. Suppose that α > 1. Substituting B1 = αC1 into (3.21), then

G1 =
J1 − J2 − J3

(A2eC1 − 1)(D2eC1 − 1)(E2eC1 − 1)
,(3.23)

where J1 = (A1e
αC1 − 1)(D2e

C1 − 1)(E2e
C1 − 1), J2 = (D1e

αC1 − 1)(A2e
C1 −

1)(E2e
C1 − 1), J3 = a3(E1e

αC1 − 1)(A2e
C1 − 1)(D2e

C1 − 1). On the other hand,

substituting B, C to (3.19). When k > 1, we can see that eB+C+C − eB+C+C −
a3e

B+C+C ̸= 0. In this situation, (3.23) gives:

T (r,G1) = (α+ 2)T (r, eC1) + S(r, eC1),

N(r,G1) = 3T (r, eC1) + S(r, eC1),

which implies that m(r,G1) = (α − 1)T (r, eC1) + S(r, f) ̸= S(r, f). Even if the

numerator and denominator of G1 can cancel some items, we can still get this

conclusion, which contradicts with (3.20). When k = 1, without loss of generality,

we assume that B = αlz + c0, C = lz + d0. If eB+C+C − eB+C+C − a3e
B+C+C =

ec0+2d0(e(α−1)l − e(1−α)l − a3)e
(α+2)lz ̸= 0, using the same method as above, we

have m(r,G1) ̸= S(r, f), which contradicts with (3.20). If e(α−1)l−e(1−α)l−a3 = 0,

then substituting B and C into Φ(z, f) = 0. After combining similar terms, we can

get
4∑

p=0

6∑
q=0

Mp,qe
(pα+q)lz = 0,
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where Mp,q is either 0 or a polynomial in a(z), am, bn, e1, e2 and ec0 , ed0 . By

Lemma 2.4, we obtain Mp,q = 0, which contradicts with (3.16). In conclusion, the

theorem holds. □

Proof of Theorem 1.2. Taking the Nevanlinna characteristic function of both sides

of (1.3), we get

4T (r, f) ≤ 2T (r, f) +N(r, f) +N(r,
1

f
) + S(r, f),

namely,

2T (r, f) ≤ N(r, f) +N(r,
1

f
) + S(r, f),

which implies m(r, f) = S(r, f).

Similar to Theorem 1.1, we can proof (3.1) – (3.4), (3.10) – (3.12) also hold.

Evidently, when eA(z) ≡ 1 or eB(z) ≡ 1 or eB(z)−A(z) ≡ 1, f(z) ≡ g(z). We still

need to consider the case when eA(z) ̸≡ 1, eA(z) ̸≡ 1 and eB(z)−A(z) ̸≡ 1. Using the

same method in the proof of Theorem 1.1, we will get (3.22). (3.10) – (3.12) and

(3.22) give

degA(z) = degB(z) = degC(z) = k > 0.

Substituting (3.3) into (1.3), we obtain

{[e1 + (e2 − e1)
eB − 1

eC − 1
][e1 + (e2 − e1)

eB − 1

eC − 1
][e1 + (e2 − e1)

eB − 1

eC − 1
]

+a(z)(e2 − e1)
(B′ − C ′)eBeC −B′eB + C ′eC

(eC − 1)2
}

·
3∑

n=0

bn[e1 + (e2 − e1)
eB − 1

eC − 1
]n =

4∑
m=0

am[e1 + (e2 − e1)
eB − 1

eC − 1
]m+1.(3.24)

Multiplying both sides of (3.24) by (eC − 1)(eC − 1)(eC − 1)5, we get

{[e1(eC − 1) + (e2 − e1)(e
B − 1)][e1(e

C − 1) + (e2 − e1)(e
B − 1)]

[e1(e
C − 1) + (e2 − e1)(e

B − 1)](eC − 1) + a(z)(e2 − e1)

[(B′ − C ′)eBeC −B′eB + C ′eC ](eC − 1)(eC − 1)}

·
3∑

n=0

bn[e1(e
C − 1) + (e2 − e1)(e

B − 1)]n(eC − 1)3−n = (eC − 1)(eC − 1)

·
4∑

m=0

am[e1(e
C − 1) + (e2 − e1)(e

B − 1)]m+1(eC − 1)4−m.(3.25)

(3.25) can be rewritten as
6∑

µ=0

7∑
ν=0

Mµ,νe
µB+νC = 0,
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where Mµ,ν is either 0 or a polynomial in a(z), am, bn, e1, e2 and esi(z), eti(z). And

(3.26) M0,0 = Ψ(z, e2) ̸= 0.

We claim that deg(µB + νC) = deg(µB − νC) = k for 1 ≤ µ ≤ 6 and 1 ≤ ν ≤ 7.

Otherwise, if some 1 ≤ µ0 ≤ 6 and 1 ≤ ν0 ≤ 7 make deg(µ0B + ν0C) < k or

deg(µ0B − ν0C) < k, then we use the same method in the proof of Theorem 1.1

and obtain ν0 = 0, which is a contradiction. Thus,

T (r,Mµ,ν) = S(r, e±(µB+νC)), T (r,Mµ,ν) = S(r, e±(µB−νC)),

where 0 ≤ µ ≤ 6, 0 ≤ ν ≤ 7 are not simultaneously zero. By Lemma 2.4, we get

Mµ,ν = 0, which contradicts with (3.26). □
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[2] Y. S. Du and J. L. Zhang, “Painlevé III and V types delay differential equations”, submitted.
[3] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press,

Oxford (1964).
[4] R. G. Halburd and R. J. Korhonen, “Difference analogue of the lemma on the logarithmic

derivative with applications to difference equations”, J. Math. Anal. Appl., 314, 477 – 487
(2006).

[5] R. G. Halburd and R. J. Korhonen, “Nevanlinna theory for the difference operator”, Ann.
Acad. Sci. Fenn. Math., 31, 463 – 478 (2006).

[6] R. G. Halburd, R. J. Korhonen and K. Tohge, “Holomorphic curves with shift-invariant
hyperplane preimages”, Trans. Amer. Math. Soc., 336, 4267 – 4298 (2014).

[7] R. G. Halburd and R. J. Korhonen, “Growth of meromorphic solutions of delay differential
equations”, Proc. Amer. Math. Soc., 145, 2513 – 2526 (2017).

[8] P. C. Hu and Q. Y. Wang, “Growth on meromorphic solutions of non-linear delay differential
equations” , Bull. Belg. Math. Soc. Simon Stevin, 26, 131 – 147 (2019).

[9] I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter Studies in
Mathematics, 15. (1993).
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