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Abstract. In this paper we define knots of plane curve and give a method for counting them.
Then the method is applied to study the knots of solutions of a basic system of first order equations.
Practical aspects are illustrated in the case of predator-play model (Lotka-Volterra equation).
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A given pair of real functions (g(t), f(t)) ∈ C2[a, b], t ∈ [a, b], we can consider

as a curve γ(t) in the plane (g, f) and also as a complex curve, i.e. a curve γ(t) :=

{(x + iy} : x = g(t), y = f(t)} in the complex plane. Consider a part γ(ti, t
′
i)

of γ corresponding to the interval (ti, t
′
i), a ≤ ti < t′i ≤ b. If g(ti) = g(t′i) and

f(ti) = f(t′i) and γ(ti, t
′
i) bounds a simply connected domain we say that γ(ti, t

′
i)

is a knot (belonging to or lying on γ). If instead of point ti we meet an interval

σi, where g remains the same and f remains the same we count similar intervals as

one point ti. Moving t from a to b we can determine the number Nγ of knots.

Also we define the number of (n,m)-points of the curve γ(t): they are those points

a ≤ ti(n,m) ≤ b, where g(ti(n,m)) = n = const and f(ti(n,m)) = m = const.

Denote by Nγ(n,m) the number of (n,m)-points.

Notice that the concept of (n,m)-points is quite similar to that of a-points of

analytic functions. Respectively the (0, 0)-points of curves are similar to the zeros

of analytic functions.

(n,m)

- -

6 6

Figure 1. The closed parts on the left figure are knots in the plane (g, f). The

close part on the right figure is one of the curves γ(ti(n,m), ti+1(n,m)).
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Comment 1: on applicability of (n,m) -poins. The mentioned above curves

can be solutions of different equations arising in physics, chemistry, biology etc. In

all similar cases Nγ(n,m) indicate how many time situation return to the initial

state when g = n and f = m. For instance in Lotka-Volterra equation (predator-

pray model) n can be the number of foxes and m can be the number of rabbits.

Respectively Nγ(n,m) indicate how many time during time interval (a.b) we can

meet the situation when the number of foxes is equal to n and the number of

rabbits is equal to m. Clearly similar interpretations of (n,m)-points can arise in

many other sciences (for instance economics).

Observe that for any interval (ti(n,m), ti+1(n,m)) corresponding to curve

γ(ti(n,m), ti+1(n,m)) is either a knot or implies inside a knot (in the case when

this curve has self-intersections. So that the number of (n,m)-points is less than or

equal to the number of knots plus 1: i.e. we have

(1) Nγ(n,m) ≤ Nγ + 1.

In this paper we give a method for estimating Nγ . Due to (1) this gives also

estimates for Nγ(n,m) 1.

Then we give applications of this method to differential equations.

1. The method for giving upper bounds for the knots.

Passing to the method we assume that (g(t), f(t)) ∈ C2(a, b) and that Nγ is

finite: no meaning to give upper bounds if Nγ = ∞. Denote by β(t) the tangential

angle of γ(t) at the point t ∈ (a, b) (that is the angle formed by the tangent to the

curve γ(t) at the point γ(t) and real axis x (= g).

Let P be a partition {A = t∗0, t
∗
1, ..., t

∗
NP

= B} of an interval (A,B). According

to definition the total variation VB
A(β) of our (angle) function β(t), defined on an

interval t ∈ (A,B) is the quantity

VB
A(β) := sup

{P}

NP−1∑
k=0

∣∣β(t∗k+1)− β(t∗k)
∣∣ ,

where the supremum runs over the set of all partitions P .

Notice that due to geometric meaning for any closed curve defined on an interval

t ∈ (A,B) we have VB
A(β) ≥ π, since VB

A(β) is determined by all increments∣∣β(t∗k+1)− β(t∗k)
∣∣ on this closed curve. Denote by γ(ti, t

′
i) the part of the curve

γ which corresponds to (ti, t
′
i). It is a closed curve which starts and ends at the

same point (i.e. g(ti) = g(t′i) and f(ti) = f(t′i)). Hence we have V
t′i
ti(β) ≥ π.

1The method wasn’t formulated earlier. However was utilized in the proofs in [1]
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Summing up by i we get

Nγ ≤ 1

π

Nγ∑
i=1

V
t′i
ti(β).

and since all intervals (ti, t
′
i) lie in (a, b) we obtain the following

Theorem 1. For any pair (g(t), f(t)) ∈ C2[a, b] we have

(2) Nγ ≤ 1

π
Vb

a(β).

Due to inequality (1) inequality (2) implies

Theorem 2. For any pair (g(t), f(t)) ∈ C2[a, b] and any pair of real numbers

(n,m) we have

(3) Nγ(n,m) ≤ 1

π
Vb

a(β) + 1.

Assuming that the function d
dtβ(t) is continuos in (a, b) we have also Vb

a(β) =∫ b

a

∣∣ d
dtβ(t)

∣∣ dt. Taking into account that β(t) is equal to the argument of the complex

point d
dtg(t) + i d

dtf(t) (i.e. β(t) := arg(g′(t) + if ′(t))) we get

Vb
a(β) =

b∫
a

∣∣∣∣ ddt arg(g′(t) + if ′(t))

∣∣∣∣ dt
and since

d

dt
arg(g′(t) + if ′(t)) =

d

dt
arctan

f ′(t)

g′(t)
=

f ′′(t)g′(t)− g′′(t)f ′(t)

(g′(t))2 + (f ′(t))2

we get

Vb
a(β) =

b∫
a

|f ′′(t)g′(t)− g′′(t)f ′(t)|
(g′(t))2 + (f ′(t))2

dt.

Thus in this case we have (due to Theorem 1)

(2′) Nγ ≤
∫ b

a

∣∣∣∣ ddtβ(t)
∣∣∣∣ dt = 1

π

b∫
a

|f ′′(t)g′(t)− g′′(t)f ′(t)|
(g′(t))2 + (f ′(t))2

dt

instead of (2) and

(3′) Nγ(n,m) ≤
∫ b

a

∣∣∣∣ ddtβ(t)
∣∣∣∣ dt+ 1 =

1

π

b∫
a

|f ′′(t)g′(t)− g′′(t)f ′(t)|
(g′(t))2 + (f ′(t))2

dt+ 1

instead of (3).

2. Applications in ODE: the knots of solutions of a basic system of

equations.

Many phenomena in physics, technics, biology, economics are described by the

differential equations
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(4)
{

y′ = F1 (x, y)
x′ = F2 (x, y)

.

The solutions are the curves γ(t) := (x (t) , y (t)), t ∈ [T1, T2], that may have knots

and (n,m)-points.

The equation (4) was studied in details in Poincaré theory when F1, F2 are linear

polynomials. Numerous studies are devoted to the cases when F1, F2 are second

and third order polynomials.

As far as we know the knots and (n,m)-points weren’t consider before.

Below we study Nγ and Nγ(n,m) for the solutions of (4) with very general

coefficients.

Assume that the values x and y lie in the closure D̄ of a given domain D and

F1(x, y), F2(x, y) ∈ C2(D̄), where D̄ is the closure of D.

Let γ := (x (t) , y (t)), t ∈ [T1, T2], be a part of an integral curve of (4) lying in

D̄. We will refer simply γ as a solution of (4), [3].

The next result gives upper bounds for Nγ and Nγ(n,m) of the integral curves

of (4).

Theorem 3. For any solution (x (t) , y (t)) ∈ C2[T1, T2] of equation (4) with F1(x, y),

F2(x, y) ∈ C2(D̄) we have

(5) Nγ ≤ c(F1, F2, D) |T2 − T1| ,

where c(F1, F2, D) is a finite constant depending only on F1, F2 and D.

Due to (1), for any (n,m) we have also

(6) Nγ(n,m) ≤ c(F1, F2, D) |T2 − T1|+ 1.

Comment 2. The constant c(F1, F2, D) is equal to the maximum of

1

π

∣∣(F1 (x, y))
′
x

∣∣+
∣∣∣(F1 (x, y))

′
y − (F2 (x, y))

′
x

∣∣∣
2

+
∣∣∣(F2 (x, y))

′
y

∣∣∣


for (x, y) ∈ D̄.

Proof of Theorem 3. First we show that for our solutions γ(t) := (x(t), y(t)),

t ∈ [T1, T2] the function d
dtβ(t) is continuos in [T1, T2]. In the above part we showed

that

(7)
d

dt
β(t) =

d

dt
arg(x′(t) + iy′(t)) = arctan

y′(t)

x′(t)
=

y′′(t)x′(t)− x′′(t)y′(t)

(x′(t))2 + (y′(t))2
.

Since

y′′ (t) = (F1 (x, y))
′
x x

′ + (F1 (x, y))
′
y y

′ =
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(F1 (x, y))
′
x F2 (x, y) + (F1 (x, y))

′
y F1 (x, y)

and

x′′ (t) = (F2 (x, y))
′
x x

′ + (F2 (x, y))
′
y y

′ =

(F2 (x, y))
′
x F2 (x, y) + (F2 (x, y))

′
y F1 (x, y)

we have

y′′x′ − x′′y′

(x′)
2
+ (y′)

2 =[
(F1 (x, y))

′
x F2 (x, y) + (F1 (x, y))

′
y F1 (x, y)

]
F2 (x, y)

F 2
2 (x, y) + F 2

1 (x, y)
−[

(F2 (x, y))
′
x F2 (x, y) + (F2 (x, y))

′
y F1 (x, y)

]
F1 (x, y)

F 2
2 (x, y) + F 2

1 (x, y)
=

(F1 (x, y))
′
x F

2
2 (x, y)− (F2 (x, y))

′
y F

2
1 (x, y)

F 2
2 (x, y) + F 2

1 (x, y)
+

(8)

[
(F1 (x, y))

′
y − (F2 (x, y))

′
x

]
F1 (x, y)F2 (x, y)

F 2
2 (x, y) + F 2

1 (x, y) .

Taking into account that

(9)
F 2
2 (x, y)

F 2
2 (x, y) + F 2

1 (x, y)
≤ 1,

F 2
1 (x, y)

F 2
2 (x, y) + F 2

1 (x, y)
≤ 1

and

(10)
|F1 (x, y)F2 (x, y) |
F 2
2 (x, y) + F 2

1 (x, y)
≤ 1

2

we obtain that d
dtβ(t) is finite: since due to (7)-(10) we have

(11)
∣∣∣∣ ddtβ(t)

∣∣∣∣ ≤ ∣∣(F1 (x, y))
′
x

∣∣+
∣∣∣(F1 (x, y))

′
y − (F2 (x, y))

′
x

∣∣∣
2

+
∣∣∣(F2 (x, y))

′
y

∣∣∣
and since F1(x, y), F2(x, y) ∈ C2(D̄). Consequently we obtain also that d

dtβ(t) is

continuos for t ∈ [T1, T2].

Hence we can apply inequalities (2′) and (3′). This yields

Nγ ≤
∫ b

a

∣∣∣∣ ddtβ(t)
∣∣∣∣ dt and Nγ(n,m) ≤

∫ b

a

∣∣∣∣ ddtβ(t)
∣∣∣∣ dt+ 1,

and applying inequality (11) we obtain Theorem 3 with

c(F1, F2, D) :=

max
(x,y)∈D̄

∣∣(F1 (x, y))
′
x

∣∣+
∣∣∣(F1 (x, y))

′
y − (F2 (x, y))

′
x

∣∣∣
2

+
∣∣∣(F2 (x, y))

′
y

∣∣∣
 .
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3. Practical aspects: illustration in the case of predator-play model.

This model describing the dynamics of biological systems in which two species

interact, one as a predator (for example, foxes), the other as prey (for example,

rabbits). The interaction is described by known Lotka-Volterra equation

(12)
{

x′ = αx− βxy
y′ = δxy − θy

,

where x (= x(t)) is the number of preys, y (= y(t)) is the number of predators, α,

β, δ, θ are positive constants.

We consider x(t), y(t) in arbitrary time interval t ∈ [T1, T2].

With this notations Nγ(n,m) indicate how many time during time interval

[T1, T2] we can meet the situation when the number of foxes is equal to n and

the number of rabbits is equal to m. In other words how many time initial situation

can return to the same state.

Usually experts have an idea what is the maximal number of prey (denote by

X) and maximal number of predators (denote by Y ) in a given area. So that it is

natural to take as a domain D the rectangle {(x, y) : 0 ≤ x ≤ X, 0 ≤ y ≤ Y }:
obviously any curve x(t), y(t) lies in D. With similar D we prove the following

Theorem 4. For any solution (x (t) , y (t)) ∈ C2[T1, T2] of equation (12) and any

pair (n,m) we have

(13) Nγ(n,m) ≤ 1

π

[
3

2
(β + δ) (Y +X) + α+ θ

]
|T2 − T1|+ 1.

Proof. The inequality (12) is a particular case of (4) so that we can apply inequality

(6) of Theorem 3. We obtain: for any solution (x (t) , y (t)) ∈ C2[T1, T2] of equation

(12) and any pair (n,m) we have

(14) Nγ(n,m) ≤ cLV (D) |T2 − T1|+ 1,

where cLV (D) is a finite constant depending only on the equation and D.

It remains to estimate the constant cLV (D).

Remembering that all constants in (12) are positive, due to Comment 2 we have

πcLV (D) =∣∣(αx− βxy)
′
x

∣∣+ 1

2

[∣∣∣(αx− βxy)
′
y − (δxy − θy)′x

∣∣∣]+ |δxy − θy|′y ≤

α+ βy +
1

2
[|βx− δy|] + δx+ θ ≤ 3

2
(β + δ) (y + x) + α+ θ.

Taking into account that (x, y) belong to the rectangle D we obtain

πcLV (D) ≤ 3

2
(β + δ) (Y +X) + α+ θ

and substituting this into (14) we obtain Theorem 4.
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