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1. Introduction

The clustering problem is an unsupervised learning problem for grouping similar

observations. Due to their unsupervised nature, clustering algorithms have a broad

range of use in numerous fields of study, including finance, biology, and robotics

[?]. Cluster analysis of random vectors, where objects are sampled from high-

dimensional joint distributions, is an extensive research area with rich literature.

Although there are general definitions and approaches to the problem of clustering,

the clustering of random processes requires a special approach because their obser-

vations (realizations, time series) are sampled from process distributions. These

algorithms are also interesting because, unlike the clustering of random vectors,

the clustering of random processes also allows studying the new dimensions of

asymptotics, the asymptotics of the realizations.

In general, clustering algorithms can be classified into six groups: Partitioning,

Hierarchical, Grid-based, Model-based, Density-based, and Multi-step clustering

algorithms. For a comprehensive review of existing algorithms, we refer the reader to

work [1], as we mainly focus on partitioning-based clustering algorithms. The typical

partitioning-based clustering algorithm requires a similarity measure to measure

similar samples, the target number of clusters, and some partitioning algorithms,

to group similar samples. Relying on this methodology, there are many algorithms

introduced in the literature, the main difference of which lies in the way of defining
3



G. L. ADAMYAN

the distance metric and changes in the partitioning algorithm [2]. In addition to the

introduction of new algorithms, analyzing the asymptotic behavior of time series

clustering algorithms is also a noteworthy direction.

In [2], the authors presented consistent clustering algorithms for ergodic and

stationary processes in online and offline problem setups. In [3], the authors considered

the problem of clustering of wide-sense stationary ergodic processes, the asymptotically

consistent algorithms are presented for clustering these processes. The presented

algorithm in the mentioned works is based on strongly consistent distance estimates,

which ensure the strong consistency of clustering algorithms in the offline problem

setting. In this paper, we consider weakly asymptotically consistent clustering of

ARMA processes according to their forecasting functions. We construct an asympto-

tically consistent estimation procedure of the defined metric and prove weakly

asymptotically consistency of the presented algorithm.

2. Problem setup

In this section, we formally define consistent clustering of ARMA processes in an

offline setting. We start by defining ARMA(p,q) models. Let ϵt be a Gaussian

white noise, then X = {Xt}∞t=1 stochastic process is an ARMA(p, q) process if X

is stationary and if for every t:

(2.1) Xt = ϵt +

p∑
i=1

ϕiXt−i +

q∑
j=1

θjϵt−j

where the polynomials ϕ(z) = 1 − ϕ1z − ϕ2z
2 − ... − ϕpz

p and θ(z) = 1 + θ1z +

θ2z
2 + ...+ θqz

q have no common factors. By standard Box-Jenkins notation (2.1)

becomes.

ϕ(B)Xt = θ(B)ϵt

where ϕ(B) = 1−ϕ1B−ϕ2B
2− ...−ϕpB

p and θ(B) = 1+ θ1B+ θ2B
2+ ...+ θqB

q

are the lag polynomials.

Definition 2.1 (Invertibility of ARMA). An ARMA(p, q) process X is invertible if

there exist absolutely summable constants πx = {πj}∞j=0 such that ϵt =
∑∞

j=0 πjXt−j

for all t.

The invertibility condition is equivalent to the condition θ(z) = 1− θ1z− θ2z
2−

... − θpz
q ̸= 0, |z| ≤ 1.([5]:86). Let us denote by L the class of invertible ARMA

models. The invertibility assumption ensures that Xt can be represented in terms

of its past values according to the AR(∞) formulation.

(2.2) π(B)Xt = ϵt

4



WEAKLY CONSISTENT OFFLINE CLUSTERING ...

where π(B) = θ(B)−1 ∗ϕ(B) = 1−
∑∞

j=1 πjB
j . The coefficients of sequence πx are

determined by the following recursive equations ([5]:86):

(2.3) πj +

q∑
k=1

θkπj−k = −ϕj , j = 0, 1, ...

where ϕ0 := −1, ϕj := 0 for j > p, and πj := 0 for j < 0. Having (2.2), we note that

given initial values and known orders, any process X ∈ L is fully characterized by

the sequence πx. Defined sequence also completely specifies the forecasting function

F = E[Xt|Xt−1, Xt−2, ...] of the processes X.

We are given a time series dataset with N samples D = {xi}Ni=1. We assume

that each xi is generated from one of the κ unknown ARMA process with unknown

forecasting function Fk, k = 1, 2, ..., κ, where κ < N . Note that time series samples

may have arbitrary lengths, and we denote the length of xi time series by ni.

Definition 2.2 (Ground-truth G). Let G = G1, ...,Gk be a partitioning of the

set {1, 2, ..., N} into κ disjoint subsets Gk, Gk ̸= ∅, k = 1, 2, ..., κ, such that the

forecasting function of the process that generates xi, i = 1, 2, ..., N is Fk for some

k = 1, 2, ..., κ if and only if i ∈ Gk. We call G the ground-truth clustering.

We denote by X(k) the underlying ARMA process for the cluster Gk. From

Definition 2.2, we need to note that given the same initial values the processes in

the same cluster, will produce the same forecast.

The domain of the clustering function f is the finite set of samples D = {xi}Ni=1

and a parameter κ (the number of target clusters) and the range is a set of partitions

f(D, κ) := {C1, ..., Cκ} of the index set {1, 2, ..., N}. Our goal is to find a clustering

function f , which recovers the ground-truth partition. We call a clustering algorithm

asymptotically consistent if it achieves this goal for long enough sequences xi ∈
D, i = 1, ..., N : The following definitions represent the rigid formulation of the

asymptotically consistent clustering.

Definition 2.3 (Consistency: offline settings). A clustering function f is consistent

for a set of sequences D if f(D, κ) = G. Moreover, denoting by n = min{n1, ..., nN},
f is called strongly asymptotically consistent in the offline sense if with probability

1 P (∃n′∀n > n′f(D, κ) = G) = 1. We call it weakly asymptotically consistent if

limn→∞ P (f(D, κ) = G) = 1

It is worth noting that in the field of study of clustering of random processes,

there is also another problem configuration, the online clustering of random processes.

In the setting of the online problem, the number of realizations of random processes

is not fixed, so the number of realizations and samples of each realization may
5
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change over time. In this paper, our aim is to study the offline setting of random

process clustering, we omit the definition of consistency of the online problem,

referring the readers to the following works ([2], [3]).

As previously discussed, we are mainly focused on partitioning algorithms, which

are based on dissimilarity measures. To construct an asymptotically consistent

algorithm, we start by defining metric on ARMA processes.

Recalling the AR(∞) representation of the ARMA process, Piccolo in work [6]

introduced metric on L as a measure of structural diversity between stochastic

processes X(1), X(2) ∈ L. The metric function dPIC on L is defined as

(2.4) dPIC(X
(1), X(2)) =


∞∑
j=0

(π1,j − π2,j)
2


1/2

where {π1,j}∞j=0 and {π2,j}∞j=0 is the π sequences for the X(1) and X(2) processes

respectively. The dPIC distance is well defined for all X ∈ L and can be computed

even for processes with arbitrary orders and parameters. As for given ARMA process

X the sequence {πx,j}∞j=0 fully characterize the forecasting function F , therefore

the defined distance between two ARMA processes, with given orders, is zero if,

for the provided same set of initial values, the corresponding models produce the

same forecasts [7]. Having this fact, if the xi and xj are two realizations of the two

invertible ARMA processes X(i) and X(j), then if i, j ∈ Gk for some k ∈ 1, ..., κ,

then corresponding distance between processes dPIC(X
(i), X(j)) = 0.

We define the consistent estimator of the metric d as follows.

Definition 2.4. We say that d̂(xi,xj) is strongly asymptotically consistent if.

d̂(xi,xj)
a.s.→ d(X(i), X(j))

and weakly asymptotically consistent if.

d̂(xi,xj)
P−→ d(X(i), X(j))

as n −→∞, n = min{ni, nj}.

The asymptotic consistency of the estimate d̂(xi, X
(j)) is defined by the same

analogy. The estimator of the distributional distance between the processes defined

in [2], and an estimator of the distance between covariance structures defined in

work [3] are examples of strictly asymptotically consistent estimators. Later, in

section 3.1 we will introduce an example of a weakly consistent estimate.

In [2] authors showed that a simple algorithm that initializes the clusters using

farthest-point initialization and then assigns each remaining point to the nearest
6
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cluster is strongly asymptotically consistent. This is done by using a strongly

asymptotically consistent estimate of distributional distance [4].

3. Main results

3.1. Consistent estimation of autoregressive metric. In addition to the listed

properties, we can show that dPIC has a computationally efficient, weakly consistent

estimator d̂PIC . Let X(1), X(2) ∈ L be two invertible ARMA processes, with

(p1,q1), β1 = (ϕ1
1, ϕ

1
2, ..., ϕ

1
p1
, θ11, θ

1
2, ..., θ

1
q1), π1 = {π1,j}∞j=0 and (p2,q2), β2 =

(ϕ2
1, ϕ

2
2, ..., ϕ

2
p2
, θ21, θ

2
2, ..., θ

j
q2), π2 = {π2,j}∞j=0 orders, parameter vectors and associated

coefficients respectively.

Defined distance dPIC is defined under the assumption that orders of the processes

X(1) and X(2) are known. Thus, we have not considered incorrect model specification

and unit root problems. Let us consider samples x1 = {x1, x2, .., xn1
} and x2 =

{x1, x2, .., xn2} generated from the X(1) and X(2) ARMA processes. If the orders of

the processes X(1) and X(2) are known, then, as an estimate of the dPIC , it is natural

to consider the Euclidean distance between truncated sequences πi (i = 1, 2) of the

estimated parameters with maximum likelihood. This approach is intuitive, but it

limits us to apply the estimated distance to a clustering problem defined earlier since

it is impractical to assume that the orders of all underlying processes are known.

Considering the mentioned problem, for constructing an asymptotically consistent

estimator of dPIC , our estimation procedure needs to include both the consistent

estimation of the orders and the parameters of the processes. Despite the fact that

the consistent time series model selection literature is expansive, the majority of

works are based on the maximization of the penalized log-likelihood (or quasi-

log likelihood). The asymptotic results which include the ARMA processes can be

found in ([8], [9]). To construct such a procedure, we refer to the latest asymptotic

results in [8], where authors derive sufficient conditions for asymptotically consistent

estimation of the orders and parameters of the large class of affine causal random

processes. This class includes ARMA or AR(∞) processes, as well as the GARCH

or ARCH(∞), APARCH, ARMA-GARCH, and many other stochastic processes.

Let us assume that X = {Xt}∞t=1 is an ARMA(p∗, q∗) model with parameter vector

β∗ = (ϕ1, ϕ2, ..., ϕp∗ , θ1, θ2, ..., θq∗), and time series samples x = {x1, x2, .., xn} are

generated with the model. LetM be a finite set of ARMA model structures, where

each model m ∈M has parameter space

Θ(m) = {β[m] = (ϕ1, ϕ2, ..., ϕpi , θ1, θ2, ..., θqi), m = (pi, qi)}.
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We suppose that the target model structure m∗ = (p∗, q∗) ∈ M. Our goal is to

construct a consistent estimation procedure for the target model structure m∗ and

the parameters vector β∗ using the given trajectory x and the candidate models

set M. The following theorem shows the consistency of the quasi-log likelihood

estimation [8].

Theorem 3.1 (Consistent estimation of the model). If x = {x1, x2, .., xn} is a

time series sample generated from the stochastic process X with model structure

m∗ = (p∗, q∗) and parameter vector β∗, then under standard regularity assumptions

the BIC penalized quasi-log likelihood estimation of the true model is asymptotically

consistent.

m̂, β̂[m̂] = argmin
m∈M,β∈Θ[m]

(
−2L̂n(β̂[m]) + (pm + qm)log(n)

)
(3.1)

P (m̂ = m∗) −−−−→
n−→∞

1, β̂[m̂]
P−−−−→

n−→∞
β∗

where L̂n(β̂(m)) is the quasi-log likelihood of the model m.

Suppose X(1) and X(2) are two ARMA processes with unknown orders and

parameters and the samples x1 = {x1
1, x

1
2, .., x

1
n1
} and x2 = {x2

1, x
2
2, .., x

2
n2
} are

generated from the X(1) and X(2) processes. Having Theorem 3.1 it is easy to

construct a weakly consistent estimator for the dPIC .

Let us denote the empirical estimates of dPIC as follows

d̂PIC(x1,x2) =


τn∑
j=1

(π̂1,j − π̂2,j)
2


1/2

d̂PIC(x1, X
(1)) =


τn∑
j=1

(π̂1,j − π1,j)
2


1/2

where τn goes infinity with min(n1, n2), {π̂i,j}τj=1 are given by (2.3) and parameters

vectors β̂i estimated by (3.1). Despite the fact that d̂PIC is a continuous function

over estimated {π̂i,j}τj=1 vectors, then by the continuous mapping theorem, the

d̂PIC is weakly asymptotically consistent. The following proposition below concludes

the discussion above.

Proposition 3.1. If the maximum orders of the processes X(1) and X(2) are

known, then under the standard regularity assumptions the estimator d̂PIC(x1,x2)

and d̂PIC(x1, X
(2)) are weakly asymptotically consistent.

d̂PIC(x1,x2)
P−→ dPIC(X

(1), X(2))

d̂PIC(x1, X
(2))

P−→ dPIC(X
(1), X(2))
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as n −→∞, n := min{ni, nj}.

It is a noteworthy observation that for any X(i), X(j) ∈ L and xi,xj ∈ D the

distance dPIC and their empirical estimate d̂PIC satisfy triangle equations.

(3.2)

dPIC

(
X(i), X(j)

)
≤ d̂PIC

(
X(i),xi

)
+ d̂PIC

(
xi, X

(j)
)

d̂PIC

(
xi, X

(i)
)
≤ d̂PIC (xi,xj) + d̂PIC

(
xj , X

(i)
)

d̂PIC (xi,xj) ≤ d̂PIC

(
xi, X

(i)
)
+ d̂PIC

(
xj , X

(i)
)

Algorithm 1 Clustering ARMA models

Require: D, κ, (pmax, qmax)

Estimate m̂i,β̂i and {π̂i,j}τj=1 sequences:
for i = 1..N do

m̂i, β̂i ← argmin
m=(pk,qk)∈[0,pmax]∗[0,qmax]

(
−2L̂ni(β̂[m]) + (pk + qk)log(ni)

)
{π̂i,j}τj=1 ← Compute truncation of π seq

end for
Initialize κ-farthest points as cluster-centres:
c1 ← 1
C1 ← {c1}
for k = 2..κ do

ck ← argmax
i=1.N

minj=1..k−1 d̂PIC

(
xi,xcj

)
▷ where ties are broken arbitrarily

Ck ← {ck}
end for
Assign the remaining points to closest centres:
for i = 1..N do

k ← argminj∈
⋃κ

k=1 Ck
d̂PIC (xi,xj)

Ck ← Ck ∪ {i}
end for
OUTPUT: clusters C1, C2, ..., Ck

3.2. Weakly Consistency of Algorithm 1. In this chapter, we show the weak

consistency of Algorithm 1. The Algorithm 1 for each sample xi estimates ARMA

models from the candidate models and computes the truncated π sequences for each

estimated model. And then, the estimated d̂PIC is used in the algorithm proposed

in [2]. The algorithm initializes the clusters using farthest-point initialization and

then assigns each remaining point to the nearest cluster. As stated in Proposition

3.1, the consistent estimation of the ARMA model requires including the true model

structure m∗ in the candidate models. We can weaken this condition, by demanding

that maximum orders of underlying κ ARMA processes in the ARMA dataset D
need to be known.
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Theorem 3.2. Assuming that maximum orders (pmax, qmax) of underlying ARMA

processes and the target number of clusters κ are known, then Algorithm 1 is weakly

asymptotically consistent. Moreover, for the given η ∈ (0, 1) there exists n, such that

if nmin = mini∈1..N ni > n, then

P (f((D, κ)) = G) ≥ (1− (N − κ)(4− 4η))(4η − 3)κ−1

Proof. Let us fix η ∈ (0, 1). Denote by δ the minimum nonzero distance between

the underlying unknown ARMA processes:

δ := min
k ̸=k′∈1..κ

dPIC

(
X(k), X(k′)

)
Fix ϵ ∈ (0, δ/4). The fact that the d̂PIC(xi,xj) distance estimate is weakly asymptotically

consistent, implies for large enough nmin we can write

(3.3) P ( max
k∈1..κ
i∈Gk

d̂PIC

(
xi, X

(k)
)
≤ ε) > η

Having (3.3) and applying the triangle inequality for large enough nmin we have

P

max
k∈1..κ
i,j∈Gk

d̂PIC (xi,xj) < 2ε

 ≥ P

max
k∈1..κ
i,j∈Gk

d̂PIC

(
xi, X

(k)
)
+ d̂PIC

(
xj , X

(k)
)
< 2ε


≥ P

{max
k∈1..κ
i∈Gk

d̂PIC

(
xi, X

(k)
)
< ε} ∩ {max

k∈1..κ
j∈Gk

d̂PIC

(
xj , X

(k)
)
< ε}


≥ P ( max

k∈1..κ
i∈Gk

d̂PIC

(
xi, X

(k)
)
≤ ε) + P ( max

k∈1..κ
j∈Gk

d̂PIC

(
xj , X

(k)
)
≤ ε)− 1 ≥ 2η − 1

(3.4)

The inequality (3.4) states that if xi and xj are samples from the same ground truth

clusters then for large enough nmin we have d̂PIC(xi,xj) < 2ε with probability not

less than 2η − 1. Then having the definition of the δ, the inequality (3.4), and the

triangle inequalities (3.2), we can find bounds for the distance between samples

from the different clusters. In particular, for all large enough nmin we have

P

 min
i∈Gk
j∈Gk′

k ̸=k′∈1..κ

d̂PIC (xi,xj) > δ − 2ε

 ≥(3.5)

≥ P

 min
i∈Gk
j∈Gk′

k ̸=k′∈1..κ

{dPIC

(
X(k), X(k′)

)
− d̂PIC

(
X(k),xi

)
−
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− d̂PIC

(
X(k′),xj

)
} > δ − 2ε

)
≥ P

 max
i∈Gk
j∈Gk′

k ̸=k′∈1..κ

{d̂PIC

(
X(k),xi

)
+

d̂PIC

(
X(k′),xj

)
} ≤ 2ε

)
≥ 2η − 1.

Algorithm 1 initializes the clusters using farthest-point initialization c1 := 1 and

the ck-th sample will be assigned with ck := argmax
i=1,N

minj=1..k−1 d̂PIC

(
xi,xcj

)
k = 2, ..., κ. To prove weak consistency first we need to show that assigned cluster

centers xc1 ,xc2 , ...,xcκ asymptotically are from different ground-truth clusters. Let

us denote by I(xi) the index of target cluster of the sample xi and by Î(xi) the

predicted index of cluster Î(xi) := argminj∈
⋃κ

k=1 Ck
d̂PIC (xi,xj) by Algorithm

1. If we denote the event of assigning first j clusters’ centers with samples from

different ground-truth clusters by A(j) := (I(xc1), I(xc2), ..., I(xcj ) are not equal),

where xc1 ,xc2 , ...,xcj are assigned by Algorithm 1, then from (3.4) and (3.5) we

can estimate the probability that all κ clusters center is assigned correctly.

Firstly for l < κ,

P

(
argmax
i=1,N

min
j=1..l−1

d̂PIC

(
xi,xcj

)
/∈ {I(xc1), I(xc2), ..., I(xcl−1

}|A(l − 1)

)
=

(3.6)

= P

(
max

i/∈{G1,..,Gl}
min

j=1..l−1
d̂PIC

(
xi,xcj

)
> max

i∈{G1,..,Gl}
min

j=1..l−1
d̂PIC

(
xi,xcj

))
≥

= P

(
{ max
i/∈{G1,..,Gl}

min
j=1..l−1

d̂PIC

(
xi,xcj

)
> δ − 2ϵ}∩

∩{ max
i∈{G1,..,Gl}

min
j=1..l−1

d̂PIC

(
xi,xcj

)
} ≤ 2ϵ

)

≥ P

(
max

i/∈{G1,..,Gl}
min

j=1..l−1
d̂PIC

(
xi,xcj

)
> δ − 2ϵ

)
+

+P

(
max

i∈{G1,..,Gl}
min

j=1..l−1
d̂PIC

(
xi,xcj

)
< 2ϵ

)
− 1 ≥

≥ (2η − 1) + P

(
max

i∈{G1,..,Gl}
d̂PIC

(
xi,xcI(xi)

)
< 2ϵ

)
− 1 ≥ 4η − 3.

The inequality (3.6) states that if samples xc1 ,xc2 , ...,xcl−1
are chosen from different

clusters, then Algorithm 1 will assign as a l-th cluster center, sample from the

different cluster with probability at least 4η − 3 for l = 2, ..., κ. Then, from (3.6)

we can estimate the probability that all assigned cluster centers are from different
11
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clusters.

P (A(κ)) = P
(
{I(xcκ) /∈ {I(xc1), I(xc2), ..., I(xcκ−1

)}} ∩A(κ− 1)
)
≥

≥ P
(
{I(xcκ) /∈ {I(xc1), I(xc2), ..., I(xcκ−1

)}}|A(κ− 1)
)
· P (A(κ− 1)) ≥

≥ (4η − 3) · P (A(κ− 1)) ≥ (4η − 3)κ−1(3.7)

The last inequality is true because of (3.6) and the fact that in the first step, xc1

is chosen properly with probability 1.

To complete the proof we need to show the weak convergence of the clustering

function. Having the A(κ) event, we can define the indicator function of misclustering

the sample xi.

Wi =

{
0, if I(xi) = I(xcÎ(xi)

)

1, if I(xi) ̸= I(xcÎ(xi)
)

In other words, the value of the random variable Wi is 0 if the index of the target

cluster of the sample xi coincides with the index of the target cluster of the nearest

centroid, and Wi = 1 otherwise.

If the first κ samples are from different clusters, then from (3.3) and (3.4), the

probability of including xi sample in the right cluster.

P (Wi = 0|A(κ)) ≥ P

{ min
cj∈{1,2,...,κ}
I(xi) ̸=I(xcj

)

d̂PIC

(
xi,xcj

)
> δ − 2ϵ}∩

{d̂PIC

(
xi,xcI(xi)

)
< 2ϵ}

)
≥ P

{ min
j=1,N

I(xi )̸=I(xj)

d̂PIC

(
xi,xcj

)
> δ − 2ϵ}∩

{ max
j=1,N

I(xi)=I(xj)

d̂PIC

(
xi,xcj

)
< 2ϵ}

 ≥ 4η − 3.(3.8)

If we denote by W =
∑N

i=κ+1 Wi the number of misclustered samples, except

the xc1 ,xc2 , ...,xcκ then the probability of including all samples in their ground

truth clusters, having that xc1 ,xc2 , ...,xcκ samples are from different clusters can

be estimated:

P (W = 0|A(κ)) ≥ 1− E[W |A(κ)] = 1−
N∑

i=κ+1

E[Wi|A(κ)] =

= 1−
N∑

i=κ+1

P (Wi = 1|A(κ)) ≥ (1− (N − κ)(4− 4η))(3.9)

12
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Therefore, for large enough nmin, the probability of recovering ground-truth clustering

by Algorithm 1

P (f((D, κ) = G)) = P ({W = 0} ∩ {A(κ)}) = P (W = 0|A(κ)) ∗ P (A(κ)) ≥

≥ (1− (N − κ)(4− 4η))(4η − 3)κ−1.
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