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A planetary resonant effect in Parker stellar dynamo
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Abstract

The effect of periodic pumping on dynamo generation in the simplest Parker model is studied in this
work. Pumping is understood in the sense that the periodic parameters oscillations in the dynamo system
leads to a change in the rate of the exponential growth of the mean magnetic field. And since the Parker
model simultaneously describes its time oscillations as the field grows, this phenomenon is very similar
to parametric resonance in the classical model of a harmonic oscillator. With the help of asymptotic
analysis and numerical simulation, we demonstrate both pump regions similar to parametric resonance,
as well as different amplification regions at high driving force frequencies, and suppression regions at low
frequencies, find the gain maximum and investigate the behavior of the critical pump frequency separating
the regions of generation and suppression.
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1. Introduction

Solar activity cycle as well as stellar activity cycles are believed to be driven by stellar dynamo action
based on stellar differential rotation and mirror asymmetric convection. The point however is that, the length
of solar activity cycle (about 11 year) is quite close to the Jupiter orbital period and many astronomers
supposed that the physical nature of solar activity cycle is somehow associated with the Jupiter influence on
solar magnetohydrodynamics. Obridko et al. (2022) recently demonstrated that solar activity cycle is the
only known case among a dozen similar cases accessible for contemporary observations where an activity
cycle is observable and its length is closed to the planets orbital period and we have to accept that we face
just a coincidence in solar case.

Obridko et al. (2022) stress however that this result do not exclude that a planetary effect on stellar
dynamo is possible in principle. The aim of this short paper is to show that a weak periodic modulation of
stellar dynamo drivers indeed can affect the dynamo threshold and transform a slightly subcritical dynamo
action in a supercritical one.

2. Dynamo model

Obviously, a gravitation of an exoplanet or a star in a binary system leads to a weak modulation of stellar
dynamo drivers which can be in principle include in dynamo model (e.g. Moss et al., 2002). The problem is
how to separate this weak influence from various nonstationary phenomena associated with dynamo action.
Our aim here is to demonstrate a physical phenomena rather to suggest a realistic model of a particular
explanatory system and we sole the above problem as follows. We consider the simplest stellar dynamo
model originated by Parker (1955) and include a weak periodic modulation of differential rotation.

The model proposed by Parker (1955) to describe the solar dynamo cycle is a direct consequence of the
averaged magnetic induction equation written for the poloidal and toroidal components of the magnetic field.
In the approximation of azimuthal symmetry - independence of the angle φ, and of a thin spherical layer -
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independence of the radial distance r, the only remaining spatial variable θ can be taken into account through
the expansion of the magnetic field components in the first few harmonics. The simplest approximation
describing the physical structure of the dynamo cycle can be obtained for only two components and is called
the low-mode approximation. This is the minimal set of the Fourier modes sufficient to obtain a growing
oscillating solution with nonzero magnetic moment (Nefedov & Sokoloff, 2010). Thus, for a dimensionless
average magnetic field expanded in terms of symmetric (for A) and antisymmetric (for B) harmonics with
respect to the equator

B = Beφ + [∇, Aeφ] = (b1 sin (2θ) + b2 sin (4θ)) eφ + [∇, (a1 sin (θ) + a2 sin (3θ)) eφ], (1)

This yields in the following simple dynamical system

ȧ1 = (Rα/2)b1 − µ2a1, ḃ1 = Rω(a1 − a2)− µ2b1,

ȧ2 = (Rα/2)(b1 + b2)− µ2a2, ḃ2 = 2Rωa2 − µ2b2.
(2)

Two dimensionless control parameters of the system Rα and Rω are responsible for the hydrodynamic
helicity in the convective shell and for the differential rotation, while it is well known that if their product,
the dynamo number D, is large enough, then the magnetic field in the system will increase exponentially.
The third parameter µ is responsible for diffusion and, in general, must take into account all components of
the Laplacian: radial, axial, and crosswise. Depending on the specific model, µ can be considered the same
for all four equations (if the main part of diffusion is radial) or different (if the axial part of the Laplacian
determines the main contribution, since the second derivatives with respect to θ will be different for different
harmonics). Here we assume the equality of all diffusion coefficients, and then we make an assumption about
what will change if these coefficients differ for each of the equations of the system.

Figure 1. The left panel: dependence of the exponential growth rate γ − µ2 on the parametric excitation
frequency ω. The dash-dotted horizontal line is the growth rate without parametric pumping σ = 0. The
right panel: dependence of the critical excitation frequency ωcr and the frequency of maximal growth ωmax

on the dynamo-number D = RαRω. The dash-dotted vertical line shows the dynamo-number when the
dynamo-growth stops. The black solid and dashed lines are the numerical and analytic results respectively.
The frequencies are normalised on correspondingly eigenfrequencies ω0.

Having expressed two components: b1(t) and b2(t) from the first two equations, we substitute them into
the second two. We obtain a system of two equations of the second order, which, after the replacement
a1,2(t) = f1,2(t) exp(−µ2t), can be reduced to a Mathieu-type system:

f̈1 − (RαRω/2)(1 + σ sin(ωt))(f1 − f2) = 0,

f̈2 − (RαRω/2)(1 + σ sin(ωt))(f1 + f2) = 0.
(3)

For such a system, in the absence of a periodic force σ = 0, it is easy to calculate the eigenfrequencies ω0

and the generation rates γ0 of the harmonic solution:

λ0 = γ0 ± iω0 = ±

√
−RαRω√

2
exp(±3iπ/8). (4)
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For σ ̸= 0, the solution to the system can be sought in the form of a harmonic with a shifted frequency and
a changed generation rate, however, unlike the analysis of parametric resonance for a harmonic equation,
this method does not give anything. Therefore, we are looking for a solution (3) as a sum of not two, but
four complex conjugate exponents with exponents γ ± iβ ± iω/2. Then, if the external periodic action has
a double frequency ω, then, neglecting the higher harmonics and collecting the terms from each of the four
exponentials, we obtain the solvability of the system for

γ + iβ = ±

√√√√λ2
0 ± iγ0ω

√
1± iR2

αR
2
ωσ

2

8λ2
0ω

2
− ω2

4
. (5)

For small σ, this asymptotic expression for the exponent of the exponential solution can be approximately
written as

γ + iβ = λ0 ±
iω

2
± R2

αR
2
ωσ

2

32λ0ω(λ0 ± iω/2)
+ o(σ2). (6)

Thus, periodic pumping of the Parker model selects two harmonics with frequencies shifted by 2β relative
to each other and γ generation rates close to γ0. The appearance of diffusion proportional to µ2, see the
system (2), only leads to a decrease in the generation rate by µ2 – it transforms in (γ − µ2) – while the
very nature of the beats remains the same. Note that in the course of the analytical evaluation, we neglect
the higher harmonics in iω/2, so in the formula (6), the signs should be chosen such that only the lower
harmonics remain. It can be seen that for σ = 0 the solution completely coincides with λ0 defined by
Eq. (4), while for σ ̸= 0 the real part of the solution (6) is greater than λ0 for ω is greater than some critical
frequency, and less than λ0 for ω less than this critical frequency. In the region of the doubled frequency of
the external force, the positive addition to the generation rate has a local maximum, and then, at ω → ∞,
the generation rate tends to γ0.

The described features of the dependence of external pumping on the frequency of the driving force are
clearly visible in the figure 1, left panel: the analytical results are shown in the figure by dashed line, and
the numerical results of calculating the generation rate are shown by a black solid line. The divergence of
the solutions is due to the asymptotic nature of the results obtained, therefore, a decrease in σ leads to
the fact that the two curves tend to each other and simultaneously converge to the straight line Reγ = λ0,
dashed-dotted horizontal line. A distinctive feature of such a response to a parametric action is the absence
of a clearly defined narrow resonance maximum at multiple frequencies, which, however, is explained by the
degeneracy of the symmetric system and the absence of a pure harmonic solution for the system (3).

By the degeneracy of the system, we mean that the fourth-order equation for the eigenvalues of the
system (2) has roots with real parts and frequencies that coincide in absolute value, respectively, among
them there is no fastest growing harmonic with a selected frequency, since two equally growing harmonics
have the same frequency. As a result, under parametric pumping, they do not have a solution in the
form of a quasi-harmonic signal, as in the classical case of parametric resonance, but instead, beats with a
specific resonance pattern are observed. If the diffusion µ for each equation of the system (2) differs, then
a distinguished frequency will appear with the fastest growing harmonic, and the parametric resonance will
acquire classical features with distinguished narrow peaks at doubled and multiple frequencies. Indeed, a
numerical test showed that for different diffusion coefficients – the resonance pattern is a superposition of
the pattern 1 and sharp peaks at double and multiple frequencies. At the same time, the gain maximum at
ωmax corresponding to the figure 1 and the presence of the critical frequency ωcr (below which the generation
rate is suppressed by the periodic influence, and above which it is enhanced) remain.

Finally, let’s pay attention to the resulting asymptotic formula for the exponential growth rate (6), the
real part of which is shown in the figure 1. The graph has a wide maximum, in comparison with the classical
resonant peak, near the frequency ω = 2.4ω0 and a critical boundary ω = 1.6ω0, which separates the region
of amplification and suppression of generation. The position of these characteristic markers depends on the
natural frequency ω0, and, accordingly, on the dynamo number D = RαRω, but its minimum value is limited
by the generation region – see the analytical and numerical estimate of the critical frequency in the figure 1,
right panel. In other words, at sufficiently high frequencies of the excitation force, greater than this critical
frequency, a periodic change in Rα will lead to an increase in generation at frequencies close to the natural
frequency ω0. Of course, in the case of nonlinear suppression D = RαRω the natural frequency of the system
will also change, but the generation will still be enhanced at sufficiently high frequencies. In this case, it
is difficult to predict in advance what kind of amplification - at high frequencies near a wide maximum or
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at a doubled frequency near a resonant peak - will be the main one, since this will be determined by the
diffusion part, but both can be present in the general formulation.

3. Conclusion and Discussion

We demonstrated that even a weak planetary effect on dynamo drivers can in principle lead to substantial
modification of dynamo driven magnetic field, i.e. transform a decaying magnetic field in a growing one
and vice versa. Indeed, playing with parameter µ responsible for turbulent losses in our dynamical system
we can make the dynamo number D for unperturbed system to be just a threshold one and dynamo driven
magnetic field to be just marginally stable. Then if the frequency of parametric excitation is large enough
we obtain excitation (right part of Fig. 1) and decay if the frequency is low enough (left part of Fig. 1). If the
unperturbed dynamo system is slightly subcitical a moderate σ can be still sufficient to get an excitation.
Of course, if perturbation is weak the subcritical dynamo should be very close to the excitation level so the
effect hardly can happen in many exoplanetary systems.
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