Известия НАН Армении, Физика, т.58, №2, с.166–171 (2023) УДК 539.12 DOI:10.54503/0002-3035-2023-58.2-166

ВКЛАД ИНТЕРФЕРЕНЦИИ ОПЕРАТОРОВ O_7-O_8 Для Распада $B \to X_s \gamma \gamma$

Г.Г. АСАТРЯН^{1,2*}, Г.М. АСАТРЯН², С.А. ТУМАСЯН²

¹Ереванский государственный университет, Ереван, Армения ²Национальная научная лаборатория им. А.И. Алиханяна, Ереван, Армения

*e-mail: hrachasatryan48@gmail.com

(Поступила в редакцию 28 февраля 2023 г.)

Редкие распады В-мезонов позволяют исследовать физику вне Стандартной Модели. Для процесса $B \to X_s \gamma \gamma$ потенциальная новая физика должна быть ясно видна не только для ширины распада, но и в дифференциальных распределениях по параметрам (s_1, s_2) , которые определены как $s_i = (p_b - q_i)^2 / m_b^2$, (i = 1, 2), где p_b , q_1, q_2 — импульсы b-кварка и двух фотонов. В работе рассчитан вклад порядка α_s интерференции операторов $O_7 - O_8$. Мы также учитываем зависимость результатов от массы s-кварка при изменении m_s в диапазоне 400–600 МэВ. Вклад интерференции операторов $O_7 - O_8$ в ширину распада $B \to X_s \gamma \gamma$ в рассматриваемой нами области фазового пространства составляет 2–3%.

1. Введение

Редкие распады *B*-мезонов находятся в центре внимания физиков, поскольку они обеспечивают потенциальные тесты Стандартной Модели (СМ) для высоких энергий [1–6]. В СМ переходы нейтрального тока с изменением аромата (такие как $b \rightarrow s\gamma(\gamma)$) подавлены, поскольку они появляются только на петлевом уровне. Такие процессы могут стать уникальным источником для исследования физики вне СМ в масштабе энергий порядка ТэВ. Известно, что исследования радиационного распада $B \rightarrow X_s \gamma$ дали возможность получить нижнюю границу массы заряженного бозона Хиггса, которая составляет $m_H > 480\Gamma$ эВ при 95% уровне достоверности. Этот предел был получен нами путем сравнения недавних экспериментальных данных для $B \rightarrow X_s \gamma$ с нашими теоретическими расчетами.

Несмотря на то, что ширина распада $B \to X_s \gamma \gamma$ намного меньше, чем ширина распада $B \to X_s \gamma$, двухкратный радиационный распад обладает определенными преимуществами. Потенциальная новая физика для распада $B \to X_s \gamma \gamma$ должна быть ясно видна не только для ширины распада, но и в дифференциальных распределениях по параметрам s_1, s_2 .

Процесс $B \to X_s \gamma \gamma$ представляет непосредственный интерес для нового эксперимента Belle II (SuperKEKB) в Японии [3,4], целью которого является обнаружение относительной ширины распада до 10⁻⁸ или меньше. Это требует более точных расчетов в СМ для $B \to X_s \gamma \gamma$. В предыдущих работах мы уже провели расчеты вкладов операторов $O_7 - O_7$ и $O_8 - O_8$ порядка α_s [5, 6] (см. также ссылки, приведенные в этих работах).

Целью настоящей работы является продолжение расчетов поправок квантовой хромодинамики для распада $B \to X_s \gamma \gamma$ порядка α_s . Мы рассчитываем вклад интерференции операторов $O_7 - O_8$ порядка α_s в двойную дифференциальную ширину распада $d\Gamma / (ds_1 ds_2)$ для инклюзивного процесса $B \to X_s \gamma \gamma$. В настоящей работе мы рассчитываем только виртуальную часть этого вклада, которая не включает излучение свободного глюона, часть с излучением свободного глюона достаточно сложная задача, и ей будет посвящена отдельная работа. Мы учитываем зависимость результатов от массы *s* кварка при изменении m_s в диапазоне 400– 600 МэВ. Вклад интерференции операторов $O_7 - O_8$ в ширину распада $B \to X_s \gamma \gamma$ в рассматриваемой нами области фазового пространства составляет 2–3%.

2. Расчет диаграмм

Нами рассчитан вклад интерференции операторов $O_7 - O_8$ в ширину распада $B \rightarrow X_s \gamma \gamma$. Операторы O_7 и O_8 являются частью эффективного гамильтониана, приведенного в формуле (1.1) в работе [1]. Они равны:

$$O_7 = e / (16\pi^2) \overline{s}_a \sigma^{\mu\nu} (m_b(\mu) R + m_s(\mu) L) b_a F_{\mu\nu}, \qquad (1)$$

$$O_8 = g_s / (16\pi^2) \overline{s_\alpha} \sigma^{\mu\nu} (m_b(\mu) R + m_s(\mu) L) b_\beta (\lambda^A_{\alpha\beta} / 2) G^A_{\alpha\beta}, \qquad (2)$$

где $F_{\mu\nu}, G^A_{\mu\nu}$ – тензоры напряженности электромагнитного и глюонного полей, $L = (1 - \gamma_5) / 2$ и $R = (1 + \gamma_5) / 2$ и $\lambda^A_{\alpha\beta}$ – матрицы Гелл–Манна.

Число диаграмм Фейнмана с излучением двух фотонов и связанных с О7

Рис.1. Диаграммы, связанные с оператором O_7 и двумя фотонами: (а) первый излученный фотон имеет импульс q_2 , второй – q_1 , а оператор O_7 находится в вершине первого фотона; (b) первый излученный фотон имеет импульс q_1 , второй – q_2 , а оператор O_7 находится в вершине первого фотона; (c) первый излученный фотон имеет импульс q_2 , второй — q_1 , а оператор O_7 находится в вершине второго фотона; (d) первый излученный фотон имеет импульс q_1 , второй – q_2 , а оператор O_7 находится в вершине второго фотона.

Рис.2. Диаграммы, связанные с оператором O_8 и двумя фотонами: (a) один фотон излучается между глюонными вершинами, другой – после; (b) один фотон излучается перед глюонными вершинами, другой – между ними; (c) оба фотона излучаются между глюонными вершинами; (d) один фотон излучается перед глюонными вершинами; (d) один фотон излучается перед глюонными вершинами, другой – после; (e) оба фотона излучаются до глюонных вершин; (f) оба фотона излучаются после глюонных вершин.

равно 4 (рис.1), а число диаграмм Фейнмана с излучением двух фотонов и связанных с O_8 равно 24 (рис.2) (для экономии места мы привели только шесть диаграмм, чтобы получить все диаграммы, нужно во-первых заменить точки на O_8 или глюонные вершины, а потом сделать замену q_1 на q_2). В итоге, для интерференции операторов $O_7 - O_8$ с излучением двух фотонов на уровне амплитуды в квадрате в общей сложности получаем 96 диаграмм Фейнмана, которые надо просчитать.

Для расчета диаграмм была использована программа Tracer [7]. Полученный результат может быть представлен в виде линейных комбинаций скалярных произведений импульсов (включая скалярное произведение импульсов на самих себя): p_b и q_1, q_2 – это внешние импульсы, а r – импульс петли. Эти скалярные произведения можно представить в виде гораздо меньшего числа скалярных произведений, так называемых мастер интегралов. Таких программ сокращений много, мы использовали программу LiteRed [8]. В итоге мы получили четыре набора мастер интегралов, каждый из которых состоит из девяти мастер интегралов, с помощью которых можно представить все скалярные произведения наших диаграмм.

Первый набор включает пропагаторы:

$$P_{11} = (p_b - r)^2 - m_s^2, \quad P_{12} = (p_b - r - q_1)^2 - m_s^2,$$
(3a)

$$P_{13} = (p_b - r - q_1 - q_2)^2 - m_s^2, \quad P_{14} = r^2.$$

Мастер интегралы первого набора:

 $M_1 = \{(0,0,1,0), (0,1,0,1), (1,0,0,1), (1,0,1,0), (3b)\}$

$$(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0),(1,1,1,1)\}.$$

Второй набор включает пропагаторы:

$$P_{21} = (p_b - r)^2 - m_s^2, \quad P_{22} = (p_b - r - q_2)^2 - m_s^2, \tag{4a}$$

$$P_{23} = (p_b - r - q_1 - q_2)^2 - m_s^2, \quad P_{24} = r^2.$$

Мастер интегралы второго набора:

$$M_{2} = \{(0,0,1,0), (0,1,0,1), (1,0,0,1), (1,0,1,0), \\(0,1,1,1), (1,0,1,1), (1,1,0,1), (1,1,1,0), (1,1,1,1)\}.$$
(4b)

Третий набор включает пропагаторы:

$$P_{31} = (p_b - r)^2 - m_b^2, \quad P_{32} = (p_b - r - q_1)^2 - m_b^2,$$

$$P_{33} = (p_b - r - q_1 - q_2)^2 - m_b^2, \quad P_{34} = r^2.$$
(5a)

Мастер интегралы третьего набора:

$$M_{3} = \{(0,0,1,0), (0,0,1,1), (0,1,0,1), (1,0,1,0), \\(0,1,1,1), (1,0,1,1), (1,1,0,1), (1,1,1,0), (1,1,1,1)\}.$$
(5b)

Четвертый набор включает пропагаторы:

$$P_{41} = (p_b - r)^2 - m_b^2, \quad P_{42} = (p_b - r - q_2)^2 - m_b^2,$$

$$P_{43} = (p_b - r - q_1 - q_2)^2 - m_b^2, \quad P_{44} = r^2.$$
(6a)

Мастер интегралы четвертого набора:

$$M_4 = \{(0,0,1,0), (0,0,1,1), (0,1,0,1), (1,0,1,0),$$
(6b)

$$(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0),(1,1,1,1)\}.$$

Видно, что M_1 и M_2 получаются друг из друга, если изменить q_1 на q_2 . То же самое верно для M_3 и M_4 .

3. Расчет интегралов

Для расчета мастер интегралов мы использовали программу SecDec [9]. Кинематически область (s_1, s_2) , доступная для трехчастичного распада $b \rightarrow s \gamma \gamma$, определяется [5] как

$$s_1 > m_s^2 / m_b^2$$
, $s_2 > m_s^2 / m_b^2$, $1 - s_1 - s_2 + m_s^2 / m_b^2 > 0$, $s_1 s_2 > m_s^2 / m_b^2$. (7)

Нужно наложить некоторые кинематические ограничения. Во-первых, для наблюдения фотонов переменные s_1, s_2 должны быть меньше единицы. Кроме того, для обнаружения двух различных фотонов кинематически требуется, чтобы их инвариантная масса была отлична от нуля. Все эти требования можно удовлетворить, используя один физический параметр c ($c > m_s^2 / m_b^2$), потребовав, чтобы

Табл.1. Значения относительной ширины распада $B \to X_s \gamma \gamma$, когда учитывается вклад $O_7 - O_7$ (NLL) и $O_2 - O_7$ (LL) (столбец 2) и когда учитывается вклад $O_7 - O_8$ (столбец 3)

m_s / m_b	$O_7 - O_7, O_2 - O_7$	$O_7 - O_8$	Ratio
400/4800	7.9×10^{-8}	-1.58×10^{-9}	-0.021
500/4800	7.6×10^{-8}	-1.81×10^{-9}	-0.024
600/4800	7.5×10^{-8}	-2.11×10^{-9}	-0.028

$$1 - s_1 - s_2 > c, (s_1 - c)(s_2 - c) > c.$$
(8)

Двойной дифференциальный спектр распада $B \rightarrow X_s \gamma \gamma$ дается формулой:

$$\frac{d\Gamma}{ds_1 ds_2} = \frac{m_b}{256\pi^3} |M|^2,$$
(9)

где M – амплитуда распада. Чтобы получить относительную ширину распада для $B \to X_s \gamma \gamma$ в зависимости от c, мы интегрируем двойной дифференциальный спектр в соответствующем диапазоне по s_1 и s_2 , делим на ширину полулептонного распада и умножаем на экспериментальное значение относительной ширины полулептонного распада, равное 0.1049 [5] ($\hat{m}_c = m_c / m_b = 0.29$):

 $\Gamma_{sl} = m_b^5 G_F^2 |V_{cb}|^2 g(\hat{m}_c) / (192\pi^3), g(x) = 1 - 8x^2 + 8x^6 - x^8 - 24x^4 \log(x),$ (10) где $V_{cb} = 0.04$ – элемент матрицы Кобаяши–Маскава и $G_F = 1.166 \times 10^{-5} \, \Gamma_{2} \mathrm{B}^{-2}$ – константа Ферми слабого взаимодействия.

Мы провели расчеты для $\mu = m_b$, c = 1/50 и разных значений m_s / m_b . Результаты приведены в табл.1.

Таким образом, можно сделать вывод, что вклад интерференции операторов $O_7 - O_8$ в относительную ширину распада находится на уровне 2–3%.

На рис.3 приведен график зависимости $d\Gamma/(ds_1ds_2)$ от s_1 для $s_2 = 1/5$,

Рис.3. График зависимости $d\Gamma/(ds_1ds_2)$ от s_1 для $s_2 = 1/5$, $\mu = m_b$ и $m_s/m_b = 500/4800$.

 $\mu = m_b$, $m_s / m_b = 500 / 4800$. Сплошная линия – это сумма вкладов $O_7 - O_7$ и $O_7 - O_8$, пунктирная линия – только $O_7 - O_7$. Здесь также видно, что вклад $O_7 - O_8$ достаточно мал.

4. Заключение

В работе был рассчитан вклад порядка α_s интерференции операторов $O_7 - O_8$. Показано, что по сравнению с вкладом операторов $O_7 - O_7$ вклад операторов $O_7 - O_8$ достаточно мал для разных значений m_s / m_b .

Работа была выполнена благодаря финансированию комитета по науке Армении: грант 21AG-1C084. Работа С.А. Тумасяна была также поддержана Региональной докторской программой по теоретической и экспериментальной физике элементарных частиц, спонсируемой Volkswagen Stiftung.

Г.М. Асатрян благодарен С. Greub-у за многочисленные обсуждения распадов $B \to X_s \gamma \gamma$.

ЛИТЕРАТУРА

- 1. C. Greub, T. Hurth, D. Wyler. Phys. Rev. D, 54, 3350 (1996).
- 2. A. Hovhannisyan. Изв. НАН Армении, Физика, 37, 206 (2002).
- 3. I. Heredia de la Cruz. MWPF 2015, e-Print: 1609.01806. (2016).
- 4. T. Aushev et al. e-Print: 1002.5012 (2010).
- 5. H.M. Asatrian, C. Greub, A. Kokulu. Phys. Rev. D, 95, 053006 (2017).
- 6. H.M. Asatrian, C. Greub, A. Kokulu. Phys. Rev. D, 93, 01403 (2016).
- 7. M. Jamin, M. Lautenbacher. Comp. Phys. Commun., 74, 265 (1993).
- 8. R. Lee. J. Phys. Conf. Ser., 523, 012059 (2014).
- 9. J. Carter, G. Heinrich. Comp. Phys. Commun., 182, 1566 (2011).

CONTRIBUTION OF THE INTERFERENCE OF THE O_7 - O_8 FOR THE DECAY $B \rightarrow X_s \gamma \gamma$

H.H. ASATRYAN, H.M. ASATRIAN, S.A. TUMASYAN

Rare decays of B-mesons allow investigations of physics outside of the SM. For $B \rightarrow X_s \gamma \gamma$ potential new physics should be clearly visible not only for the width of the decay, but also in the differential distributions with respect to the parameters (s_1, s_2) , defined as $s_i = (p_b - q_i)^2 / m_b^2$, (i = 1, 2), where p_b , q_1, q_2 are the momenta of the b-quark and the two photons. In the paper the contribution of order α_s of the interference of the operators $O_7 - O_8$ was calculated. We also consider the dependency of the results from the mass of the s-quark by changing m_s in the range 400–600 MeV. The contribution of the interference of the operators $O_7 - O_8$ in the width of the decay $B \rightarrow X_s \gamma \gamma$ in the regions of the phase space considered by us is equal to 2–3%.