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Introduction

In the previous three scientific reports (Tarverdyan1), et al., 
2020, Tarverdyan2), еt al., 2020, Tarverdyan3), еt al., 2020), 
the relevance and urgency of conducting comprehensive 
investigations on the plants stem cutting in the dense 
medium (water, soil) is thoroughly justified. 

Particularly, the cleaning of reservoirs and canals from the 
cane-like and other water plants is an important issue. The 
practice of applying the current segmented-finger cutting 
apparatus has indicated that they aren’t so much efficient 
for the use in aquatic environment.  
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A R T I C L E  I N F O

In this regard rotary cutting apparatus are more preferable, 
anyhow, they haven’t provided the desired results either 
(Tarverdyan, 1996, Tarverdyan, 2014, CSRIITE, 1978). 
The blade speed of the currently applied rotary cutting 
apparatus makes 30-50 m/s (Tarverdyan, 1996, Blinov, 
1973); the mentioned speed generates such high resistance 
forces, which result in rapid reduction of rotation numbers 
in the rotors. In the result of investigations, it has been 
found out that the increase of the rotation numbers only 
in two times requires 5 times more power consumption 
(Tarverdyan1), et al., 2020, Tarverdyan2), et al., 2020, 
Tarverdyan, 2014).

The article considers the issue related to the disclosure of the reasons for the 
abrupt reduction of resistance force factors in case of plants stems vibro-cutting 
in dense medium through theory-based investigations.  
The computation scheme of the liquid motion in the vicinity of vibro-blade 
has been recommended, which enabled to derive differential equation of the 
motion resulted under the impact of interaction forces between the vibro-blade 
and environment.
It has been proved, that the liquid in the vibro-blade vicinity is subjected to 
rapid damped oscillation, due to which the environmental resistance forces and 
the energy consumption rates are reduced in about 20 times against the same 
indices recorded in case of vibrationless cutting.
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The attempts aimed at upgrading of cutting apparatus have 
been doomed to failure (CSRIITE, 1978); this means that 
the design of a completely new apparatus is the only way 
to handle the raised problem. Upon the results of long-
term experiments on the plants stem (both thin- and stiff 
thick-stalked) cutting, it has been proved that it is possible 
to implement cutting in the dense environment with 
the minimum energy consumption using a vibro-blade 
which receives vibrational motion with low amplitude   
(2 ÷8  mm) and relatively higher frequency (30÷100  s-1), while 
the rotation numbers transmitted to the rotor is relatively low 
making up to 1.0 s-1 (Tarverdyan, 1996, Tarverdyan, 2014, 
Altunyan, 2009).  

The small rotation numbers in the rotor and, hence, the 
small circumferential velocities don’t generate additional 
resistance forces in the dense environment, while the stem 
cutting resistance forces sharply drop down in the result of 
vibrational movements of the blades (Tarverdyan1), et al., 
2020, Tarverdyan, 1996, Altunyan, 2009). 

 

Materials and methods

Throughout the studies of field-related scientific literature 
no research work devoted to the theoretical research on 
the plant stems vibratory cutting in the dense medium 
has been ever found.  To this end we have set a task to 
comprehensively study the vibro-cutting mechanisms in 
the dense environment and to try to reveal the causes for 
rapid reduction of vibro-blade resistance forces in the dense 
environment.

First, the plants stem vibrationless cutting in the water 

medium, and then cutting with vibratory blade movement 
in the same conditions have been considered. The solution 
to the first mentioned problem is thoroughly introduced in 
the first article of the current series (Tarverdyan1), et al., 
2020), i.e., the cutting process of the cane stem in water 
environment with the blade of the rotary cutting apparatus 
without blade’s vibration has been examined. A specific 
computational pattern has been selected and by using the 
well-known principles and laws of hydrodynamics (Milne-
Thomson, 1964, Prandtl, 2000), all environmental resistance 
force factors affecting the blade have been determined.    
In the second stage of the problem solution, the vibratory 
cutting of the cane stems in water medium has been 
investigated (Tarverdyan2), et al., 2020). 
Upon the experiments it has been asserted that it is 
relevant to implement the plants stem cutting in the dense 
medium along the mutually perpendicular directions of the 
blade cutting edge in conditions of balanced oscillations 
(Tarverdyan, 2014). So, to identify the specifics of vibro-
cutting, the blade vibration mode should be chosen 
through the Elliptic law (Tarverdyan, 1996, Tarverdyan, 
2014, Bolotin, 1978, Levendel, 1981). To disclose the 
effect of vibratory movement on the resistance forces 
of the water medium, a computation scheme has been 
selected (Tarverdyan2), at al., 2020) and an assumption has 
been made according to which the water mass within the 
range of elementary prism, shifts the movement direction 
during a single oscillation phase  (the vibration frequency) 
resulted from the vibratory movement, and hence, the 
epure of the fluid motion velocities in the perpendicular 
directions of the blade sheet will look like the diagram 
introduced in Figure 1 a.  

Figure 1. The epure of the fluid motion velocities in the vicinity of the vibro-blade moving in the liquid (composed by the authors).

  a                                                b

blade
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The epure overview of the fluid particle velocities in the 
vicinity of vibro-blade is introduced in Figure 1b.

It is easily noticed that the total area of the summary 
epure can be practically assumed as zero, moreover, the 
higher vibration frequency is (ω1,), the more reliable the 
abovementioned assumption becomes. So, if the volume 
of the vibration-driven moving liquid is practically equal 
to 0 (the area of the elementary prism base: A→0), then 
the moving liquid mass - dm=0 - and all the force factors
 (Tx and Pin), which are related to the mass flow of the 
moving liquid and generate resistance forces of the 
environment, are practically turned to 0 (Tarverdyan2), et 
al., 2020).

In case of vibration, from the resistance force factors in the 
blade movement, only resistance momentum is available, 
the value of which depends on  forces (Tarverdyan1), et al., 
2020), which is reduced in 10-35 times (Tarverdyan2), et 
al., 2020).

The recommended model and computation scheme for the 
problem solution have enabled to disclose the reasons for the 
abrupt decrease in the resistance forces of the water medium.

It is noteworthy that the received results are based on the 
abovementioned assumption and precise solution of the 
problem is of high priority, first, from the prospect of 
proving the assumption and then from that of revealing the 
specifics of vibro-cutting. Based on the afore stated and on 
the view of epure designed for the vertical water motion 
against the upper and lower vibro-blade sheets, it becomes 
logical to find the precise solution to the problem within the 
scope of the damped oscillation theory (Biderman, 1980).  

As in previous cases (Tarverdyan1), et al., 2020, 
Tarverdyan2), et al., 2020), here again, let’s choose a design 
diagram which articulates the real state of the interactive 
forces in fluid motion, moving mass, vibro-blade and 
water environment and their regularities more accurately. 
When choosing the computation pattern (Figure 2), the 
well-known hydrodynamic provisions (Milne-Thomson, 
1964, Prandtl, 2000) and the diagrams discussed in the 
previous works (Tarverdyan1), et al., 2020, Tarverdyan2), 
et al., 2020) have been taken into account, the theoretical 
findings of which have been proved through scientific 
experiments with sufficient precision.  

Since the rotational movement (shifting) of the blade hardly 
generates environmental resistance forces, which has been 
reasonably stated above, only vibration movement has 
been considered when designing the computation scheme. 

The most significant difference against the previous schemes 
is that the fluid movement is performed only along the 
vibro-blade latitude b and longitude ℓ, since, as it has been 
already mentioned above, ω0=0.  The letter designations 
of the values are the same as in the previous schemes 
(Tarverdyan1), et al., 2020, Tarverdyan2), et al., 2020).

So, ω0  is the rotor’s rotation frequency,  ax  is the 
oscillation amplitude along the length of the blade cutting 
edge, az is the oscillation amplitude perpendicular to the 
blade cutting edge,  Vx is the vibration velocity towards 
the x axis (Vx=axω1cosω1t), Vz is the vibration 
velocity towards the z axis (V z=a zω1sinω1t), ω1 is the 
vibration frequency in mutually perpendicular directions 
(ωx=ωz=ω1).

Figure 2.  The computation scheme for the determination of the resistance forces in the vibro-blade movement of the cutting apparatus in water 
environment (composed by the authors).

  a                                                b

vibro-blade
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In the considered case the liquid mass in movement will 
be:

M=A∙ℓ∙ρ,

where A is the area of the prism built with four parabolic 
triangles 14

3
A b d= ⋅ ⋅ ,  ρ is the liquid density.

By inserting we’ll have:
4
3

M b d r= ⋅ ⋅ ⋅ .

The interactive force factors of the moving fluid mass 
and vibro-blade are as follows (Tarverdyan1), et al., 2020, 
Tarverdyan2), et al., 2020): 

• Tangential resistance force towards the latitudinal 
direction of the vibro-blade sheet: Tz

16z
dzT b
dt

mrw= 

.

• Tangential resistance force towards the longitudinal 
direction of the vibro-blade sheet: Tx 

1
1

4 2
3 5x

vb dxT
d

rw
w

= ⋅ ⋅






.

• Hydrodynamic resistance force, which is directed to the 
blade width vertical to the cutting edge: Pd.

Pd=c∙λ∙ρ∙ℓ2∙z.

• Inertia forces towards the Z and X axes:  Pin(z) and Pin(x).
2

( ) 2in z
d zP M
dt

= ± ⋅ ,     
2

( ) 2in x
d xP M
dt

= ± ⋅ .

The letter designations and their numerical values in 
the above mentioned expressions are as follows for our 
problem: r is the environmental density (1000 kg/s3, this 
and other values refer to water medium), m is the viscosity 
coefficient (0.1 kg/m·s), v is the kinematic viscosity 
coefficient (1·10-6 m2/s), c is the constant coefficient, it 
depend on the blade shape and sizes (in our case  c=1.45 
(Prandtl, 2000), b is the width of the blade sheet (0.03 m),  
ℓ is the length of the blade sheet (cutting edge) (0.3 m),               
λ  is the thickness of the blade sheet (0.001 m).

Results and discussions 

From the prospect of discussed problem the force factors, 
which are directed towards the Z axis and generate 
resistance moment against the rotor’s shaft of applied 
cutting apparatus, whereupon the value of applied power 
is determined, are of primary interest. For the M mass of 

the liquid the Newton second law will look as follows:
2 2

2 2
1 12 2 6d z d z dzM M b p c p z

dt dt dt
m w l w= − − ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ 

 

or by placing the M value we᾿ll have:

                                                                                         . (2)
2

2 2
1 12

8 6 0
3

p b d z dzb p c p z
dt dt

d m w l w⋅ + + ⋅ ⋅ ⋅ ⋅ ⋅ =


 

Here is the differential equation of the moving liquid mass, 
which enables to describe the damping oscillations in case 
of some parametric values. 

It is worth mentioning that the expression of  16b mrw

is the damping coefficient kg
s

 
  

, and  2 2
1c l w r⋅ ⋅ ⋅ ⋅ is 

the coefficient of elastic resistance 
2

kg
s

 
  

.

The expression (2) will look as follows:

            22
1 1

2

9 3 0
4 8

cd z dz z
dt dt b

mrw l w
rd d

⋅ ⋅ ⋅
+ ⋅ + ⋅ =



.        (3)

In this expression m, ρ ,c, l, ℓ , b  are constant values,  w1 

and d are also constant values in each considered case, 
anyhow, since one of the research objectives is the study 
of convergence just related to w1, then by assigning it 
with arbitrary values, we’ll get the damping character and 
parameters within the identified range of the vibro-blade 
action (30÷100 s-1). 

The selected value for w1 determines the value of d (the 
height of liquid strata in motion) (Tarverdyan1), et al., 
2020, Tarverdyan2), et al., 2020):

max
z

b
V
md = ,

where  max
zV  is the maximum value of vibration speed 

towards the latitudinal blade direction:  max
1z zV a w= ⋅ .

By inserting the numerical values of the constants in (3), 
we᾿ll have:

 22
13 3 1

2 7.5 10 1.813 10 0.d z dz z
dt dt

w w
d d

− −+ + ⋅ + ⋅ ⋅ ⋅ =    (4)

Let’s assign:

           3 17.5 10m
w
d

−= ⋅  and  
2

3 11.813 10n w
d

−= ⋅ .           (5)

In each considered case, when w1 and consequently  d  
have certain values, m and n are constant and positive.

, (1)
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Let᾿s find the solution of the differential equation (4) in  
the following form: z(t)=ekt.

The descriptive equation will be:

                          k2+mk+n=0.                 (6)

For the oscillations to be convergent, the following term 
should be satisfied: m2-4n<0.

In that case the equation (6) will have complex roots:

k1=-α+iβ and  k2=-α-iβ ,

2

2 0d z dzm n z
dt dt

+ + ⋅ = .

The general solution of the equation will look as follows:

z(t)=e-αt (C1 cosβt+C2 sinβt),

where C1 and C2 constants are determined upon the 
following initial conditions: z(0)=α1 and  zˊ(0)=β1.

It is evident that for any C1 and  C2  cases such A and j 
values can be chosen so as to have the following: 

                   1 2

2 2 1
1 2

2

sin , cos ,

,

C A C A
CA C C arctg
C

j j

j

= =

= + =

                 
(8)    

                                                                       .

The (7) expression can be presented in the following way:

z(t)=A∙e-αt (sinφcosβt+cosφsinβt)=Ae-αt∙sin(βt+φ).  (9)

The (9) expression is the oscillation equation, the initial 
amplitude of which is A, and j is the initial phase, which 
are determined through the (8) expression. 

Let’s determine the  C1 and C2 constants.  

From the term of  t=0 it follows that C1=a1.

zˊ(t)=-α∙e-αt(C1cosβt+C2sinβt)+

+e -αt∙(-βC1sinβt+βC2 cosβt).           

zˊ(0)=-αC1+βC2=β1,

wherefrom 1 1
2

a aC b
b

+ ⋅
= .

By placing in the (8) expression, we’ll have:

2
2 1 1
1

a aA a b
b

 + ⋅
= +  

 
,
   

1

1 1

aarctg
a a
bj

b
⋅

=
+ ⋅

.
   

From the practical viewpoint the state of damped 
oscillation depending on fluctuation w1 frequency and the 
blade geometric parameters is of great significance. 

Let’s determine the C1   and  C2  constants based on the initial 
terms relevant to our problem. At the beginning of the vibro-
blade movement we have (t=0), z(0)=0, from which it 
follows, that C1=α1=0. The maximum oscillation velocity 
is in the point of z=0 therefore max

1 2(0) ( )zz V cb b′ = ≡ = ⋅    

wherefrom  
max

2
zVC
b

= .

In case of initial parameters of our problem the equation of 
damped oscillation will take the following form:
 
z(t)=C2 e-αt∙sin βt  or 

 
( ) 1 sinatzaz t e tw b

b
−⋅

= ⋅ ⋅ .

For each considered case it is necessary to determine  a 
and b.  

Let᾿s consider the following options:

1. ω1=30 s-1:    in this case    

δi=5.8∙10-3 m,  max 0.09zV = m/s,  

3 1
3

3 2
3

307.5 10 7.08 ,
5.8 10

9001.813 10 281 .
5.8 10

m s

n s

− −
−

− −
−

= ⋅ =
⋅

= ⋅ ⋅ =
⋅

 

The descriptive equation will be: k2+7.08k+281=0. 

k1,2=-3.54±16.385i, α=-3.54, β=16.385.

0.09 0.00549 0.549
16.385

A m m= = = cm.

The diagram of the damped oscillation function 

z(t)=0.549e-3,54t∙sin(16.385t)  is introduced in Figure 3.

Figure 3. Diagram of   z(t)=0.549e-3,54t∙sin(16.385t) function. 
(composed by the authors).
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Figure 4. Diagram of z(t)=0.476e-6.025t∙sin(31.523t) function 
(composed by the authors).

2. ω1=50 s-1:    in this case

δi=4.4∙10-3 m,  max 0.15zV = m/s,

m=12.05 s-1,   n=1030 s-2,   k1.2=-6.025±3.523i,   

α=-6.025, β=31.523, A=0.476 cm.

The diagram of z(t)=0.476e-6.025t∙sin(31.523t)  function 
is introduced in Figure 4.

3.  ω1=100 s-1:    in this case

δi=0.0032 m,  max 0.3zV =   m/s

m=23.43 s-1,   n=5664 s-2,  

k1,2=-11.71±74.342i,   α=-11.715, 

β=74.342, A=0.404 cm.

The diagram of  z(t)=0.404e-11.715t∙sin(74.342t) function 
is introduced in Figure 5.

4. Let’s also consider the effect of vibro-blade 
geometrical parameters on the convergence of 
oscillations. For the second variant (ω1=50 s-1) let’s 
assume that b=0.05 m and l=0.002 m. We’ll have: 

m=12.05 s-1,  n=1235 s-2,

k1,2=-6.025±34.622i, α=-6.025,

β=34.622, A=0.433  cm. 

The diagram of  z(t)=0.433e-6.025t∙sin(34.622t) function is 
introduced in Figure 6.

Figure 5. Diagram of  z(t)=0.404e-11.715t∙sin(74.342t) function 
(composed by the authors).

Figure 6. Diagram of z(t)=0.433e-6.025t∙sin(34.622t) function 
(composed by the authors).

Thus, based on the results of software solution of the 
equations and the oscillogram analyses, it can be stated 
that the water mass around the vibro-blade vicinity is 
subjected to fast damping oscillation in the water medium, 
which entails to the abrupt decrease in the environmental 
resistance forces.

 

Conclusion

 Upon the precise problem solution the hypothesis that the 
fluid of the vibro-blade vicinity is subjected to the damped 
oscillation has been proved and justified; so the blade 
resistance forces in the dense medium are sharply reduced 
(10 ÷30 times).
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The damping time of the oscillations (t) is inversely 
proportional to the vibro-blade oscillation frequency (w1). 
For example, if ω1=30 s-1, then t=1.5 s (Figure 3), if 
ω1=50 s-1, then t=0.9 s, (Figure 4), if  ω1=100 s-1, then 
t=0.45 s (Figure 5), which is quite logical and affirms the 
compatibility of background assumptions for the problem 
solution and the computation scheme with the real 
character of vibro-blade and water medium interactions.

The geometrical dimensions of the vibro-blade have 
no significant effect on the specifics and parameters of 
oscillation damping. 
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