ISSN 0002-306X. Proc. of the RA NAS and NPUA Ser. of tech. sc. 2022. V. LXXV, N3

UDC 621.3.049.77 MICROELECTRONICS
DOI: 10.53297/0002306X-2022.v75.3-431

A.V. VARDUMYAN

AN EFFICIENT PRIMARY POPULATION INITIALIZATION METHOD
FOR METAHEURISTIC ALGORITHMS

It is widely recognized that convergence capabilities of metaheuristic optimization
algorithms can be enhanced by properly chosen initial population. Most of the state-of-the-
art initialization techniques are suffering from numerous shortcomings, that ultimately
make them non-viable or not efficient enough. To overcome this, this paper proposes a new
algorithm for population initialization, which adopts the approach of dividing the search
space into nested cubes and picking edge-points for sampling. Based on the data obtained
after testing the method on 8 complex benchmark functions against other popular initialization
strategies in the scope of WOA algorithm, the proposed approach outperformed all of the
candidates in finding the global optimum.

Keywords: metaheuristic algorithm, population initialization, swarm intelligence,
evolutionary algorithm.

Introduction. Solving optimization problems generally indicates traversing
through the set of all feasible solutions, that satisfy the given constraints in order to
identify the one that, depending on the problem statement, either minimizes or
maximizes the figure of merit (FOM). These problems, when expressed via
mathematical expressions or functions, can have a variable number of properties,
control parameters and diverse behavior (continuous/discrete, linear/nonlinear,
etc.). So, the general problem formulation is as follows:

minimize /maximize f (x), subject to: x;, < x; <x; , forallj=12,..,D,

where f(x) is the objective function, the value of which for the given
x = [x1, X, ..., Xp] represents the FOM and x;,, /x; , represent the lower and upper
bounds of the search space, respectively.

So far numerous approaches have been devised to tackle this kind of
problems, each having their advantages and drawbacks. For instance, among the
most popular precise methods being the Gradient Descent, which requires the
target function to be convex and needs to calculate its derivatives for each domain
point (i.e., it should be differentiable), which for most non-conventional situations
is not implementable. On the contrary, there are sets of approximate solution

finding approaches that do not impose specific limitations on the objective function
431

but sacrifice some of the accuracy. These include evolutionary algorithms
[Differential Evolution (DE), Genetic Algorithms (GA), etc.] [1] and nature-
inspired metaheuristics or so-called swarm-based intelligence [Whale Optimization
Algorithm (WOA), Ant-Lion Optimizer (ALO), Gray Wolf Optimizer (GWO),
etc.] [2]. Recent particular interest in this type of optimization routines stems from
their generalization possibilities, relative ease of implementation and sufficient
reduction in the amount of calculations required through iterations. So, it comes as
no surprise that more and more natural phenomenon are getting mathematically
modelled to simulate certain behaviors and thus designing new algorithms.

One particular step that is crucial for efficient operation in all of them is
primary population initialization [3]. Since all of these stochastic techniques
operate on populations of individuals (potential solutions or x vectors), properly
chosen initial population can give a kickstart to the search process or cause it to
stagnate and eventually get stuck in local optima. To surmount that obstruction a
number of initialization techniques have been proposed, the primary goal of which
is to distribute individuals in the search space as uniformly as possible, thus
increasing the odds of finding global optimum [4]. Some of the most widely
utilized ones are PRNG, CI, OBL and LHS.

Pseudo-random number generator (PRNG) is by far the most commonly
used initialization technique, which generates truly random number sequences
scattered across the search space. The only external parameter that can control the
generation process is the “seed”, that controls the process. The primary downside
of this approach is inability to guarantee sufficient coverage of the search space.

Chaotic initialization (CI) is characterized by the chaos theory [5] and has
been successfully implemented for metaheuristic algorithms [6]. To generate
numbers this approach uses chaotic maps (e.g., Gauss map, tent map, etc.), which
produce real values that can be exploited to generate numbers of interest via
scaling. The drawback of this technique is the likeliness to miss out on potentially
significant features when scaling up to higher dimensions, which is also known as
the “curse of dimensionality”.

Latin hypercube sampling (LHS) is a statistical method, that generates near-
random numbers satisfying additional constraint apart from search space limitations
[7]. That being if the area is divided into equally spaced grid mesh, called Latin
squares, then each row and each column should have only a single sampling point,
which leads adequate representation of problem dimensions in the population [8].
Similar to CI, this strategy also suffers from the “curse of dimensionality”.

Opposition-based learning (OBL) is comprised of 2 steps, in which during
the first one a population P is initialized for a given number of individuals using

432

any of the above or other methods based on that the opposite population Y is
generated via the following formula:

Y[i,j] = UB[j] + LB[j1 - P[i,jl; fori=1,..,N;j=1,...,D,

where P[i, j] is the ji;, parameter of the i, individual in population P, UB[j] and
LB[j] are the upper and lower bounds for the j;;, parameter respectively, and Y[i, j]
is the corresponding opposite parameter. Finally, a subset of best individuals based
on fitness is chosen from both P and Y, which gets returned as the final result [9].
Though it was successfully implemented for metaheuristics [10], the major
shortcoming of this method is the need for 2 * N function evaluations to generate a
population of N individuals, which tends to be computationally expensive if the
FOM is not a regular function, but for instance a circuit that needs to be simulated
to get the fitness value.

The proposed approach. To overcome the above-mentioned issues from which
other algorithms are suffering, a Double-diagonal uniform initialization (DDUI)
technique is proposed in which the entire process is divided into several steps. As a
first step, the entire search space is divided into N /4 nested cubes, the final points
will be the 4 edge points of each cube. That is achieved via diagonals that are going
through the space and crossing each other (in this paper they are regarded as the
main and the secondary diagonals). Examples of what the endpoints might look
like for 2D, and 3D planes are presented in Fig. 1 (a) and (b) respectively, in which
red marks indicate the final sampling points that should be returned.

a)
Fig. 1. DDUI sampling points for 2D plane (a) and 3D plane (b)

433

Input: Population size N,values upper bounds UB, values lower bounds LB
number of dimensions D
Output: Initialized population
// Calculate number of points on each diagonal
main_diag, second_diag = 0
if N modulo4 =0

main_diag = second_diag = [N /2]
elseif (N— 1) modulo4 =0

main_diag = second_diag = [N/2] + 1
else

return Error
end if

\Allocate memory for population P(xl-,j)

or P(xirf)(N+1)><D
Initialize main diagonal
Initialize secondary diagonal
// Remove duplicate point
Delete P[main_diag/2] if main_diag modulo 2 = 1
return P(x; ;)

NxD
if main_diag modulo 2 =1

Algorithm 1. DDUI main routine

foriinrange(1,2,...,main_diag)

ifi=1
Pli]=LB
elseif i = main_diag
P[i]=UB
else

forjinrange(1,2,..,D)
dx = (UB[j] — LB[j])/(main_diag — 1) // Step
P[i,j] = LB[j] + i * dx
end for
end if
end for

Algorithm 2. DDUI main diagonal initialization

434

foriinrange(1,2,...,second_diag)
ifi=1
P[main_diag + i]
= merge(every second element from LB starting from 1
+ every second element from UB starting from 2)
elseif i = second_diag
P[main_diag + i]
= merge(every second element from UB starting from 1
+ every second element from LB starting from 2)
else
forjinrange(1,2,..,D)
dx = (UB[j] — LB[j])/(second_diag — 1) // Step
if jmodulo2 =0
new_value = LB[j] + i * dx

else
new_value = UB[j] — i * dx
endif
P[main_diag + i,j] = new_value
end for
endif
end for

Algorithm 3. DDUI secondary diagonal initialization

The point coordinate calculation process starts from initial memory allocation
and parameter setting as depicted in Algorithm 1. Afterwards the computational
process begins for the main and the secondary diagonals, the pseudo-codes for
which are presented in Algorithm 2 and Algorithm 3, respectively. In terms of
implementation complexity, the entire process involves only several loops and does
not conduct any auxiliary calculations and as experiments will further show, the
performance does not decline with increasing the dimensionality of the problem.

The only limitation that gets imposed to the user by this technique is that the
number of the sampling points cannot be arbitrary, but rather should be either 4 * i
or4 i+ 1, wherei = 1,2,3, ..., but this still covers most commonly used round
numbers like 20, 40, 100, etc.

435

kiey
—— WOA_DDUI
~—— WOA_Random
—— WOA_Uniform
—— WOA_LHS
—— WOA_OBL
— WOACI

WOA_DDUI
WOA_Random
WOA_Uniform
WOA_LHS
WOA_OBL
WOA_CI

(11T

WOA_DDUI
WOA_Random
WOA_Uniform
WOA_LHS
WOA_OBL
WOA_CI

[TITT

—

—— WOA_DDUI
~—— WOA_Random
—— WOA_Uniform
—— WOA_LHS
—— WOA_OBL

" — WOA_CI

g)

—— WOA_DDUI
~—— WOA_Random
—— WOA_Uniform
—— WOA_LHS
—— WOA_0BL
— WOACI

Rastrigin

—— WOA_DDUI
—— WOA_Random
—— WOA_Uniform
— WOA_LHS
—— WOA_0BL
— WoA_CI

—— WOA_DDUI
—— WOA_Random
—— WOA_Uniform
—— WOA_LHS
—— WOA_OBL
— WoACI

WOA_DDUI
WOA_Random
WOA_Uniform
WOA_LHS
WOA_OBL
WOA_CI

LTI

h)

Fig. 2. Convergence plots of different initialization methods on 8 benchmark functions:
Ackley (a), Easom (b), Griewank (c), Rastrigin (d), Rosenbrock (e), Schwefel (f),
Styblinski-Tang (g), Zakharov (h)

Comparison of different initialization methods (dimensions = 10)

Table 1

Func | Value DDUI Uniform LHS OBL Cl
1 2 3 4 5 6 7
Best 0 0 0 0 3.55E-15
f1 Worst 1.07E-14 1.42E-14 1.42E-14 1.42E-14 1.42E-14
Mean 5.51E-15 5.86E-15 6.22E-15 6.39E-15 6.04E-15
Best -1 0 0 0 -1
f2 Worst -0.995393 0 0 0 0
Mean -0.998617 0 0 0 -0.42688
Best 0 0 0 0 0
f3 Worst 0 0.474477 0.447371 0.248930 0.74061
Mean 0 0.115378 0.061806 0.055661 0.11250
Best 0 0 0 0 0
fa Worst 1.42E-14 0 38.40678 59.52248 6.20447
Mean 7.11E-16 0 3.165975 6.439556 0.31022
Best 5.29E-09 5.156798 0.006609 0.006203 0.00043
fs Worst 0.007103 7.165505 7.180006 7.206342 7.19182
Mean 0.000926 6.488363 6.474888 6.155187 5.64577
Best -4189.828 -4189.748 -4189.828 -4189.818 -4189.82
fe Worst -4189.598 -2650.022 -2662.835 -2664.699 -2345.75
Mean -4189.793 -3411.158 -3531.479 -3597.201 -3798.93
Best -391.6616 -391.6587 -391.6614 -391.6557 -391.659
fq Worst -391.6549 -320.6448 -334.3338 -333.9817 -391.619
Mean -391.6604 -370.3126 -383.0364 -378.7673 -391.647
Best 4.499357 10103.10 8090.126 9829.655 45.7919
fs Worst 8.584559 35568.96 42038.54 34923.42 22127.7
Mean 6.389910 19309.57 23440.08 22512.79 5920.59

Experimental results. To comparatively evaluate the effectiveness of the
proposed method a set of 8 benchmark functions was chosen, that contains both
unimodal and multimodal functions with narrow global and numerous local
optimums. Namely the benchmarks are Ackley (f;), Easom (f,), Griewank (f,),
Rastrigin (f,), Rosenbrock (f.), Schwefel (f,), Styblinski-Tang (f,) and
Zakharov (fg) [11]. As an optimization routine one of the most recent additions to
swarm-based intelligence algorithms family, namely the Whale optimization
algorithm (WOA) [12] was chosen, that has since gained a lot of popularity and
modification proposals [13, 14]. The WOA mathematically models the hunting
behavior of humpback whales and offers several routines for exploration and
exploitation. As reference initialization candidates for DDUI evaluation Uniform
PRNG, LHS, OBL based on uniform PRNG and CI with tent-map as a chaotic map
were chosen.

437

Comparison of different initialization methods (dimensions = 50)

Table 2

Func Value DDUI Uniform LHS OBL CI
1 2 3 4 5 6 7
Best 3.55E-15 0 0 3.55E-15 3.55E-15
f1 Worst 7.11E-15 1.42E-14 1.42E-14 1.42E-14 1.42E-14
Mean 5.15E-15 6.04E-15 6.39E-15 8.70E-15 7.46E-15
Best -1 0 0 0 -1
f2 Worst -0.215439 0 0 0 0
Mean -0.855592 0 0 0 -0.10789
Best 0 0 0 0 0
f3 Worst 0 0.312606 0.224252 0 0.25278
Mean 0 0.015631 0.011213 0 0.01264
Best 0 0 0 0 0
fa Worst 0 5.68E-14 0 5.68E-14 5.68E-14
Mean 0 2.84E-15 0 2.84E-15 2.84E-15
Best 1.21E-05 46.94658 47.25961 47.57934 4.90902
fs Worst 0.363177 48.48067 48.51746 | 48.52713 48.5143
Mean 0.022933 47.94278 47.87552 | 47.89927 45.7317
Best -20949.14 -20945.48 -20947.02 |-20947.64 | -20948.5
fe Worst -20946.24 -12764.78 -14170.39 |[-14634.68 | -14999.6
Mean -20948.70 -17584.73 -18355.21 |-18933.11 | -18982.1
Best -1958.308 -1958.258 -1958.181 |[-1958.084 | -1958.28
f7 Worst -1958.237 -1457.922 -1591.349 [-1552.201 | -1956.58
Mean -1958.294 -1915.232 -1886.188 |-1834.910 | -1957.87
Best 201.2862 129088.2 149936.4 133597.9 230443
fs Worst 215.3145 187324.9 223126.8 | 210587.4 159037
Mean 208.6043 156493.7 176492.5 168902.9 52760.3
Table 3
Comparison of different initialization methods (dimensions = 100)
Func Value DDUI Uniform LHS OBL CI
1 2 3 4 5 6 7
Best 3.55E-15 3.55E-15 0 0 3.55E-15
f1 Worst 1.42E-14 1.42E-14 1.42E-14 1.42E-14 7.11E-15
Mean 7.11E-15 7.28E-15 5.33E-15 6.04E-15 5.86E-15
Best -1 0 0 0 -0.99997
f2 Worst -0.003422 0 0 0 0
Mean -0.682719 0 0 0 -0.39638
Best 0 0 0 0 0
f3 Worst 0 0 0 0 0
Mean 0 0 0 0 0
Best 0 0 0 0 0
fa Worst 0 2.27E-13 1.14E-13 1.14E-13 0
Mean 0 1.14E-14 5.68E-15 5.68E-15 0

438

Continuation of the Table 3

1 2 3 4 5 6 7
Best 1.45E-07 97.34662 97.80314 | 97.31989 | 97.2842
fs Worst | 2.525692 98.15001 98.12555 | 98.12313 | 98.1099
Mean 0.131511 97.83444 97.96993 | 97.89779 | 97.8350
Best 4189828 ~41897.52 41892.49 | -41894.94 | -41898.2
fo Worst | -41895.67 -28071.92 -24079.93 | -23955.85 | -30007.9
Mean | -41897.71 -38405.96 34462.54 | -36111.84 | -38064.6
Best 3916.616 -3916.149 3916.026 | -3916.548 | -3916.37
fr | Worst | -3916.493 -2983.068 -3506.109 | -3005.931 | -3912.43
Mean | -3916.594 -3756.602 -3865.889 | -3742.011 | -3915.02
Best 408.2037 282207.7 276021.2 | 277208.6 | 39730.8
fe | Worst | 4285733 394584.2 376304.1 3949643 | 590361
Mean 417.9449 331750.8 333909.9 | 338027.5 150988

For all benchmark problems 10, 50 and 100 dimensions were used for an x
vector, the number of individuals in a population was set to 100, while the total
number of iterations for finding the optimum was set to 200. On top of that, 20
independent runs were conducted for each of the initialization methods and results
are generalized by fetching out “Best”, “Worst” and “Mean” values after the process
was over.

Fig. 2 depicts the overall convergence rate of WOA for the chosen initialization
methods and DDUI when the problem dimensions equal 10. As can be inferred
from the images, without exception for all of the functions DDUI was either
finding or getting close to the optimum much faster, consequently for the problems
where approximate solution is also acceptable, the entire process can be terminated
much sooner.

Tables 1-3 represent the detailed run results data for all the benchmarks and
corresponding initialization methods for the problem dimensions of 10, 50 and 100,
respectively. It is worth mentioning that the selected number of iterations is
generally not sufficient for global optimization problems, where the recommended
value is 400...500, but, since in the current problem, we need to evaluate only the
initialization method and its impact, instead of performance capabilities of the
chosen optimizer, 200 should be sufficient to assess the method efficiency.

Starting from Table 1 (D=10), during those 20 runs DDUI managed to find
optimums for 6 out of 8 functions, failing to find one only for Zakharov function and
getting very close to Rosenbrock, and, even in that case, the overall performance
was incomparably better than for other techniques, which also was generalizing
adequately well to state the clear advantage of the method. When D=50 (Table 2),
performance does not get diminished, still having some complication with respect

439

to Zakharov and Rosenbrock, but nonetheless managing to get much closer to
optimum than any other technique. It should be stated that for Ackley also the
global optimum was not detected, but the impact of optimizer also should not be
underestimated, as it involves a lot of randomness when choosing between
exploration and exploitation. And finally, Table 3, where D=100, the same issues
can be deduced from analyzing the data, but still performing much better than any
other counterpart.

Conclusion. The proposed primary population initialization method involves
calculation of equally spaced points on the diagonals of the search space, leading to
efficient representation of all the search dimensions in the final result. The clear
advantages of the method over conventional approaches was discussed and analyzed
through test runs on 8 benchmark functions and the results were summarized. The
implementation complexity of the approach goes in par with other methods, while
imposing a limitation of not being able to choose an arbitrary number for the
individuals in the population in other to guarantee a fair distribution.

REFERENCES

1. Elsayed S.M., Sarker R.A., Essam D.L. Multi-operator based evolutionary algorithms
for solving constrained optimization problems // Comput. Oper. Res. —2011. — Vol. 38,
no. 12. — P. 1877-1896.

2. Yang X.S. Nature-Inspired Optimization Algorithms.- Pittsburgh, PA, USA: Academic,
2020. - 310p.

3. Li Q., Liu S.-Y., Yang X.-S. Influence of initialization on the performance of
Metaheuristic optimizers // Appl. Soft Comput. — Jun. 2020. — Vol. 91, art. no. 106193.

4. Kazimipour B., Li X., Qin A.K. A review of population initialization techniques for
evolutionary algorithms // IEEE Congr. Evol. Comput. (CEC).-Beijing, China, Jul.
2014. — P. 2585-2592.

5. Arora S., Sharma M., Anand P. A novel chaotic interior search algorithm for global
optimization and feature selection // Applied Artificial Intelligence. — 2020. — Vol. 34,
no. 4. — P. 292-328.

6. Kuang F., Jin Z., Xu W., Zhang S. A novel chaotic artificial bee colony algorithm
based on Tent map // IEEE Congress on Evolutionary Computation (CEC). —2014. — P.
235-241.

7. Helton J.C., Davis F.J. Latin hypercube sampling and the propagation of uncertainty in
analyses of complex systems // Rel. Eng. Syst. Saf. — 2003. — Vol. 81, no. 1. — P. 23-69.

8. Kotti M., Fakhfakh M., Tlelo-Cuautle E. Effect of the design space sampling on the
design performances // IEEE 9th Latin American Symposium on Circuits & Systems
(LASCAS).-2018.—P. 1-4.

440

9. Wang W., Wang H., Sun H., Rahnamayan S. Using opposition-based learning to
enhance differential evolution: A comparative study // IEEE Congress on Evolutionary
Computation (CEC). —2016. - P. 71-77.

10. Park S., Kim Y., Kim J., Lee J. Speeded-up cuckoo search using opposition-based
learning // 14th International Conference on Control, Automation and Systems (ICCAS
2014). — 2014. — P. 535-539.

11. https://www.sfu.ca/~ssurjano/optimization.html

12. Mirjalili S., Lewis A. The whale optimization algorithm // Advances in engineering
software. — 2016. — Vol. 95. — P. 51-67.

13. Ruiye J., Tao C., Songyan W., Ming Y. A modified Whale Optimization Algorithm
based on Chaos Initialization and Regulation Operation // 2019 Chinese Control
Conference (CCC). —2019. — P. 2702-2707.

14.Feng W., Deng B. A Modified Multi-Objective Whale Optimization Algorithm with
Dynamic Leader Selection Mechanism // 12th International Conference on Measuring
Technology and Mechatronics Automation (ICMTMA). — 2020. — P. 985-989.

National Polytechnical University of Armenia. The material is received on 29.08.2022.

U.4. 4UrNkUsuL

UGSUZBYPUSPUUYUL ULSNCPEULE P UNULQLUSPL TNNNRL3USPUSE
UUFLUrd6RUANNITTUL UMBSNRLUYES UGN)Y

Cuyniudws k, np dbnnwhuphunpjuljut oyyunhdwghnt wjgnphpdutph gniqudhndwt
Jupnnmpnibubpp Juptih b pupbpudl) wuwwnpwd YEpuynyg phnpjus wnwetughtt wn-
wnijjughwjny: dudwbhwlulhg uyjqphwpdtpuynpiutt mkjpuhywubtph dbés dwut nith h
owpp phpnipjniutkp, npnip ny Jhhunttwy jud ny wpynibwdbn o qupdunid gputp: Uy
ptpnipniuttph hunpwhwpdwi hwdwp wnwewnpyynid E wynunijjughwih uyqpiupdtpu-
Unpdwib tnp wignphpd, nph nhypnid Jhpwnynwd i npnudwt nwpwsph ukpppqus unp-
wbwpnutph pudwidwt dnnbgnudp b Swypudwuwghtt Yhnbph punpnudp tdnupwndw
hudwp: Zhdigkn] wowewplynn Ukpnnh hwipugwbws wy uhqplupdbpu]npuiwi unpu-
wnbghwubkph htnn hwdwwntn 8 pupny hktwthy niuljghwtpny, Yt Ownhuhqughnt Uj-
gnphpth (WOU) sppwbiwljubpnid phunwynpdwt wpyniupnid unwgqus nyjuutph Ypu,
gqnpw] oyynnhunidp quutkint punpnid wnwewplyny dnnbkgnidp juwnwpnyuljuwinipiudp
ghipwquigt) k pninp ghunnwpyynn dkpnnubphe

Unwhgpuypll punkp. Wknnwhtphunhjulwt wgnphpd, ynwnijjughuh ujqpupdt-
puwynpnud, wdpnpuuyhtt pubiuwiinipyni, bYnjnighnt wygnphped:

441

A.B. BAPIYMSAH

3®PEKTUBHBIN METO]I THUIUAJIA3AIIMA IEPBUYHOM
nonyJjsauuu 1Jis1t METASBPUCTUYECKHUX AJITOPUTMOB

[IpuHATO, YTO BO3ZMOXKHOCTH CXOIJMMOCTH METadBPUCTUYECKUX ONTHMU3AIMOHHBIX
AITOPUTMOB MOTYT OBITH YITy4IlIeHBI TIPABHIHHO BRIOPaHHOHN HAYaIbHOW MOIyJsiuei. boib-
IIMHCTBO COBPEMEHHBIX METO/OB MHUIMAIM3ALMU CTPaJaloT MHOTOYHMCICHHBIMH HEJOCTAT-
KaMH, KOTOpble B KOHEYHOM HTOTE€ JENal0T WX HEXHM3HECIIOCOOHBIMHM WMJIM HEZOCTATOYHO
s¢ppextuBHBIMH. C 3TOMH 1IETBI0 IpeIaraeTcss HOBBI aJITOPUTM MHULMAIN3ALNN TTOITYJIs-
U, B KOTOPOM HMCIHOJIB3YETCA MOAXO0 pa3dAcJICHUA NPOCTPAHCTBA MMOUCKA Ha BJIOKCHHBIC
Ky6bl)44 H0)160p TPAaHUYHBIX TOUYCK IJIsA BbIGOpKI/I. OCHOBBIBasACHL Ha JaHHBIX, TMOJTYYCHHBIX
1I0CJI€ TECTUPOBAHUSI METOAA Ha BOCBMH CJIOJKHBIX 3TAJIOHHBIX (YHKIHSAX, B CPABHCHUH C
JPYTHMH TOMYJISIPHBIMU CTPATETHAMH MHUIMATM3aHN, B paMkax Kur-OnTumMu3aioHHOTo
Anroputma (KOA) npemioxeHHbIN MOAX0I MPEB30IIeNl BCeX KaHAMIATOB B IMOUCKE TJI0-
0aTBbHOTO ONTHIMYyMa.

Knrouegvle cnoea: MeTa’BpUCTHUECKUN QITOPUTM, WHHIMAIHM3ALMS TIOMYJISAINH,
POEBOI MHTEIUIEKT, IBOJIIOLIOHHBIN aJlTOPUTM.

442

