ПОЛУЧЕНИЕ ИЗОТОПА ¹¹¹In НА МИШЕНЯХ ^{112,114}Sn

Г.В. МАРТИРОСЯН*

Ереванский государственный университет, Ереван, Армения

*e-mail: gevorgmartirosyan97@gmail.com

(Поступила в редакцию 1 ноября 2022 г.)

¹¹¹In является одним из наиболее употребляемых диагностических изотопов. Обсуждается возможность получения ¹¹¹In из мишеней ¹¹⁴Sn и ¹¹²Sn. Анализ проведен на основе расчетных данных, полученных с использованием кода TALYS-1.95. В то время как облучение мишени ¹¹⁴Sn приводит к крайне низкому выходу ¹¹¹In, реакция ¹¹²Sn(*p*,*x*) является перспективной из-за высоких выходов непрямых каналов образования. Согласно результатам моделирования выход ¹¹¹In в реакции ¹¹²Sn(*p*,*x*) выше, чем в коммерчески используемой реакции ¹¹¹Cd(*p*,*n*)¹¹¹In, и сравним с выходом в реакции ¹¹²Cd(*p*,*2n*)¹¹¹In.

1. Введение

Различные изотопы широко используются в медицине для диагностических и терапевтических целей. Обычно короткоживущие гамма- и позитрон-излучатели используются в диагностике, а относительно долгоживущие изотопы, излучающие частицы с пробегом, соизмеримым с размерами клетки, используются в терапевтических целях [1]. ¹¹¹In один из радиоизотопов, наиболее часто используемых в диагностической ядерной медицине для однофотонной эмиссионной компьютерной томографии (ОФЭКТ) [2,3]. ¹¹¹In распадается путем захвата электронов с периодом полураспада 2.83 дня. Энергия излучаемых при этом гаммаквантов (171.3 и 245.4 кэВ) удобна для регистрации. Обычно ¹¹¹In получают в реакциях, инициированных протонами или α -частицами на кадмиевых или серебряных мишенях [4], однако, ¹¹¹In также может образовываться в большом количестве и в других ядерных реакциях [5]. В статье рассматривается получение радиоизотопов ¹¹¹In в реакциях, инициированных протонами на мишенях ¹¹²Sn и ¹¹⁴Sn. Анализ проведен на основе расчетов, выполненных с использованием TALYS-1.95 [6].

2. Моделирование при помощи TALYS

Код TALYS дает возможность делать расчеты для легких налетающих частиц (протонов, нейтронов, дейтронов, трития, альфа-частиц и гамма-квантов) с энергиями от 1 кэВ до нескольких десятков МэВ [7,8]. Код включает в себя несколько ядерных моделей, таких как оптическая модель, модель прямых реакций, предравновесная модель, модель составного ядра и модель деления. Расчеты по всем моделям проводятся с использованием обширной базы данных ядерной структуры и параметров ядерных моделей. Согласно TALYS, при энергиях налетающих частиц E < 0.2 МэВ происходят предравновесные реакции, при E > 8 МэВ – множественное испарение частиц, а при E > 40 МэВ – множественное предравновесное испарение частиц [6]. Реакции предравновесного типа представляют собой многоэтапные процессы, которые имеют свойства как прямых процессов, так и составного ядра. Они происходят после завершения начальной стадии реакции, но задолго до установления статистического равновесия. На начальных стадиях исход реакции зависит от начальных условий налетающей частицы, но по мере развития реакции создаваемые состояния становятся все более и более сложными, память о начальных условиях теряется и, в конце концов, устанавливается статистическое равновесие. Эти промежуточные процессы являются доминирующими в широком диапазоне энергий налетающих частиц (10–200 МэВ).

Код TALYS также включает опцию производства медицинских изотопов и позволяет рассчитывать выходы и активности продуктов ядерных реакций [6].

3. Получение ¹¹¹In на мишени ¹¹⁴Sn

Результаты Talys-1.95 расчетов для сечений реакций ¹¹⁴Sn(*p*,*x*), ведущих к образованию изотопов индия в диапазоне энергий от порогового значения до 35 МэВ, представлены на рис.1. Максимальное сечение образования ¹¹¹In составляет около 18.2 мб при энергии 20 МэВ. При этой энергии образуется две основные примеси: ^{110m}In ($T_{1/2} = 69$ мин [9]) и ^{110g}In ($T_{1/2} = 4.9$ ч). Вклад изотопов ^{112m}In ($T_{1/2} = 20.56$ мин), ^{112g}In ($T_{1/2} = 14.97$ мин), ^{113m}In ($T_{1/2} = 1.66$ ч) и ^{109g}In ($T_{1/2} = 4.159$ ч) пренебрежимо мал.

Поскольку максимум функции возбуждения реакции 114 Sn(p, α) 111 In приходится на 20 МэВ, наибольшие выходы можно ожидать при энергиях 25 \rightarrow 15 МэВ. Нежелательными примесями, возникающими при этих энергиях, являются

Рис.1. Функция возбуждения реакций 114 Sn(*p*,*x*), ведущих к образованию различных изотопов индия: $1 - {}^{111}$ In, $2 - {}^{110m}$ In, $3 - {}^{110g}$ In, $4 - {}^{112}$ In, $5 - {}^{113}$ In, $6 - {}^{109}$ In.

наиболее долгоживущие ^{109g}In и ^{110g}In. Избежать присутствия этих примесей можно либо уменьшив энергию облучения до порога образования примеси, либо достаточно выдержав мишень после конца облучения. Зависимость активностей изотопов ¹¹¹In и ^{110m,g}In от времени облучения и охлаждения мишени приведена на рис.2а. Уменьшение начальной энергии до значения, когда сечения нежелательных реакций незначительны (17 МэВ) не является эффективным, хотя изотопная чистота на конец облучения очень высока, активность ¹¹¹In слишком мала (рис.2b).

Рис.2. Увеличение изотопической чистоты ¹¹¹In: (а) после окончания облучения активность ¹¹¹In падает медленно, в то время как активность ¹¹⁰In становится пренебрежимо малой после ~30 часов охлаждения мишени; (b) облучение при более низкой энергии приводит к высокой изотопической чистоте ¹¹¹In, но активность продукта очень низкая. Обозначения кривых соответствуют изотопам: $1 - {}^{111}$ In, $2 - {}^{110}$ mIn, $3 - {}^{110}$ In.

Рассчитанный выход ¹¹¹In из мишени ¹¹⁴Sn при энергии протонного пучка $25 \rightarrow 15$ МэВ, а также фракции основных изотопных примесей, представлены в табл.1. Активность ¹¹¹In на конец облучения значительно ниже, чем активность ¹¹⁰gIn. После 48 часов охлаждения мишени доля ¹¹⁰gIn становится незначительной (0.5%), в то время как активность ¹¹¹In уменьшается только в 1.67 раза по сравнению с активностью на конец облучения. Доля примесей ¹⁰⁹In также пренебрежимо мала (0.1%). Однако, окончательный выход ¹¹¹In составляет всего 1.71 МБк/(мкА час), что делает этот способ производства ¹¹¹In нецелесообразным.

4. Получение¹¹¹In на мишени¹¹²Sn

Привлекательность этого метода в том, что помимо прямого канала образования посредством ¹¹²Sn(*p*,2*p*) реакции, при облучении мишени ¹¹²Sn образуется изотоп ¹¹¹Sb, который распадается в ¹¹¹Sn с периодом полураспада $T_{1/2} = 75$ сек, последний, в свою очередь, распадается в ¹¹¹In с периодом полураспада $T_{1/2} = 35.3$ мин [9]. Вклад каналов ¹¹²Sn(*p*,*pn*)¹¹¹Sn \rightarrow ¹¹¹In и ¹¹²Sn(*p*,*n*)¹¹¹Sb \rightarrow

Рис.3. Функции возбуждения реакций на мишени ¹¹²Sn, приводящих к образованию изотопов индия ¹⁰⁸⁻¹¹¹In. Обозначения кривых соответствуют реакциям: $I - {}^{112}\text{Sn}(p,2p){}^{111}\text{In}, 2 - {}^{112}\text{Sn}(p,2pn){}^{110}\text{sIn}, 3 - {}^{112}\text{Sn}(p,\alpha){}^{109}\text{sIn}, 4 - {}^{112}\text{Sn}(p,\alpha n){}^{108}\text{In}.$

 $^{111}{\rm Sn} \rightarrow ^{111}{\rm In}$ намного увеличивает выход $^{111}{\rm In}.$

Функции возбуждения реакций на мишени ¹¹²Sn, приводящих к образованию изотопов индия ¹⁰⁸⁻¹¹¹In, приведены на рис.3. При энергиях 35 \rightarrow 25 МэВ ¹¹¹In имеет наибольшие сечения, за исключением короткоживущего ¹⁰⁸In ($T_{1/2} = 58$ мин), который распадается в стабильный ¹⁰⁷Cd. Указанный интервал энергий наиболее удобен для производства ¹¹¹In. Как было отмечено выше, помимо ¹¹²Sn(p,2p) реакции, ¹¹¹In также образуется в реакциях ¹¹²Sn(p,2n)¹¹¹Sb \rightarrow ¹¹¹Sn \rightarrow ¹¹¹In и ¹¹²Sn(p,pn)¹¹¹Sn \rightarrow ¹¹¹In. Максимальные значения сечений этих реакций приходятся на энергию ~22 МэВ и равны 800 и 260 мб, соответственно (рис.4). Согласно расчетам с использованием кода TALIS-1.95, спустя 6 часов после окончания облучения, когда все изотопы ¹¹¹Sn и ¹¹¹Sb распались в ¹¹¹In, выход ¹¹¹In составляет 193 МБк / (мкА час) (табл.1).

Необходимо учесть образование изотопов 109m Sn ($T_{1/2} = 18$ мин) и 109m In

Рис.4. Функции возбуждения реакций: $I - {}^{112}\text{Sn}(p,2n+d){}^{109}\text{Sn}, 2 - {}^{112}\text{Sn}(p,\alpha){}^{109}\text{In}, 3 - {}^{112}\text{Sn}(p,2p){}^{111}\text{In}, 4 - {}^{112}\text{Sn}(p,pn){}^{111}\text{Sn}, 5 - {}^{112}\text{Sn}(p,2n){}^{111}\text{Sb}.$

Реакция	Энергия протонов, МэВ	Выход, МБк / мкА час (время, прошедшее после конца облучения)	Фракция примесей, % от выхода ¹¹¹ In	Ссылка
114 Sn $(p, \alpha)^{111}$ In	25–15	2.85 (EOB*)	¹¹⁰ gIn (267 %) ¹⁰⁹ gIn (0.1%)	Данная работа
		2.05 (30 час)	110g In (5.4 %)	
		1.71 (48 час)	110g In (0.5 %)	
112 Sn($p,2p$) ¹¹¹ In +	35–25	117 (EOB)	^{110g} In (26%)	Данная работа
112 Sn(<i>p</i> , <i>pn</i>) 111 Sn \rightarrow		193 (6 час)	^{109g} In (4.3%)	
111 In+ 112 Sn(<i>p</i> ,2 <i>n</i>) 111 Sb		160 (24 час)	^{110g} In (0.6%)	
\rightarrow^{111} Sn \rightarrow^{111} In			^{109g} In (0.4%)	
$ \frac{{}^{112}\text{Sn}(p,2p){}^{111}\text{In} +}{{}^{112}\text{Sn}(p,pn){}^{111}\text{Sn} \rightarrow {}^{111}\text{In} +}{{}^{112}\text{Sn}(p,2n){}^{111}\text{Sb}} $	23.6	46 (EOB)	_	[5]
¹¹¹ Cd(<i>p</i> , <i>n</i>) ¹¹¹ In	18–7	65 (EOB)	^{110g} In (241 %) ¹⁰⁹ In (0%)	Данная работа
		51 (24 час)	^{110g} In (10 %)	
		48 (30 час)	^{110g} In (4.6 %)	
		40 (48 час)	110g In (0.4%)	
112 Cd(<i>p</i> ,2 <i>n</i>) ¹¹¹ In	30–15	260 (EOB)	^{110g} In (209%)	Данная
			109g In (0.34%)	работа
		158.5 (48 час)	110g In (0.11%)	
$^{111}Cd(p,n)^{111}In$	18–7	74 (EOB)	_	[10]
$^{112}Cd(p,2n)^{111}In$	30–15	281 (EOB)	=	[10]

Табл.1. Выход ¹¹¹In в некоторых протон-ядерных реакциях

*EOB (End Of Bombardment) обозначены активности изотопов на момент конца облучения

 $(T_{1/2} = 4.159 \text{ час})$, поскольку продукт их распада ¹⁰⁹Cd ($T_{1/2} = 462.3 \text{ дн}$) является самой долгоживущей примесью. На рис.4 приведены функции возбуждения реакций, приводящих к образованию изотопов ¹¹¹In и ¹⁰⁹Cd. Порог реакции

Рис.5. Рассчитанные с использованием кода TALYS1.95 (кривые) и экспериментальные значения из работы [5] (точки) для сечений реакций на мишени ¹¹²Sn, приводящих к непрямому образованию ¹¹¹In: (a) ¹¹²Sn(p,2n)¹¹¹Sb, (b) ¹¹²Sn(p,pn)¹¹¹Sn.

¹¹²Sn(p,2n+d)¹⁰⁹Sn 28 MэB, ¹¹²Sn(p, α)¹⁰⁹In реакция беспороговая. Согласно расчетам с использованием TALIS-1.95, спустя 6 часов после конца облучения, когда изотопы ¹⁰⁹Sn и ¹⁰⁹In полностью распались, выход ¹⁰⁹Cd составляет 0.009 MБк/(мкА час), что соответствует 0.005% выхода ¹¹¹In.

Единственные экспериментальные данные по протон-ядерным реакциям на мишени ¹¹²Sn в рассматриваемом диапазоне энергий опубликованы в работе [5]. Значения сечений реакций ¹¹²Sn(p,2n)¹¹¹Sb и ¹¹²Sn(p,pn)¹¹¹Sn, полученные в [5], намного меньше полученных нами с использованием кода TALYS-1.95 (рис.5), выход ¹¹¹In также ниже рассчитанного по коду TALYS 1.95 (табл.1).

5. Заключение

Рассмотрена возможность получения изотопа ¹¹¹In из мишеней ^{112,114}Sn. Расчеты с использованием TALYS-1.95 показали, что облучение мишени ¹¹⁴Sn ведет к очень низкому выходу ¹¹¹In, что делает этот метод нецелесообразным. С другой стороны, использование мишени ¹¹²Sn кажется довольно привлекательным. В этом случае выход ¹¹¹In намного превосходит выход коммерчески используемой реакции ¹¹¹Cd(p,n) и сравним с выходом реакции ¹¹²Cd(p,2n) (табл.1).

В работе [10], где обсуждается получение ¹¹¹In из мишеней ^{111,112}Cd, в качестве примеси рассматривается только ^{114m}In, который образуется из тяжелых изотопов Cd, присутствующих в мишенях. В случае мишени ¹¹²Sn нежелательной примесью является ^{109m}In, который распадается в долгоживущий ¹⁰⁹Cd. Активность ¹⁰⁹Cd, согласно нашим расчетам, очень низкая, что делает присутствие этой примеси приемлемым. Кроме того, наши расчеты показывают, что ^{109m}In также образуется при облучении мишени ¹¹²Cd, хотя и в небольших количествах. Поэтому можно сделать вывод, что получение ¹¹¹In из мишени ¹¹²Sn возможно, однако полученные расчетные данные должны быть проверены экспериментально.

ЛИТЕРАТУРА

- 1. S.C. Srivastava. Semin. Nucl. Med., 42, 151 (2012).
- 2. Y. Krausz, Z. Keidar, I. Kogan, et al., Clin. Endocrinol, 59, 565 (2003).
- 3. E. Bombardieri, V. Ambrosini, C. Aktolun, et al., Eur. J. Nucl. Med. Mol. Imaging, 37, 1441 (2010).
- Technical Reports Series No. 468. Cyclotron Produced Radionuclides: Physical Characteristics and Production Methods, IAEA. Viena, 2009.
- 5. E. Biták, E. Rurarz, S. Mikołajewski, J. Wojtkowska. Nuklleonika, 52, 17 (2007).
- 6. A. Koning, S. Hilaire, S. Goriely. TALYS 1.95. A Nuclear Reaction Program, 2019. http://www.talys.eu/.
- 7. G.H. Hovhannisyan, T.M. Bakhshiyan, A.S. Danagulyan, R.K. Dallakyan. Nuclear Inst. and Methods in Physics Research B, 482, 25 (2020).
- 8. G.H. Hovhannisyan, A.V. Stepanyan, E.R. Saryan, L.A. Amirakyan. J. Contemp. Phys., 55, 183 (2020).
- 9. https://www.nndc.bnl.gov/nudat3/
- 10. F. Tárkányi, F. Szelecsényi, P. Kopecký, et al. Appl. Radiat. Isot., 45, 239 (1994).

¹¹¹In ԻՉՈՏՈՊԻ ՍՏԱՑՈՒՄԸ ԱՆԱԳԻ ԹԻՐԱԽՆԵՐԻՑ

Գ.Վ. ՄԱՐՏԻՐՈՍՅԱՆ

¹¹¹In կարևոր բժշկական իզոտոպ է, որը օգտագործվում է ախտորոշման նպատակով։ Քննարկվում է դրա ստացման հնարավորությունը ¹¹⁴Sn և ¹¹²Sn թիրախներից պրոտոն-միջուկային ռեակցիաներում։ Եզրակացությունները արված են TALYS-1.95 հաշվարկների հիման վրա։ ¹¹⁴Sn թիրախի Ճառագայթումը ¹¹¹In իզոտոպի փոքր ելքեր է ապահովում, մինչդեռ ¹¹²Sn(p,x) ռեակցիաները ավելի արդյունավետ են, քանի որ անուղղակի առաջացման եղանակները մեծացնում են ¹¹¹In-ի ելքը։ Համաձայն հաշվարկների արդյունքների, ¹¹¹In-ի ելքը ¹¹²Sn(p,x) ռեակցիաներում ավելի մեծ է, քան արդյունաբերական արտադրության համար կիրառվող ¹¹¹Cd(p,n)¹¹¹In ռեակցիայում և համեմատելի է ¹¹²Cd(p,2n)¹¹¹In ռեակցիայից ելքի հետ։

¹¹¹In ISOTOPE PRODUCTION ON TIN TARGET

G.V. MARTIROSYAN

¹¹¹In is an important diagnostic medical radioisotope. We discuss the possibility of its production from ¹¹⁴Sn and ¹¹²Sn targets in proton-induced reactions. Analysis made on the base of TALYS-1.95 calculations. While the irradiation of ¹¹⁴Sn target leads to unfeasibly low yield of ¹¹¹In, ¹¹²Sn(p,x) production route is promising because of high yields of indirect production channels. According to simulation results, the yield of ¹¹¹In in ¹¹²Sn(p,x) reactions is higher than in the commercially used reaction ¹¹¹Cd(p,n)¹¹¹In and is comparable to yield in ¹¹²Cd(p,2n)¹¹¹In reaction.