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In this paper, we have investigated the Bianchi-type V cosmological model which is spatially
homogeneous and anisotropic in presence of bulk viscous fluid containing one-dimensional cosmic
string. We have obtained the exact solutions of highly non-linear differential field equations con-
sidering the power-law volumetric expansion of the universe and f (T ) = T  formalism. Some physical
and kinematical properties of the constructed model have been discussed and presented graphically
and it is interesting to note that the resultant model resembles the recent observational data.
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1. Introduction. Recent observations and measurements from high redshift

supernovae [1-3] indicate that the universe is accelerating. The cause of the

universe's acceleration is unknown; it is commonly referred to as the dark energy

problem, which is caused by the universe's negative pressure. Two approaches have

been proposed to address this issue: one is to develop viable dark energy models,

while the other modify Einstein's gravitation theory. Nojiri & Odintsov [4] has

reviewed various modified gravities and considered a gravitational alternative for

dark energy. Again Nojiri et al. [5,6] reviewed some standard issues and discussed

some latest developments in modified gravity as well as unified cosmic history in

modified gravity.

Numerous modified gravity theories exist to investigate the unknown and

hidden aspects of the universe. Amongst them, the  Tf  theory of gravitation,

which is based on a modification of the teleparallel equivalent of general relativity,

is a viable candidate. Many researchers have discussed various aspects of  Tf
gravity. Cai et. al. [7] provided a brief review of  Tf  gravity and cosmology.

Myrzakulov [8] has studied the accelerating universe from  Tf  gravity. Numerous

cosmologists have developed theoretical cosmological models that behave similarly

to the present physical universe, which is anisotropic, expanding, and accelerating.

Pawar & Dabre [9] have studied an anisotropic string cosmological model for

perfect fluid distribution in  Tf  gravity. Chirde & Shekh [10] examined the

thermodynamical aspect of barotropic bulk viscous fluid in teleparallel gravity.
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Sharif & Rani [11] studied bulk viscosity taking dust matter in generalized

teleparallel gravity. Sadatian [12] analyzed the effect of viscous content on the

modified cosmological  Tf  model.

Various cosmologists and physicists have studied the theoretical development

of the universe and the effects of bulk viscosity and string on cosmic evolution

using the source as a bulk viscous fluid containing a string of clouds. Mishra &

Dua [13], investigated the dynamics of the universe for bulk viscous string

cosmological model using the LRS Bianchi type II metric in the Saez-Ballester

theory of gravitation. Tripathy et al., [14] studied LRS Bianchi I model in

reference to Einstein's relativity using the source as stiff viscous fluid coupled with

an electromagnetic field. Kiran & Reddy [15] presented the non-existence of

Bianchi type III bulk viscous string cosmological model in  TRf  ,  gravity. Santhi

et al, [16,17] investigated bulk viscous string cosmological models using Bianchi

type II, VIII, IX, and VI
h
 space-times in  Rf  gravity. Pawar & Dabre [18]

studied the bulk viscous string cosmological model using the special law of variation

for Hubble's parameter in teleparallel gravity. Using the Kantowski-Sachs metric,

Reddy et al., [19] built an isotropic bulk viscous string cosmological model that

illustrates the special case for non-validating cosmic strings. Hegazy, [20] devised

a formula for calculating cosmic entropy in terms of viscosity and applied it to

investigate the entropy, enthalpy, Gibbs energy, and Helmholtz energy of a

constructed model in the presence of viscosity. Naidu et al., [21-26] vigorously

investigated bulk viscous string cosmological models in relation to different

gravitational theories. Several cosmologists [27-33] have obtained some recent and

significant investigations of bulk viscous fluid in the presence of cloud strings in

various contexts.

Motivated by the situations discussed above in this paper, we have considered

spatially homogeneous and anisotropic Bianchi type V space-time to construct the

bulk viscous string cosmological model within the context of teleparallel gravity.

This paper is divided into several sections: Sec. 2 deals with elementary definitions

and equations of motion in the framework of teleparallel gravity. In Sec. 3

considering spatially homogeneous and anisotropic Bianchi type V metric, we have

obtained the corresponding field equations. In Sec. 4, we have obtained the exact

solution of highly non-linear field equations along with different physical and

kinematical quantities and presented them with 3D graphs. Lastly, in Sec. 5, we

have concluded the investigations.

2. Elementary definitions and equation of motion. In this section,

we provide a concise explanation of  Tf  gravity and a thorough derivation of

its field equations. The line element for a general space-time is defined as

, 2 
 dxdxgds (1)
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where g  are the components of the metric tensor which are symmetric. The

above line element can be transformed into the Minkowskian space-time (which

represents the dynamic fields of the theory) as

, 2 ji
ijdxdxgds  

 (2)

, , 


  dxeedx iii
i (3)

where ij  is a metric tensors in Minkowskian space-time such that  1- 1,- 1,- 1,diagij
and 




 ii ee  or 
j
i

j
i ee 


. eeg i   ][det  and the dynamic fields of the

theory are represented by the tetrads matrix 

e . The Weitzenbocks connection

components which have a zero curvature but nonzero torsion for a manifold are

defined as

. 


  i
ii

i eeee (4)

The components of the torsion tensor for a manifold are defined by the anti-

symmetric part of the Weitzenbocks connection

 . ii
i eeeT 







  (5)

Con-torsion tensor components are defined by

 . 
2

1 









  TTTK (6)

A new tensor, 
S  constructed from the components of the torsion and con-

torsion tensors for a better understanding of the definition of the scalar equivalent

to the curvature scalar of Riemannian geometry as follows,

 . 
2

1 















  TTKS (7)

The torsion scalar is defined using the contraction which is similar to the scalar

curvature in general relativity as

. 



 STT (8)

The action is defined by generalizing the teleparallel gravity, i.e,  Tf  theory as

   , 4
  xedLTfS Matter (9)

where  Tf  denotes an algebraic function of the torsion scalar T.

Equations of motion are obtained by functional variation of the action (9) with

respect to the tetrads as

   , 4
4

11 





















  TffSTSeeeeTfS Ti

i
TT (10)

where the energy-momentum tensor 
T  is considered as bulk viscous fluid with

one-dimensional cosmic string, f
T
 and f

TT
 denotes respectively the first and second-
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order derivatives of  Tf  with respect to T. For   constTf , the equations of

motion in (10) reduce to the equations of motion of the teleparallel gravity with

a cosmological constant, which is dynamically equivalent to general relativity.

These equations depend on the choice made for the set of tetrads.

3. Metric and field equations. We consider a line element

 , 222222222 dzCdyBedxAdtds mx  (11)

which is a spatially homogeneous and anisotropic Bianchi type-V metric in which

m is constant and A, B, and C are a function of cosmic time t only.

Consider the set of diagonal tetrads related to the metric (11) as

   .  , , 1,diag mxmx CeBeAe 
 (12)

Then the determinant of the matrix (11) is

. 2mxABCee  (13)

The torsion scalar (8) is obtained as

. 2 2











 m

AC

CA

BC

CB

AB

BA
T


(14)

We consider the source as bulk viscous fluid containing one-dimensional cosmic

string given by

  , 







  xxgpuupT  (15)

, 3 Hpp  (16)

where  p  is the proper string energy density with particles attached to

them and p  is the particle energy density,   is the strings tension density, H3

is bulk viscous pressure,  t  is the coefficient of bulk viscosity, H is Hubble's

parameter, x  denotes a unit space-like vector for the cloud string and u  denotes

four-velocity vector satisfying the conditions, 



  xxuu 1  and 0

xu .

In a co-moving coordinate system, we have

   . 0 0, 0, ,, 1 0, 0, ,0 1  Axu (17)

We obtained the field equations for Bianchi type-V space-time (11), from (10)

and (15)-(16) in the framework of teleparallel gravity as

  , 3162222 2 




















 HpfT

C

C

B

B
m

AC

CA

BC

CB

AB

BA

C

C

B

B
ff TTT




(18)

  , 3162222 2 HpfT
C

C

A

A
m

AC

CA

BC

CB

AB

BA

C

C

A

A
ff TTT 





















 


(19)

  , 3162222 2 HpfT
B

B

A

A
m

AC

CA

BC

CB

AB

BA

B

B

A

A
ff TTT 





















 


(20)
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, 164 










AC

CA

BC

CB

AB

BA
ff T


(21)

, 02 









 Tf
C

C

B

B

A

A 
(22)

, 0









 Tf
C

C

B

B 
(23)

where the overhead dot (.) denotes the derivative with respect to cosmic time t.

By solving (22) and (23) above field equations reduces to

  , 3162222 2 




















 HpfT

C

C

B

B
m

BC

CB

C

C

B

B
ff TTT




(24)

  , 316222 2 HpfT
C

C
m

BC

CB

C

C
ff TTT 





















 


(25)

  , 316222 2 HpfT
B

B
m

BC

CB

B

B
ff TTT 



















 


(26)

. 164 











BC

CB
ff T


(27)

Thus, we have four non-linear differential equations with seven unknowns, namely

f, B, C, p,  ,  , and  ; solutions which are discussed in the next section.

4. Solutions of field equations. As there are four highly non-linear

differential equations (24)-(27) and seven unknowns, in order to obtain the exact

solutions we consider the linear   TTf   gravity along with the special power-

law volumetric expansion of the universe as

. 3ntV  (28)

where n is a non-zero constant.

We find some kinematical space-time quantities of physical interest in cos-

mology.

The spatial volume V is defined as

. 0BCDV  (29)

where D
0
 is an integrating constant.

Also, the volumetric expansion rate of the universe is described by the

generalized mean Hubble's parameter H given by

  , 
3

1

3

1
321

3

1

HHHHH
i

i  


(30)
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in which H
1
, H

2
, H

3
 denotes the directional Hubble parameters.

From Eqs. (29) and (30), we get

. 
3

1

3

1 3

1




i

iH
V

V
H


(31)

To analyze, whether the model approaches isotropy or not, we discuss the mean

anisotropy parameter A
m
, as

. 1
3

1 3

1

2














i

i
m

H

H
A (32)

The expansion scalar   and the shear scalar 2  are respectively defined as

, 3 ; Hu  
 (33)

, 
2

3 22 HAm (34)

The deceleration parameter is defined as

. 
1

1 









Hdt

d
q (35)

We obtained the metric coefficients A, B, and C as

 
  . , , 

3
1

3
1

1323
2132

3

3

0

n

n

tntDn

tntD

n

etDC
eD

t
BDA 


 (36)

where D
1
, D

2
 and D

3
 are constants.

Substituting A, B, and C from (36) in (11), we get

 
  . 21332

2
2

132
3

3
222

0
22 3

1
3

1 












 


dzetDdy

eD

t
edxDdtds

n

n

tntDn

tntD

n
mx

(37)

From (14) we have obtained the torsion scalar as

. 
2

94
2

2622
1

22

t

ntDtm
T

n




(38)

Also, we have determined the mean Hubble's parameter H, the expansion scalar

 , the mean anisotropy parameter A
m
, the shear scalar 2 , and the deceleration

parameters q respectively as

, 
t

n
H  (39)

, 
3

t

n
 (40)

, 
6

3
2

2622
1

n

ntD
A

n

m






(41)
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, 
4

3
2

2622
12

t

ntD n




(42)

.const 
1





n

n
q (43)

The graphical representation of Hubble's parameter H versus cosmic time t

is depicted in Fig.1, where at an initial epoch when t = 0 with an increasing value

of n the value of H increases and get vanishes as t . This shows that the

expansion of the universe is getting faster with an increasing value of n but

becomes slower with increasing cosmic time t. The ratio 022   shows the

constructed model doesn't approach isotropy. Also, the sign of q in (43) dem-

onstrates whether the model is accelerating or not. The positive sign of q i.e. for

10  n  corresponds to a plain decelerating cosmological model although the

deceleration parameter in range 01  q  corresponds to an accelerating universe

and for q = 0 i.e. for n = 1 corresponds to the evolution with a constant rate. The

observational evidences [1,2] supports the accelerating phase of the universe i.e

01  q .

From (27) we obtained the value of energy density as

. 
32

94
2

2622
1

22

t

ntDtm n








(44)

Solving (24) and (25), we have obtained the value of tension density as

Fig.1. Variation of H vs. t.
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 
. 

16

133
2t

nn




 (45)

Also, we have obtained the particle density as

 
. 

32

2334
2

622
1

22

t

nntDtm n

p







(46)

Fig.2 depicts the variation of energy density   versus cosmic time t, in which

Fig.2. Variation of   vs. t.

Fig.3. Variation of   vs. t.
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the energy density is very small in the starting phase of evolution for both varying

constant n and cosmic time t but as both increases, the energy density becomes

a decreasing function of cosmic time t. Whereas the representation of tension

density   as shown in Fig.3 shows that initially, tension density diminishes from

positive but with an increasing n it shows the transition from positive to negative

for tension density to grow in negative and get vanish when t . For a small

period of n, the tension density is positive i.e. 0  showing the presence of

strings in the universe while after the transition the tension density 0  showing

the string phase disappears which is supported by [34].

We assume that the coefficient of viscosity should vary with the expansion

scalar in such a way that

.const 0  (47)

From (47) we have obtained the coefficient of bulk viscosity as

. 
3

0

n

t
 (48)

From (26) the pressure can be obtained as

   
. 

32

23384
2

2
1

622
0

2

t

nnDttm
p

n








(49)

It is seen from Fig.4 that the coefficient of bulk viscosity is an increasing function

of cosmic time t for small n but with an increasing n the value of   becomes

Fig.4. Variation of   vs. t.
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steady. While the pressure is incredibly small for a small value of n but as n

increases the pressure diminishes from positive to approach constant with an

increasing cosmic time t (Fig.5).

5. Concluding remarks. In this paper, we have studied the spatially

homogeneous and anisotropic Bianchi type V bulk viscous string cosmological

model within the context of teleparallel gravity. The deceleration parameter is

obtained to be a constant value that shows the decelerating or accelerating phase

of the universe depending on the value of n. The Hubble's parameter shows the

expansion of the universe is getting faster in the beginning with varying n and

become slower through time. Also, the constructed model is purely anisotropic.

Energy density is positive throughout the expansion whereas we have found the

presence of string in an initial phase but later on string phase disappears which

is supported by [34]. The coefficient of bulk viscosity shows transference with

varying n and pressure becomes a diminishing function of cosmic time t with

increasing n.
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Fig.5. Variation of p vs. t.
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ÊÎÑÌÎËÎÃÈ×ÅÑÊÀß ÌÎÄÅËÜ ÎÁÚÅÌÍÎÉ ÂßÇÊÎÉ
ÑÒÐÓÍÛ ÑÎ ÑÒÅÏÅÍÍÛÌ ÇÀÊÎÍÎÌ ÎÁÚÅÌÍÎÃÎ

ÐÀÑØÈÐÅÍÈß Â ÒÅËÅÏÀÐÀËËÅËÜÍÎÉ ÃÐÀÂÈÒÀÖÈÈ

Ê.ÏÀÂÀÐ1, À.Ê.ÄÀÁÐÅ1

Â ýòîé ñòàòüå èññëåäîâàíà êîñìîëîãè÷åñêàÿ ìîäåëü òèïà V Áèàíêè,

êîòîðàÿ ÿâëÿåòñÿ ïðîñòðàíñòâåííî îäíîðîäíîé è àíèçîòðîïíîé â ïðèñóòñòâèè

îáúåìíîé âÿçêîé æèäêîñòè, ñîäåðæàùåé îäíîìåðíóþ êîñìè÷åñêóþ ñòðóíó.

Ïîëó÷åíû òî÷íûå ðåøåíèÿ ñèëüíî íåëèíåéíûõ äèôôåðåíöèàëüíûõ óðàâíåíèé

ïîëÿ ñ ó÷åòîì ñòåïåííîãî çàêîíà îáúåìíîãî ðàñøèðåíèÿ Âñåëåííîé è   TTf 

ôîðìàëèçìà. Íåêîòîðûå ôèçè÷åñêèå è êèíåìàòè÷åñêèå ñâîéñòâà ïîñòðîåííîé

ìîäåëè áûëè îáñóæäåíû è ïðåäñòàâëåíû ãðàôè÷åñêè, è èíòåðåñíî îòìåòèòü,

÷òî ïîëó÷åííàÿ ìîäåëü ñîîòâåòñòâóåò ïîñëåäíèì äàííûì íàáëþäåíèé.

Êëþ÷åâûå ñëîâà: îáúåìíàÿ âÿçêàÿ æèäêîñòü: êîñìè÷åñêàÿ ñòðóíà: òåëåïà-

      ðàëëåëüíàÿ ãðàâèòàöèÿ
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