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Kantowski-Sachs perfect fluid cosmological model is explored in modified gravity with
functional form f(R,T)= f,(R)+ f,(T) where R is Ricci scalar and T is the trace of energy-
momentum tensor. With this functional form, three different cases have been formulated, namely
negative and positive powers of curvature, logarithmic curvature and exponential curvature given by
Si(R) =R+ yRZ— u4/R , fi(R)=R+vIn(tR) and f(R)=R+ ke " respectively, and for all these
three cases, f,(T)=AT, here y,A,pu,v,7,x and 1 are constants. While solving the field equations,
two constraints i) Expansion scalar is proportional to shear scalar ii) Hyperbolic scale factor are used.
By using these conditions the required optimum solutions are obtained. The physical parameters are
calculated and geometrical parameters of three cases are analysed against redshift z with the help
of pictorial representation. In the context of f(R,T) gravity energy conditions are discussed with
the help of pressure and energy density. If strong energy condition is positive the gravity should
be attractive but in our model it is negative. It means that cosmic acceleration is due to antigravity,
whereas NEC and DEC are fulfilled. The perturbation technique is used to test the stability of
the background solutions of the obtained models. The inferences obtained from this paper are in
persistent with the present cosmological observations and the model represents an accelerating
universe.
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1. Introduction. Einstein's theory of general relativity is the foundation of
modern physics and it describes black holes and gravitational phenomena but it
break down to give an explanation of cosmic acceleration. In recent scenario it
is well known that our universe is accelerating [1,2] and it is one of the trending
topics in cosmology. To understand this mysterious concept, we focused on dark
energy and modified theories of gravity. The universe is going through an
accelerated period of expansion and it is revealed by the experiments such as
CMBR and SN/a. Dark energy can be inspected in many ways and reforming
the geometric part of the Einstein-Hilbert action is regarded as the most efficient
possible way and these changes lead to so many alternative theories of gravity.
There are different classes of modified gravity such as f (R) gravity, f (T) gravity,
f (G) gravity, f (R, G) gravity. Among them f (R) gravity has attracted many
researchers because it provides a natural gravitation alternative to dark energy.
During the universe expansion f (R) theory elucidate the change from deceleration
phase to acceleration phase. f (R) theory is presumed to be beneficial for
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resolution of the hierarchy problem or unification of grand unified theories with
gravity in high energy physics. Nojiri and Odintsov [3], Nojiri et al. [4], Chatterjee
and Jaryal [5], Sotiriou and Faraoni [6], De Felice and Tsujikawa [7] are some
of the authors who worked on various cosmological models in f(R) theories of
gravity. A new class of f (R, T) gravity presented by Harko et al. [8], by including
trace Tin f (R) theory. The 7-dependence in f (R,T) gravity may appear from
the presence of imperfect fluids or quantum effects. Among all the modified
theories of gravitation, the f (R, T) theory is a generalized theory because there
is an energy transfer relation between matter and geometry. The existence of this
relationship is the cause of the rapid expansion of the universe. The authors who
worked on f (R,T) gravity are included in references [9-16].

In this paper, we examine three specific cases one of them is combination
of l/Rx and R’ i.e. f(R):R+yRy—u4/R" where y and p are constants. In
this functional form, it has both positive and negative curvature powers. At low
curvature it leads to gravitational alternative for dark energy which helps in speed
up of cosmic expansion where as high curvature describes the inflationary stage
of early universe [17]. By considering R’ term for 1 <y <2 power law inflation
happen at early stage. If y=2, Starobinsky inflation takes place [18], the term
R’ indicates natural correction to general relativity. According to Nojiri and
Odinstov [19] R? term is necessary to get rid of instabilities, linear growth of
the gravitational force, produce early time inflation and appear to pass the solar
system tests. The state of no linear growth for gravitational force makes it very
much fascinating. Higher derivative terms like R?, R’ can be used to put down
the instabilities significantly. For equivalent scalar tensor theory the solar system
test may be passed as scalar has large mass originated again by higher derivative
terms. The standard Einstein's gravity may be modified by considering a 1/R term
in the Einstein-Hilbert action [20] which represents the present acceleration of
the universe. But the insertion of 1/R term generates instabilities which can be
overcome by addition of R? term to the Einstein's gravitational action. Besides
the advantages of this functional form, have well acceptable Newtonian limit, no
instabilities and no Brans-Dicke problem in scalar tensor version. When we put
y=2 and x=1 in the above functional form f (R):R+yRy —ut / R* it reduces
to f (R):R+yR2—u4 /R and the obtained results are very efficient. In addition
to this functional form by using the linear function of f(7)=AT, we get the
final form of f(R, T)=R+ sz—u4/R+7»T where y, p and A are constants.
Vinutha et al. [21] have worked on Kantowski-Sachs perfect fluid cosmological
model in R?-gravity. Vinutha and Sri Kavya [22] have studied Bianchi type
cosmological models in f (R, T) theory with quadratic functional form. Brookfield
[23] have worked on viability of f (R) theories with additional powers of curvature.
Godani and Samanta [24] have studied traversable warmholes on f (R) gravity
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where f (R):R+ o R". Banik et al. [25] have discussed Bianchi-I cosmological
model in (R)=R-B/R" gravity.

Next, we consider logarithmic curvature i.e. f(R,T)=R+vIn(tR)+AT where
T, v and A are constants. As this modified gravity has put forward a gravitational
alternative for dark energy, it is quite interesting to work on this particular
functional form. In this model logarithmic terms are produced by quantum effects
in curved space time. The need for dark energy may be eradicated by this modified
gravity and may aid for the fusion of the early time inflation and cosmic
acceleration. Nojiri and Odinstov have studied about modified gravity and proposed
some functional forms such as In(R) or R™"(InR)" and R+yR™" (1nR/ p2)m
[26,27]. Fayyaz and Shamir [28] have analysed wormhole structures in logarith-
mic-corrected R? gravity. Kourosh and Tahereh [29] have discussed phantom-
like behavior in f (R):R+Blog(R/ uzyn +yR"™ gravity.

By appending the torsion scalar component to the exponential f (R) theory
[30-34], the functional form is f(R,T):R+ ke "®+ AT where k, 1 and A are
constants. The reason behind choosing this functional form it comes up with the
best way of exploring cosmic acceleration. In contrast to the ACDM model the
exponential gravity model has one more parameter included in it and it also
permits the relaxation of fine tuning. Vinutha et al. [35] have studied on Bianchi
type cosmological models in modified theory with exponential functional form.
Paul et al. [36] have worked on accelerating universe in modified theories of
gravity. Sahoo et al. [37] have studied on f (R,T): f (R)+ AT gravity models as
alternatives to cosmic acceleration. Moreas and Sahoo [38] have discussed travers-
able wormholes by using functional form f (R,T):R+ ve and also with this
functional form Moreas et al. [39] studied FRW cosmological model.

When compared to other anisotropic metrics, Kantowski-Sachs model is very
simple and easy to analyze. The cosmologies of Kantowski-Sachs metric possess two
properties of symmetry such as spherical symmetry and invariance under spatial
translation. It describes spatially homogeneous, anisotropic universe and interior of
black holes that does not allow a simply transitive group of motions. It is also used
to analyze the behavior of the added degrees of freedom in quantum cosmological
model. This metric represents three different anisotropic 3 + 1 dimensional space
time and positive curvature models. The study of anisotropic models were nourished
by the theoretical studies and observations of CMB which also been extended to
modified theories of gravity. Thus this model with an anisotropic nature appeared
most appropriate in describing the early stage of the cosmos. Some of the authors
who worked on Kantowski Sachs model are [40-46].

This article is organized as follows: In section 2, f (R, T) gravity field equations
are obtained and in section 3 the field equations of power-law, logarithmic and
exponential functional forms are solved. Section 4 discusses the physical and



78 T.VINUTHA ET AL.

geometrical properties of three cases using graphs and section 5 concludes our results.

2. A brief review of AR, T) =f,(R) +f(T) model. The final action principle
of f (R,T) gravity which is a function of matter Lagrangian L is read as

1
s- j[ﬁ f(R,T)+Lm}/§ d'x, (1)

where g is the metric determinant of the fundamental tensor g, f (R,T) is an
arbitrary function of R and T which is mentioned in the abstract, L is the usual
matter Lagrangian density and we consider G=c=1.

By varying the above equation (1) with respect to g We obtain the field

equations of f (R,T) gravity in covariant tensor form as
1
FoR TR, L 1(R )y 3, 0-V,¥ ) 1. T)=

:875Ty‘_fT(Rv T)eij _fT(RaT)T

ij o

(2
here, V, is the covariant derivative and [1=V,V, is the D'Alemberts operator.
fa=0f(R,T)OR, fr=0f(R,T)0T and R, is the Ricci tensor, where

k 62 Lm

Here the energy-momentum tensor is considered to be a perfect fluid which is
defined as

— //
0; =—2T;+g;L,-2¢

T, =(p+p)uu ;- pg; , 4)
where u, denotes four velocity vector in co-moving coordinates i.e. u,=(1, 0, 0, 0)
and uiuj =1. Hence, the components of energy-momentum tensor become
T; :diag(p,— p,—Pp,— p), where p is the pressure and p is the energy density
of perfect fluid. Several authors have studied by choosing energy-momentum tensor
as perfect fluid which are included in the references [47-54]. It takes the form
by replacing matter Lagrangian as L, =—p [55-57] in equation (3).
0; =27~ pg; - (5)

Consequently the field equations for f (R,T) gravity are procured with the aid
of T=p-3p in equation (2) as

il (R TT o (R, D45 LR T) =R (R T

G, =—Fr——
! fR(R’ T)
_(g[j D_Viv_/)fR(RaT)]’

where G, is the Einstein tensor which is expressed as R,—Rg; /2.
Here, we consider the functional form f(R,T)= fl(R,3+ £(T) ie.

(6)

4
f(R,T):R+yR2—%+7»T (7
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f(R,T)=R+vIn(tR)+ AT (8)
f(R,T)=R+xe R+ AT ©)
as case I, II and III respectively.

3. Metric and solutions of the field equations. Now the metric takes
the form,

ds? = dr*— M ()dr*— N*(1){d 07 +sin?0d y2), (10)

where M and N are metric potentials and functions of cosmic time ¢ only and
co-moving coordinates are (r, 0,y ).

3.1. Case I - (negative and positive powers of curvature). The
functional form f(R,T)=R+yR*~u*/R+\T field equations are as follows

\ 7 72 2 4
12N N (8m+3%/2)p .\ Ap yR?*/2+p*/R

N2 N N2 1+2Ry+u4/R2 2(1+2Ry+u4/R2) 1+2Ry+u4/R2

2yt /R ﬂfzu’é— 6u* R?/R*
1+2Ry+pu*/R*| N 1+2Ry+p*/R?’

(11)

W e
M N MN__ (Sn+32)p | Ap _ YR’ 2+p*/R

M N MN 1+2Ry+p*/R? 2(1+2Rv+u4/R2) 142Ry+p*/R?

2y—2u*/R? HM NJ. } 6u* R*/R*

- —+— |R+R |- .
1+2Ry+u4/R2 1+2Ry+u4/R2

(12)

M N

2M+£+L= (Br+31/2)p Ap YR 2+pR
MN N?* N? 1+42Ry+p*/R? 2(1+2Ry+u4/R2) 1+2Ry+u*/R?
2y—2p*/R* [M 2N, (13)
_1+2Ry+u4/R2{H+T}R'

here dot denotes derivate with respect to r

3.2. Case - II (logarithmic curvature). Field equations corresponding
to the f(R,T)=R+vin(tR)+AT are

.
1 +2_N+N___(8n+3k/2)p+ Ap v(1-1In(tR))

NN N? 1+v/R  2(1+v/R)  2(1+V/R)
J{ﬂmk} VR R/R (14)
1+v/R  1+V/R
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N, MN _ (8n+30/2)p L v(1-In(tR))

M N MN  1+v/R  20+v/R) 2(+v/R) s
(R [0, 8, o] 2vese a
1+v/RI\M N 1+V/R
MN N* 1 (8m+33/2)p Ap v(1-In(tR))
22—t —+—= - -
MN N? N? 1+v/R  2(l+v/R) 2(1+V/R)
L VR {MJFZN}R‘ (16)
1+Vv/R|M N

3.3. Case - IlI (exponential curvature). Field equations corresponding
to the f(R,T)=R+xe "*+ AT are given as follows:

1 2N N_2 (8n+37»/2)p+ Ap +Ke_lR(l+LR)

N2 N N2 1— ke 'R Z(I—Kle_‘R) Z(I—Kle_lR)
k2 e 'R {2N } ki’ e RR? (17

— Z_R+R — -

1-xte N l1-xte

MON MV Brne3n2)p Ap ke " (1+1R)
-+ —+ =— -y + +
M N MN 1-xte 2(1_Kle‘lk) 2(1—Kl€_1R)
kle (M NY. .| wPeRR? (19
|| —+— |[R+ R |+ ——.
1-— Kle_lR M N 1- Kle_lR
2 —1R
ZMJrN +L:(8Tc+37u/2)p_ Ap L ke (1+1R)

MVONTONT dmaet ofoae®)  ofi-xe) (19)

+
1 ke R M N?

ke R {M ZN}
To obtain solutions for highly non-linear equations is very strenuous and in order
to remove such complications we require some constraints.
(i) We consider o is proportional to 6 (where o is the shear scalar and
0 is the expansion scalar) and it generate linear relationship between two metric

potentials in terms of M and N as

M=N" (20)
n#0, 1 is constant. The physical motivation for assuming this condition is that
Hubble expansion of the universe may attain isotropy by the observations of the

velocity redshift relation for extra galatic sources if the value of /6 is constant
[58].
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(ii) The average scale factor is assumed as a hyperbolic expansion
a(t) = sinh(oct)l/ﬁ (21)
where o >0, B>0 are constants. The consequence of using this scale factor is
time dependent deceleration parameter g [59]. This average scale factor tends to

zero if t—>0 and if t—>o then a(f) becomes infinity.
The directional Hubble parameters are

M N
Hl:ﬁ H2=H3=F. (22)
The average Hubble parameter is,
1
H:E(H1+2H2). (23)
By substituting equation (23) in equation (22), we get
a 1(M N
H="=—|—+2]|.
a 3 [M N ] (24)
From equations (20)-(24), we obtain metric potentials of M and N as
M = (sinh(at))"P0+?) (25)
N = (sinh(ot t))S/B('”Z) . (26)

If t >0 then M and N are nonzero, hence, our model is free from singularity.
Using equations (25) and (26), the Kantowski-Sachs metric obtained as

ds? = dt> (sinh(oct))*"*"*?) a2 — (sinh(ce))"*"2) (d 02 +5in20d 2. (27)
The above metric represents a perfect fluid Kantowski-Sachs universe in
f (R,T) theory of gravity.

3.4. Pressure and density for case I. By solving the equations of (11),
(12) and (13) we get the pressure of the model as

ng(x+a—2n—¢4+2¢5+2¢6—¢7_x+a+2n+4¢3+7¢4+2¢5+2¢6+3¢7J o8)

4 br — o+,

and the density of the model is obtained as

ng(x+a+2n+4¢3+7¢4+2¢5+2¢6+3¢7+x+a—zn—¢4+2¢5+2¢6—¢7] 9)
4 o+, by — 0

The values of %, &, m (same for all three cases) and ¢, (i =1, ..., 7) for all
cases are given in the Apendix of the archived version (http://arxiv.org/abs/2301.01163).

3.5. Pressure and density for case Il. By solving the equations (14),
(15) and (16) we get the expression for pressure is
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4 b =, o +9,

and the density of the model is obtained as

le{x+§+2ﬂ+4¢3 _7(1)4—2(1)5 +4¢6 —3¢7 +X+§—2n+¢4—2¢5 +4¢6 +¢7]’ 31)

pzl(“a—zmdu ~205 406+ HEH 2N+~ T4 = 205 + 4 _34)7]’ (30)

4 o + ¢, ¢y —

3.6. Pressure and density for case IIl. By solving the equations (17),
(18) and (19) we get the pressure of the model as

pzl(x+a—2n—¢4+2¢5—z¢6—¢7_x+a+2n—4¢3+7¢4+2¢5—2¢6+3¢7J )
4 0y — ¢y O+ ¢,
and the density of the model is obtained as

p:l[x+«%+2n—4¢s+7¢4+2¢s—2¢6+3¢7 +x+§‘2““"4”¢5‘2¢“¢7} ()
4 by + ¢, ¢ =,

4. Physical and geometrical properties. The average Hubble parameter is
H =%coth(0tt). (34)

From Fig.1 the Hubble parameter decreases with the decrease of redshift i.e.

decreases as time increases. By choosing the values of a=0.21 and f=3.10 in

the scale factor the Hubble parameter is obtained as 0.07 Gyrs™ which is nearly

equal to the present observational value [60]. For this quantity the dimension is

1/time. By using this formula, we can also measure the age of the cosmos.
(ii) The volume of the model is given by

V =a® =(sinh(a t))yﬁ . (35)
z
5] 0.2
1)
£
©
©
Q
()
) 0.17
re)
=}
I
0 1 2
Redshift (z)

Fig.1. Plot of Hubble parameter H versus redshift z.
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In Fig.2, it is clear that the spatial volume increases with the decrease of
redshift i.e. it increases as the time increases and is finite at final epoch.

30
S 20}
(]
£
=)
L 10}
0

0 1 2
Redshift (z)

Fig.2. Plot of volume V versus redshift z

(iii) The expansion scalar 0 is
O=u' =3H = 3occoth((xt)'
’ p
From Fig.3, it is observed that expansion scalar decreases with the decrease of
redshift i.e. it decreases as time increases. Here we noticed that for =0 the
expansion scalar is infinite.

(36)

0.8
)
ki
T 0.6
w
[
e}
2 04}
]
o
X
Ll
0.2

0 1 2
Redshift (z)

Fig.3. Plot of expansion scalar 6 versus redshift z

(iv) We get the shear scalar as
» 3a’(n- 1)2coth2(oct)
(e =
p*(n+2)

when =0, o’ (shear scalar) tends to infinity.
(v) The mean anisotropy parameter A4, is obtained as

(37
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1| &(H-HY
A, =— — 1,
32 &
where i=1, 2, 3 indicate the directional Hubble parameters for the coordinates
of r, 6 and vy.
The mean anisotropy parameter is defined on the basis of directional Hubble
parameter and mean Hubble parameter.
2(n—1)
A, =——7—; n#-2.
" (n+2) (39)

The mean anisotropy parameter A, is useful for checking if the model is
anisotropic or not. In the present model 4,=0 for n=1 and A4, #0 for n=1

-0.06 —~ 0.2
&
=~ >
a =
v -0.1 ? 0.16
3 35
o -0.14 % 0.12
a @
i
-0.18 . 2 . 0.08
0 1 2 0 1 2
Redshift (z) Redshift (z)
Fig.4. Pressure p in case I. Fig.7. Energy density p in case I.
-0.06 —~ 0.22
&
o 2
= = 0.18
v s
3 -0.12} 3
@ 3 0.14
a @
G 0.1
-0.16 - . : )
0 1 2 0 1 2
Redshift (z) Redshift (z)
Fig.5. Pressure p in case II. Fig.8. Energy density p in case II.
-0.04 T T — 0.18
e
& 2
v -0.08 g 0.14
a kel
¢ -0.12 A
a @
c
-0.16 *0.06
0 1 2 0 1 2
Redshift (z) Redshift (z)

Fig.6. Pressure p in case III. Fig.9. Energy density p in case III.
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that is the model is anisotropic for n#1 and isotropic for n=1.

In all the discussions and graphical representation of physical parameters we
constraint the constants for case I as a=0.21, p=3.10, n=7.38, A=-10.02,
u=0.2, y=0.03, case Il as v=0.001, t=0.002 and case IIl as k=0.2,
1=0.009. The values of parameters o, B, n, A in cases Il and III are same
as that of Case I.

(iv) The deceleration parameter is

—e L L 4
T wm (40)
In this model by using hyperbolic function we obtained deceleration parameter

as
g =—1+B[1— tanh (cut)). (41)
When t<ltanh_l(l—l/B)l/ ?, g has negative value which represents that the

universe is accelerating whereas if ¢ > —tanh (1 1/ [3) , ¢ has positive value which

represents that the universe is deceleratlng. The quantities such as g and H specifies
the geometric properties of the cosmos.

v) Fig.4, 5 and 6 illustrate the variation of pressure against redshift in cases
I, I and III respectively. The figures shows that in three cases pressure is negative
and it is known that a negative pressure fluid is the correct mechanism which
is capable of explaining cosmic acceleration within the standard cosmologies,
despite the fact that in the latter it is necessary to bring the cosmological constant
to get this exotic characteristic. In Fig.4, 5 and 6 the pressure increases with the
decrease of redshift, i.e. it increases as time increases which represents cosmic
acceleration.

vi) Fig.7, 8 and 9 shows the evolution of energy density for cases I, II and
II1 respectively. In all the cases the density decreases with the decrease of redshift,
i.e. it decreases as time increases.

vii) With great efforts the equation of state(EoS) parameter in cosmology of
different dark energy models are examined. The parameter relating to the equation
of state is a dimensionless term that represents the matter state under some
particular physical grounds. In the terminology of p and p the EoS can be
interpret in the from of o= p/p. The EoS parameter is distinguished in three
regions namely quintessence, phantom, and quintom according to its range. In
quintessence region the EoS paramter lies in the range of —1<w<-1/3, in
phantom phase the EoS parameter is in the range of less than -1 (i.e. w<-1)
and in quintom w=-1. Fig.10, 11 and 12 of the EoS parameter are drawn against
redshift and observed that it decreases with the decrease of redshift that is decreases
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as time increases. From the graphs we noticed that our model lies in quintessence
region in three cases. According to Planck+nine years WMAP the current value
of EoS parameter is approximately as o= —1.13f8§‘5‘ [61], and from SNe la data
with galaxy clustering, CMBR anisotropy statistics the EoS parameter lies in the
range —1.33<m<-0.79, —-1.67 < <-0.62 [62] respectively. From the figures of
EoS parameters, it is seen that three cases are approximately coincide with
observational data which is a good result.

__-0.78 — -0.75
S S
% 2017
E 08 &
g 8 -0.79
? ?
w.0.82 L 0.81 .
0 1 2 0 1 2
Redshift (z) Redshift (z)
Fig.10. EoS parameter o in case I. Fig.11. EoS parameter ® in case II.
. -0.66
)
o)
- -0.7
]
o
8 -0.74
0
[e]
W0.78 . .
0 1 2

Redshift (z)

Fig.12. EoS parameter ® in case III.

viii) In modified theories of gravity, energy conditions [63-65] plays a crucial
role in studying the behaviour of spacelike and timelike geodesics and these
conditions are came from Raychaudhuri equations [66]. Energy conditions can be
defined in many ways, such as geometric way and physical way. Moreover energy
conditions are significant in the black hole physics, as they lay foundations of
the singularity theorems. Another advantage of energy condition is that it allows
basic tools to consider certain ideas about black holes and wormholes. There are
four most commonly used fundamental energy conditions. The general expressions
for energy conditions in regard of pressure and energy density are given below:

(i) SEC (Strong Energy condition): Gravity always has to be attractive, and
in cosmology p+3p>0, p+p=>0 should be observed.

(i) DEC (Dominant Energy Condition): The energy density should always be
positive when measured by any observer that is p>0, p+ p>0, must be obeyed.
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(iii) WEC (Weak Energy Condition): The energy density must always be
positive when measured by any observer that is p>0, p+p>0.

(iv) NEC (Null Energy Condition): NEC is expressed in the form of p+p>0
and it ensures the validity of second law of black hole thermodynamics.

Where NEC, WEC, DEC and SEC represents null, weak, dominant and
strong energy conditions. According to present cosmological data to represent the
universe with cosmic expansion the SEC of that model should be violated
p+3p>0. For the obtained models the same scenario can be clearly observed
from Fig.13 to 15. When compared to strong energy condition null energy
condition is more beneficial, as it can be used algebraically due to its weakest
pointwise energy condition which results in the strongest theorems and all these

-0.1
__ 0,04
g a
+
+
o -0.2 £ 0.03
2 2
w 0.02
-0.3
0 1 2 0 1 2
Redshift (z) Redshift (z)
Fig.13. SEC in case I. Fig.16. NEC in case I.
-0.14 0.06
= =
™ -0. F+
¥ 018 - E 004
& O
o -0.22 g
7 ' Z 00
-0.26 i '
0 1 2 0 1 2
Redshift (z) Redshift (z)
Fig.14. SEC in case II. Fig.17. NEC in case II.
-0.05
0.05
o a
%) + 0.04
+
o015 N
O 9 0.03
(u,g =z
0.02
-0.25 -
0 1 2 0 1 2
Redshift (z) Redshift (z)

Fig.15. SEC in case III. Fig.18. NEC in case III.



88 T.VINUTHA ET AL.

energy conditions, are met by electromagnetic field. From Fig.16 to 18 it is clear
that NEC (p+ p>0) is satisfied in all the three cases for the obtained model.
If NEC satisfies then the parameter EoS occurs in quintessence region. Also from
Fig.19 to 21 it is clear that DEC (p+ p>0) is fulfilled in all the three cases

for the obtained model.

0.4
= 03 a
+ +
o o 0.3
7 2
a 02 Q o2
0 1 2 0 1 2
Redshift (z) Redshift (z)
Fig.19. DEC in case I. Fig.20. DEC in case II.
0.3
a
+
&
o 02
w
[a)
0.1
0 1 2

Redshift (z)
Fig.21. DEC in case III.

4.1. Stability analysis. Perturbations are essential for simplify a complex
mathematical problems. There are several types of perturbations such as isotropic,
anisotropic, homogeneous/inhomogeneous scalar, vector and tensor perturbations.
The technique of perturbation is studied as a tool for finding approximate solution
and comparing it to the obtained exact solution. Some of the researchers who
studied on stability analysis are [67-69]. Here the stability of solutions in terms
of metric perturbation as following

a; > ag+90a; =aB,-(1+5bl-).

The perturbation of volume scale factor, directional Hubble factors and mean

Hubble factors are

V—)VB+VBZSI)I-, Gi—>93i+28bi, 9—)63+%28bi. (43)

(42)

The following equations are satisfied by the metric perturbation &b,
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> 8b; +2).0,8b, =0, (44)
. Vo .
Sb[+—8b[+26bj 0, =0, (45)
B J
From equations (44)-(46), we attain
815[+Q66i =0, (47)
VB
where V, is the background spatial volume and for our case V) is
V= (sinh(oct))3/ b (48)

From above two equations, 85, is procured as

By/cosh? (ot Jsech(ar t)sinh(B’3 Ve (at), F (1 B3, 3(p-1) ; —sinh?(at t))

20 28 2B

b, =¢,—c , (49)
o o(p-3)
where ¢, and ¢ are integrating constants.
Consequently, the actual fluctuations 8a; =ag 8b; is
By cosh?(auz) sech((xt)sinhﬁ_3/ Plat), FI(;, 62_[33; 3([; [; ) ;—sinh’ (oct)}
da; =| ¢,—c
ofp-3)
(30)

xsinh{ot t)73/ P

Fig.22 shows the behaviour of actual fluctuations versus redshift and it is
noticed that it is a decreasing function with the decrease of redshift that is actual

—~ 0.08
©
=
[(72)
c
.2
g
g 0.04 |
=
©
5
g
0

0 1 2 3
Redshift (z)

Fig.22. Plot of actual fluctuations &a, versus redshift z.
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fluctuations decrease as time increases. It is clear that da; >0 as 7 — — and
hence the background solution is shown to be stable against perturbation of
gravitational field.

5. Conclusions. A cosmological model in f(R,T) theory with three cases
namely power law, logarithmic and exponential curvature is obtained. Hyperbolic
scale factor is used to solve the field equations to get the solution in each case.
The solutions of these field equations represent accelerating model of the universe.
The graph of all parameters are drawn against redshift. In graphs the negative region
of z represents future epoch, positive region of z represents past and z=0 indicates
present. Obtained models are anisotropic and free from singularity all the way
through the universe's evolution. By analyzing all the parameters the conclusions
are as follows:

- From Fig.1 and 3 and from the equations (34) and (36) it can be seen
that Hubble parameter and expansion scalar decreases with the decrease of redshift,
and also it is clear that the Hubble parameter and expansion scalar are close to
zero when ¢ —o0 .,

- From Fig.2 it is clear that the volume increases with the decrease of redshift
which indicates volume of the expanding universe. From equation (37), it is
noticed that the shear scalar is a function of time and tends to zero when ¢ — o0 .

- From equation (39), the anisotropic parameter is independent of time and
A4, #0 for n#1, A, =0 for n=1. But in this paper due to power law 7 is different
from one. Hence the models are anisotropic throughout.

- From the graphs of pressure and energy density of all the three cases, it
is clear that the pressure and energy density are negative and positive respectively.
Due to the negative pressure and positive energy density the universe is going
through accelerating expansion.

- The behavior of EoS parameter against redshift is represented in plots 11
to 13. From these graphs it is obvious that the model is in the quintessence region
in three cases that is —1< ® < —1/3 which matches with present observational data.

- In three cases, SEC is violated whereas NEC and DEC are fufilled. The
violation of SEC leads to cosmic acceleration which is in good agreement with
the expansion of the cosmos.

- As seen in the graph of stability analysis, the actual fluctuations begin with
a small positive value and decreases to zero. As a result, the background solution
is stable when the gravitational field is perturbed.

A detailed discussion is provided through the obtained models for describing
cosmic acceleration. Finally, through the detailed study of the models in three cases
namely power law curvature f(R,T)=R+yR>—p*/R+ALT, logarithmic curvature
f(R,T)=R+vIn(tR)+AT and exponential curvature f(R,7T)= R+ ke “R+LT very
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good results which represents the universe accelerating expansion are observed.
Moreover all the parameters discussed here matches with the recent observational
data. At last, without existence of any exotic fluid, the current universe is
accelerating is perceived in this paper which is a great outcome. As a future work,
this work can be extended to other anisotropic models and can study the
similarities and differences between them.
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NCCIENOBAHUE KOCMOJIOTUYECKOW MOJEIU
NAEAJIBHON XNAKOCTHU KAHTOBCKOI'O-CAKCA B
MOANDPULMPOBAHHON TPABUTALIMU

T.BUHYTA!, KHUXAPUKA!, K.IlI.KABbA?

Kocmonoruueckass momenb uaeanbHoit xuakoctu KaHToBckoro-Cakca
uccienyeTcss B MOAMGUUMPOBAHHOW TpaBUTALMU C (PYHKUMOHAJIbHONU (opmoit
f(R,T)= 1 (R)+ fz(T)’ roe R - ckamap Puyum, a T - cien TeH30pa 3HEPruu-
nMiyabea. C ImoMonIbio 3Toi (PyHKIIMOHAILHOM (opMBI ObUIM C(POPMYIHMPOBAHBI
TPU pa3IMYHBIX CIydasl, a UMEHHO, OTpHUIIaTeJIbHASA M TIOJOXUTEIbHAS CTEIIeH!
KPWBU3HBI, JIOTaprU(pMIUYecKash KpUBIU3HA M SKCITOHEHIIMATbHAs KPUBU3HA, OIpee-
nsiembie popmymamit f;(R)= R+yR*—p*/R, f,(R)= R+vin(xR) u f;(R)=R+xe™F,
COOTBETCTBEHHO, U [UISI BCEX B3TUX TPEX CIIy4acB fz(T )= AT, toe v,A, W, V,T,K
1 - KoHCTaHTHL [lpy pelreHnn ypaBHEHUIA TTOJIST UCITONTB3YIOTCS TBA OTPAaHUYCHUS:
i) cKaJsIp paclIMpeHus1 TPOMOPLIMOHATIEH CKAJISIPY CIBUIA, ii) UCIOJb3YyeTCs TUIep-
Oonnyeckrii MaciuTabHbI KoadduiimeHT. Ycrionb3ys 3TU YCIOBUS, MOJIy4YEeHbI
TpebyeMble ONTUMaJIbHblE pelleHus. PaccuMTaHbl (u3nMueckue mnapameTpbl U
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MMPOAHAIU3UPOBAHBI TEOMETPUYECKIE TTapaMEeTPhl TPEX CIIydaeB B 3aBUCUMOCTU OT
KPacHOTO CMEILeHUS Z ¢ TIOMOILbIO TpachuuecKoro npeacTaBieHus. B KoHTekcTe
f (R, T ) 9HEPreTUYECKUe YCIIOBYS TpaBUTALIMM OOCYKIAIOTCS ¢ TIOMOLIBIO JaBJIeHUS
W TJTOTHOCTHU 3Hepruu. ECIu CHIbHOE SHEPIeTUYECKOE COCTOSTHUE TOJIOKUTEIBHOE,
TpaBUTALMS TOJDKHA OBITH MPUTATAaTeIbHOM, HO B HAILIE MOIEIM OHO OTPULIATEIBHOE.
DTO 03HAYaeT, YTO KOCMUUECKOE YCKOPEHUE IIPOMCXOIUT 3a CYET aHTUTPAaBUTALIN,
B To BpeMs Kak BhITONHS0TCI NEC 1 DEC. MeTon Bo3MyllleHUIA MCITOIb3YeTCS
JIJIS1 TIPOBEPKU YCTOMUMBOCTU (POHOBBIX PEIICHUI MOJYYeHHbBIX Moeseil. BoiBoabl,
MOJIyYeHHbIE B 3TOI CTaTbM, COIJIACYIOTCS C HBIHEIIHMMHU KOCMOJIOTHMYECKMMU
HaOIIOMEHUSIMH, U MOZEIb MPEACTaBISIET COOOI yCKopsolnyocs BeeleHHyo.

Kitrouesele cioBa: npocmpancmeo-epemsa Kanmosckoeo-Cakca: f (R, T ) -meopusi:
udeanvras HCUOKOCMb
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