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Kantowski-Sachs perfect fluid cosmological model is explored in modified gravity with
functional form )()() ,(

21
TfRfTRf   where R is Ricci scalar and T is the trace of energy-

momentum tensor. With this functional form, three different cases have been formulated, namely
negative and positive powers of curvature, logarithmic curvature and exponential curvature given by

RRRRf /)(
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1
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
)(

1
 respectively, and for all these

three cases, TTf )(
2

, here   , , , , ,  and   are constants. While solving the field equations,

two constraints i) Expansion scalar is proportional to shear scalar ii) Hyperbolic scale factor are used.
By using these conditions the required optimum solutions are obtained. The physical parameters are
calculated and geometrical parameters of three cases are analysed against redshift z with the help
of pictorial representation. In the context of ) ,( TRf  gravity energy conditions are discussed with
the help of pressure and energy density. If strong energy condition is positive the gravity should
be attractive but in our model it is negative. It means that cosmic acceleration is due to antigravity,
whereas NEC and DEC are fulfilled. The perturbation technique is used to test the stability of
the background solutions of the obtained models. The inferences obtained from this paper are in
persistent with the present cosmological observations and the model represents an accelerating
universe.
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1. Introduction. Einstein's theory of general relativity is the foundation of

modern physics and it describes black holes and gravitational phenomena but it

break down to give an explanation of cosmic acceleration. In recent scenario it

is well known that our universe is accelerating [1,2] and it is one of the trending

topics in cosmology. To understand this mysterious concept, we focused on dark

energy and modified theories of gravity. The universe is going through an

accelerated period of expansion and it is revealed by the experiments such as

CMBR and SNIa. Dark energy can be inspected in many ways and reforming

the geometric part of the Einstein-Hilbert action is regarded as the most efficient

possible way and these changes lead to so many alternative theories of gravity.

There are different classes of modified gravity such as  Rf  gravity,  Tf  gravity,

 Gf  gravity,  GRf  ,  gravity. Among them  Rf  gravity has attracted many

researchers because it provides a natural gravitation alternative to dark energy.

During the universe expansion  Rf  theory elucidate the change from deceleration

phase to acceleration phase.  Rf  theory is presumed to be beneficial for
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resolution of the hierarchy problem or unification of grand unified theories with

gravity in high energy physics. Nojiri and Odintsov [3], Nojiri et al. [4], Chatterjee

and Jaryal [5], Sotiriou and Faraoni [6], De Felice and Tsujikawa [7] are some

of the authors who worked on various cosmological models in  Rf  theories of

gravity. A new class of  TRf  ,  gravity presented by Harko et al. [8], by including

trace T in  Rf  theory. The T-dependence in  TRf  ,  gravity may appear from

the presence of imperfect fluids or quantum effects. Among all the modified

theories of gravitation, the  TRf  ,  theory is a generalized theory because there

is an energy transfer relation between matter and geometry. The existence of this

relationship is the cause of the rapid expansion of the universe. The authors who

worked on  TRf  ,  gravity are included in references [9-16].

In this paper, we examine three specific cases one of them is combination

of xR1  and yR  i.e.   xy RRRRf 4  where   and   are constants. In

this functional form, it has both positive and negative curvature powers. At low

curvature it leads to gravitational alternative for dark energy which helps in speed

up of cosmic expansion where as high curvature describes the inflationary stage

of early universe [17]. By considering yR  term for 1 < y < 2 power law inflation

happen at early stage. If y = 2, Starobinsky inflation takes place [18], the term
2R  indicates natural correction to general relativity. According to Nojiri and

Odinstov [19] 2R  term is necessary to get rid of instabilities, linear growth of

the gravitational force, produce early time inflation and appear to pass the solar

system tests. The state of no linear growth for gravitational force makes it very

much fascinating. Higher derivative terms like 2R , 3R  can be used to put down

the instabilities significantly. For equivalent scalar tensor theory the solar system

test may be passed as scalar has large mass originated again by higher derivative

terms. The standard Einstein's gravity may be modified by considering a 1/R term

in the Einstein-Hilbert action [20] which represents the present acceleration of

the universe. But the insertion of 1/R term generates instabilities which can be

overcome by addition of 2R  term to the Einstein's gravitational action. Besides

the advantages of this functional form, have well acceptable Newtonian limit, no

instabilities and no Brans-Dicke problem in scalar tensor version. When we put

y = 2 and x = 1 in the above functional form   xy RRRRf 4  it reduces

to   RRRRf 42   and the obtained results are very efficient. In addition

to this functional form by using the linear function of TTf )( , we get the

final form of   TRRRTRf  42 ,  where  ,   and   are constants.

Vinutha et al. [21] have worked on Kantowski-Sachs perfect fluid cosmological

model in 2R -gravity. Vinutha and Sri Kavya [22] have studied Bianchi type

cosmological models in  TRf  ,  theory with quadratic functional form. Brookfield

[23] have worked on viability of  Rf  theories with additional powers of curvature.

Godani and Samanta [24] have studied traversable warmholes on  Rf  gravity
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where   nRRRf  . Banik et al. [25] have discussed Bianchi-I cosmological

model in   nRRR   gravity.

Next, we consider logarithmic curvature i.e.     TRRTRf  ln ,  where

 ,   and   are constants. As this modified gravity has put forward a gravitational

alternative for dark energy, it is quite interesting to work on this particular

functional form. In this model logarithmic terms are produced by quantum effects

in curved space time. The need for dark energy may be eradicated by this modified

gravity and may aid for the fusion of the early time inflation and cosmic

acceleration. Nojiri and Odinstov have studied about modified gravity and proposed

some functional forms such as  Rln  or  mn RR ln  and  mn RRR 2ln  

[26,27]. Fayyaz and Shamir [28] have analysed wormhole structures in logarith-

mic-corrected 2R  gravity. Kourosh and Tahereh [29] have discussed phantom-

like behavior in     mm
RRRRf  2log  gravity.

By appending the torsion scalar component to the exponential  Rf  theory

[30-34], the functional form is   TeRTRf R   ,  where  ,   and   are

constants. The reason behind choosing this functional form it comes up with the

best way of exploring cosmic acceleration. In contrast to the CDM  model the

exponential gravity model has one more parameter included in it and it also

permits the relaxation of fine tuning. Vinutha et al. [35] have studied on Bianchi

type cosmological models in modified theory with exponential functional form.

Paul et al. [36] have worked on accelerating universe in modified theories of

gravity. Sahoo et al. [37] have studied on     TRfTRf  ,  gravity models as

alternatives to cosmic acceleration. Moreas and Sahoo [38] have discussed travers-

able wormholes by using functional form   TeRTRf  ,  and also with this

functional form Moreas et al. [39] studied FRW cosmological model.

When compared to other anisotropic metrics, Kantowski-Sachs model is very

simple and easy to analyze. The cosmologies of Kantowski-Sachs metric possess two

properties of symmetry such as spherical symmetry and invariance under spatial

translation. It describes spatially homogeneous, anisotropic universe and interior of

black holes that does not allow a simply transitive group of motions. It is also used

to analyze the behavior of the added degrees of freedom in quantum cosmological

model. This metric represents three different anisotropic 3 + 1 dimensional space

time and positive curvature models. The study of anisotropic models were nourished

by the theoretical studies and observations of CMB which also been extended to

modified theories of gravity. Thus this model with an anisotropic nature appeared

most appropriate in describing the early stage of the cosmos. Some of the authors

who worked on Kantowski Sachs model are [40-46].

This article is organized as follows: In section 2,  TRf  ,  gravity field equations

are obtained and in section 3 the field equations of power-law, logarithmic and

exponential functional forms are solved. Section 4 discusses the physical and



78 T.VINUTHA  ET  AL.

geometrical properties of three cases using graphs and section 5 concludes our results.

2. A brief review of f(R, T) = f
1
(R) + f

2
(T) model. The final action principle

of  TRf  ,  gravity which is a function of matter Lagrangian L
m
 is read as

  ,  ,
16

1 4
 











 xdgLTRfS m (1)

where g is the metric determinant of the fundamental tensor g
ij
,  TRf  ,  is an

arbitrary function of R and T which is mentioned in the abstract, L
m
 is the usual

matter Lagrangian density and we consider G = c = 1.

By varying the above equation (1) with respect to g
ij
, we obtain the field

equations of  TRf  ,  gravity in covariant tensor form as

       

    ,  , ,8

 , ,
2

1
 ,

ijTijTij

RjiijijijR

TTRfTRfT

TRfggTRfRTRf



 
(2)

here, i  is the covariant derivative and ji  is the D'Alemberts operator.

  RTRffR   , ,   TTRffT   ,  and R
ij
 is the Ricci tensor, where

. 22
2

lkij
mlk

mijijij
gg

L
gLgT




 (3)

Here the energy-momentum tensor is considered to be a perfect fluid which is

defined as

  , ijjiij pguupT  (4)

where u
i
 denotes four velocity vector in co-moving coordinates i.e. u

i
 = (1, 0, 0, 0)

and 1jiuu . Hence, the components of energy-momentum tensor become

 pppTij   , , ,diag , where p is the pressure and   is the energy density

of perfect fluid. Several authors have studied by choosing energy-momentum tensor

as perfect fluid which are included in the references [47-54]. It takes the form

by replacing matter Lagrangian as pLm   [55-57] in equation (3).

. 2 ijijij pgT  (5)

Consequently the field equations for  TRf  ,  gravity are procured with the aid

of pT 3  in equation (2) as

 
         

   ,  ,

 , ,
2

1
 , ,8

 ,

1

TRfg

gTRRfTRfgTRpfTTRf
TRf

G

Rjiij

ijRijTijT
R

ij






(6)

where G
ij
 is the Einstein tensor which is expressed as 2ijij RgR  .

Here, we consider the functional form      TfRfTRf 21 , ,   i.e.

  T
R

RRTRf 



4

2 , (7)
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    TRRTRf  ln , (8)

  TeRTRf R   , (9)

as case I, II and III respectively.

3. Metric and solutions of the field equations. Now the metric takes

the form,

    , sin 22222222  ddtNdrtMdtds (10)

where M and N are metric potentials and functions of cosmic time t only and

co-moving coordinates are (   , ,r ).

3.1. Case I - (negative and positive powers of curvature). The

functional form   TRRRTRf  42 ,  field equations are as follows
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 
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
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












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here dot denotes derivate with respect to t.

3.2. Case - II (logarithmic curvature). Field equations corresponding

to the     TRRTRf  ln ,  are

 
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3.3. Case - III (exponential curvature). Field equations corresponding

to the   TeRTRf R   ,  are given as follows:
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To obtain solutions for highly non-linear equations is very strenuous and in order

to remove such complications we require some constraints.

(i) We consider   is proportional to   (where   is the shear scalar and

  is the expansion scalar) and it generate linear relationship between two metric

potentials in terms of M and N as

nNM  (20)

1  ,0n  is constant. The physical motivation for assuming this condition is that

Hubble expansion of the universe may attain isotropy by the observations of the

velocity redshift relation for extra galatic sources if the value of   is constant

[58].
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(ii) The average scale factor is assumed as a hyperbolic expansion

     1sinh tta (21)

where 0 , 0  are constants. The consequence of using this scale factor is

time dependent deceleration parameter q [59]. This average scale factor tends to

zero if 0t  and if t  then a(t) becomes infinity.

The directional Hubble parameters are

. 321
N

N
HH

M

M
H


 (22)

The average Hubble parameter is,

 . 2
3

1
21 HHH  (23)

By substituting equation (23) in equation (22), we get

. 
3

1
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







N

N

M

M

a

a
H


(24)

From equations (20)-(24), we obtain metric potentials of M and N as

    
, sinh 23  nntM (25)

    
. sinh 23  ntN (26)

If t  then M and N are nonzero, hence, our model is free from singularity.

Using equations (25) and (26), the Kantowski-Sachs metric obtained as

            .sinsinhsinh 2222622622   ddtdrtdtds nnn (27)

The above metric represents a perfect fluid Kantowski-Sachs universe in

 TRf  ,  theory of gravity.

3.4. Pressure and density for case I. By solving the equations of (11),

(12) and (13) we get the pressure of the model as

, 
322742222

4
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76543

12

7654




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











p (28)

and the density of the model is obtained as

, 
222322742

4
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76543




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











 (29)

The values of  ,  ,   (same for all three cases) and i  (i =1, ..., 7) for all

cases are given in the Apendix of the archived version (http://arxiv.org/abs/2301.01163).

3.5. Pressure and density for case II. By solving the equations (14),

(15) and (16) we get the expression for pressure is
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, 
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


p (30)

and the density of the model is obtained as

, 
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 (31)

3.6. Pressure and density for case III. By solving the equations (17),

(18) and (19) we get the pressure of the model as

, 
322742222
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


p (32)

and the density of the model is obtained as

, 
222322742

4

1
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7654

21

76543




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




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
 (33)

4. Physical and geometrical properties. The average Hubble parameter is

 . coth tH 



 (34)

From Fig.1 the Hubble parameter decreases with the decrease of redshift i.e.

decreases as time increases. By choosing the values of 0.21  and 3.10  in

the scale factor the Hubble parameter is obtained as 0.07 Gyr s-1 which is nearly

equal to the present observational value [60]. For this quantity the dimension is

1/time. By using this formula, we can also measure the age of the cosmos.

(ii) The volume of the model is given by

   . sinh 33  taV (35)

Fig.1. Plot of Hubble parameter H versus redshift z.
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In Fig.2, it is clear that the spatial volume increases with the decrease of

redshift i.e. it increases as the time increases and is finite at final epoch.

(iii) The expansion scalar   is

 
. 

coth3
3 ;






t
Huii (36)

From Fig.3, it is observed that expansion scalar decreases with the decrease of

redshift i.e. it decreases as time increases. Here we noticed that for t = 0 the

expansion scalar is infinite.

(iv) We get the shear scalar as

   
 

, 
2

coth13
22

222
2






n

tn
(37)

when t = 0, 2  (shear scalar) tends to infinity.

(v) The mean anisotropy parameter A
h
 is obtained as

Fig.2. Plot of volume V versus redshift z
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, 
3

1 3
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




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 

�i

i
h

H

HH
A (38)

where i = 1, 2, 3 indicate the directional Hubble parameters for the coordinates

of r,   and  .

The mean anisotropy parameter is defined on the basis of directional Hubble

parameter and mean Hubble parameter.

 
 

. 2; 
2

12
2

2





 n

n

n
Ah (39)

The mean anisotropy parameter A
h
 is useful for checking if the model is

anisotropic or not. In the present model A
h

 = 0 for n = 1 and 0hA  for 1n
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that is the model is anisotropic for 1n  and isotropic for n = 1.

In all the discussions and graphical representation of physical parameters we

constraint the constants for case I as 210. , 103. , n = 7.38, 0210. ,

20. , 030. , case II as 0010. , 0020.  and case III as 20. ,

0090. . The values of parameters  ,  , n,   in cases II and III are same

as that of Case I.

(iv) The deceleration parameter is

. 
1

1
Hdt

d
q  (40)

In this model by using hyperbolic function we obtained deceleration parameter

as

  . tanh11 2 tq  (41)

When   211 11tanh
1




 t , q has negative value which represents that the

universe is accelerating whereas if   211 11tanh
1




 t , q has positive value which

represents that the universe is decelerating. The quantities such as q and H specifies

the geometric properties of the cosmos.

v) Fig.4, 5 and 6 illustrate the variation of pressure against redshift in cases

I, II and III respectively. The figures shows that in three cases pressure is negative

and it is known that a negative pressure fluid is the correct mechanism which

is capable of explaining cosmic acceleration within the standard cosmologies,

despite the fact that in the latter it is necessary to bring the cosmological constant

to get this exotic characteristic. In Fig.4, 5 and 6 the pressure increases with the

decrease of redshift, i.e. it increases as time increases which represents cosmic

acceleration.

vi) Fig.7, 8 and 9 shows the evolution of energy density for cases I, II and

III respectively. In all the cases the density decreases with the decrease of redshift,

i.e. it decreases as time increases.

vii) With great efforts the equation of state(EoS) parameter in cosmology of

different dark energy models are examined. The parameter relating to the equation

of state is a dimensionless term that represents the matter state under some

particular physical grounds. In the terminology of p and   the EoS can be

interpret in the from of  p . The EoS parameter is distinguished in three

regions namely quintessence, phantom, and quintom according to its range. In

quintessence region the EoS paramter lies in the range of 311  , in

phantom phase the EoS parameter is in the range of less than -1 (i.e. 1 )

and in quintom 1 . Fig.10, 11 and 12 of the EoS parameter are drawn against

redshift and observed that it decreases with the decrease of redshift that is decreases
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as time increases. From the graphs we noticed that our model lies in quintessence

region in three cases. According to Planck+nine years WMAP the current value

of EoS parameter is approximately as 240
250131 .
.. 

  [61], and from SNe Ia data

with galaxy clustering, CMBR anisotropy statistics the EoS parameter lies in the

range 790331 ..  , 620671 ..   [62] respectively. From the figures of

EoS parameters, it is seen that three cases are approximately coincide with

observational data which is a good result.

viii) In modified theories of gravity, energy conditions [63-65] plays a crucial

role in studying the behaviour of spacelike and timelike geodesics and these

conditions are came from Raychaudhuri equations [66]. Energy conditions can be

defined in many ways, such as geometric way and physical way. Moreover energy

conditions are significant in the black hole physics, as they lay foundations of

the singularity theorems. Another advantage of energy condition is that it allows

basic tools to consider certain ideas about black holes and wormholes. There are

four most commonly used fundamental energy conditions. The general expressions

for energy conditions in regard of pressure and energy density are given below:

(i) SEC (Strong Energy condition): Gravity always has to be attractive, and

in cosmology 03  p , 0 p  should be observed.

(ii) DEC (Dominant Energy Condition): The energy density should always be

positive when measured by any observer that is 0 , 0 p , must be obeyed.
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(iii) WEC (Weak Energy Condition): The energy density must always be

positive when measured by any observer that is 0 , 0 p .

(iv) NEC (Null Energy Condition): NEC is expressed in the form of 0 p

and it ensures the validity of second law of black hole thermodynamics.

Where NEC, WEC, DEC and SEC represents null, weak, dominant and

strong energy conditions. According to present cosmological data to represent the

universe with cosmic expansion the SEC of that model should be violated

03  p . For the obtained models the same scenario can be clearly observed

from Fig.13 to 15. When compared to strong energy condition null energy

condition is more beneficial, as it can be used algebraically due to its weakest

pointwise energy condition which results in the strongest theorems and all these

Fig.18. NEC in case III.

Redshift (z)

S
E
C
 (


 +
 3
p
)

0
-0.3

1 2

-0.2

-0.1

Redshift (z)

0 1 2

Fig.13. SEC in case I. Fig.16. NEC in case I.

0 1 2

Redshift (z)

0 1 2

Redshift (z)

Fig.14. SEC in case II. Fig.17. NEC in case II.

0 1 2

Redshift (z)

0 1 2

Redshift (z)

Fig.15. SEC in case III.

S
E
C
 (


 +
 3
p
)

-0.26

-0.22

-0.18

-0.14

S
E
C
 (


 +
 3
p
)

-0.25

-0.15

-0.05

N
E
C
 (


 +
 p
)

0.02

0.03

0.04

N
E
C
 (


 +
 p
)

0.02

0.04

0.06

N
E
C
 (


 +
 p
)

0.02

0.03

0.04

0.05



88 T.VINUTHA  ET  AL.

energy conditions, are met by electromagnetic field. From Fig.16 to 18 it is clear

that NEC ( 0 p ) is satisfied in all the three cases for the obtained model.

If NEC satisfies then the parameter EoS occurs in quintessence region. Also from

Fig.19 to 21 it is clear that DEC ( 0 p ) is fulfilled in all the three cases

for the obtained model.

4.1. Stability analysis. Perturbations are essential for simplify a complex

mathematical problems. There are several types of perturbations such as isotropic,

anisotropic, homogeneous/inhomogeneous scalar, vector and tensor perturbations.

The technique of perturbation is studied as a tool for finding approximate solution

and comparing it to the obtained exact solution. Some of the researchers who

studied on stability analysis are [67-69]. Here the stability of solutions in terms

of metric perturbation as following

 . 1 iBiiBii baaaa  (42)

The perturbation of volume scale factor, directional Hubble factors and mean

Hubble factors are

. 
3

1
, ,  

i
iB

i
iBii

i
iBB bbbVVV (43)

The following equations are satisfied by the metric perturbation ib

Fig.21. DEC in case III.
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, 02  
i

iBi
i

i bb 
(44)

, 0 
j

Biji
B

B
i bb
V

V
b 




(45)

. 0
i

ib (46)

From equations (44)-(46), we attain

, 0 i
B

B
i b
V

V
b 




(47)

where V
B
 is the background spatial volume and for our case V

B
 is

   . sinh 3  tVB (48)

From above two equations, ib  is procured as

           
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where c
1
 and c are integrating constants.

Consequently, the actual fluctuations iBii baa   is
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(50)

Fig.22 shows the behaviour of actual fluctuations versus redshift and it is

noticed that it is a decreasing function with the decrease of redshift that is actual

Fig.22. Plot of actual fluctuations 
i
a  versus redshift z.

Redshift (z)

A
ct

ua
l f

lu
ct

ua
ti
o
ns

 (
a

i )

0

0.04

1 2
0

0.08

3



90 T.VINUTHA  ET  AL.

fluctuations decrease as time increases. It is clear that 0 ia  as z  and

hence the background solution is shown to be stable against perturbation of

gravitational field.

5. Conclusions. A cosmological model in  TRf  ,  theory with three cases

namely power law, logarithmic and exponential curvature is obtained. Hyperbolic

scale factor is used to solve the field equations to get the solution in each case.

The solutions of these field equations represent accelerating model of the universe.

The graph of all parameters are drawn against redshift. In graphs the negative region

of z represents future epoch, positive region of z represents past and z = 0 indicates

present. Obtained models are anisotropic and free from singularity all the way

through the universe's evolution. By analyzing all the parameters the conclusions

are as follows:

- From Fig.1 and 3 and from the equations (34) and (36) it can be seen

that Hubble parameter and expansion scalar decreases with the decrease of redshift,

and also it is clear that the Hubble parameter and expansion scalar are close to

zero when t .

- From Fig.2 it is clear that the volume increases with the decrease of redshift

which indicates volume of the expanding universe. From equation (37), it is

noticed that the shear scalar is a function of time and tends to zero when t .

- From equation (39), the anisotropic parameter is independent of time and

0hA  for 1n , A
h

 = 0 for n = 1. But in this paper due to power law n is different

from one. Hence the models are anisotropic throughout.

- From the graphs of pressure and energy density of all the three cases, it

is clear that the pressure and energy density are negative and positive respectively.

Due to the negative pressure and positive energy density the universe is going

through accelerating expansion.

- The behavior of EoS parameter against redshift is represented in plots 11

to 13. From these graphs it is obvious that the model is in the quintessence region

in three cases that is 311   which matches with present observational data.

- In three cases, SEC is violated whereas NEC and DEC are fufilled. The

violation of SEC leads to cosmic acceleration which is in good agreement with

the expansion of the cosmos.

- As seen in the graph of stability analysis, the actual fluctuations begin with

a small positive value and decreases to zero. As a result, the background solution

is stable when the gravitational field is perturbed.

A detailed discussion is provided through the obtained models for describing

cosmic acceleration. Finally, through the detailed study of the models in three cases

namely power law curvature   TRRRTRf  42 , , logarithmic curvature

    TRRTRf  ln ,  and exponential curvature   TeRTRf R   ,  very
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good results which represents the universe accelerating expansion are observed.

Moreover all the parameters discussed here matches with the recent observational

data. At last, without existence of any exotic fluid, the current universe is

accelerating is perceived in this paper which is a great outcome. As a future work,

this work can be extended to other anisotropic models and can study the

similarities and differences between them.
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ÌÎÄÈÔÈÖÈÐÎÂÀÍÍÎÉ ÃÐÀÂÈÒÀÖÈÈ

Ò.ÂÈÍÓÒÀ1, Ê.ÍÈÕÀÐÈÊÀ1, Ê.Ø.ÊÀÂÜß2

Êîñìîëîãè÷åñêàÿ ìîäåëü èäåàëüíîé æèäêîñòè Êàíòîâñêîãî-Ñàêñà

èññëåäóåòñÿ â ìîäèôèöèðîâàííîé ãðàâèòàöèè ñ ôóíêöèîíàëüíîé ôîðìîé

     TfRfTRf
21

 ,  , ãäå R - ñêàëÿð Ðè÷÷è, à T - ñëåä òåíçîðà ýíåðãèè-

èìïóëüñà. Ñ ïîìîùüþ ýòîé ôóíêöèîíàëüíîé ôîðìû áûëè ñôîðìóëèðîâàíû

òðè ðàçëè÷íûõ ñëó÷àÿ, à èìåííî, îòðèöàòåëüíàÿ è ïîëîæèòåëüíàÿ ñòåïåíè

êðèâèçíû, ëîãàðèôìè÷åñêàÿ êðèâèçíà è ýêñïîíåíöèàëüíàÿ êðèâèçíà, îïðåäå-

ëÿåìûå ôîðìóëàìè   RRRRf 42
1  ,    RRRf  ln1  è   ReRRf 1 ,

ñîîòâåòñòâåííî, è äëÿ âñåõ ýòèõ òðåõ ñëó÷àåâ   TTf 2 , ãäå   , , , , ,

è   - êîíñòàíòû. Ïðè ðåøåíèè óðàâíåíèé ïîëÿ èñïîëüçóþòñÿ äâà îãðàíè÷åíèÿ:

i) ñêàëÿð ðàñøèðåíèÿ ïðîïîðöèîíàëåí ñêàëÿðó ñäâèãà, ii) èñïîëüçóåòñÿ ãèïåð-

áîëè÷åñêèé ìàñøòàáíûé êîýôôèöèåíò. Èñïîëüçóÿ ýòè óñëîâèÿ, ïîëó÷åíû

òðåáóåìûå îïòèìàëüíûå ðåøåíèÿ. Ðàññ÷èòàíû ôèçè÷åñêèå ïàðàìåòðû è
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ïðîàíàëèçèðîâàíû ãåîìåòðè÷åñêèå ïàðàìåòðû òðåõ ñëó÷àåâ â çàâèñèìîñòè îò

êðàñíîãî ñìåùåíèÿ z ñ ïîìîùüþ ãðàôè÷åñêîãî ïðåäñòàâëåíèÿ. Â êîíòåêñòå

 TRf  ,  ýíåðãåòè÷åñêèå óñëîâèÿ ãðàâèòàöèè îáñóæäàþòñÿ ñ ïîìîùüþ äàâëåíèÿ

è ïëîòíîñòè ýíåðãèè. Åñëè ñèëüíîå ýíåðãåòè÷åñêîå ñîñòîÿíèå ïîëîæèòåëüíîå,

ãðàâèòàöèÿ äîëæíà áûòü ïðèòÿãàòåëüíîé, íî â íàøåé ìîäåëè îío îòðèöàòåëüíîå.

Ýòî îçíà÷àåò, ÷òî êîñìè÷åñêîå óñêîðåíèå ïðîèñõîäèò çà ñ÷åò àíòèãðàâèòàöèè,

â òî âðåìÿ êàê âûïîëíÿþòñÿ NEC è DEC. Ìåòîä âîçìóùåíèé èñïîëüçóåòñÿ

äëÿ ïðîâåðêè óñòîé÷èâîñòè ôîíîâûõ ðåøåíèé ïîëó÷åííûõ ìîäåëåé. Âûâîäû,

ïîëó÷åííûå â ýòîé ñòàòüè, ñîãëàñóþòñÿ ñ íûíåøíèìè êîñìîëîãè÷åñêèìè

íàáëþäåíèÿìè, è ìîäåëü ïðåäñòàâëÿåò ñîáîé óñêîðÿþùóþñÿ Âñåëåííóþ.

Êëþ÷åâûå ñëîâà: ïðîñòðàíñòâî-âðåìÿ Êàíòîâñêîãî-Ñàêñà:  TRf  , -òåîðèÿ:

     èäåàëüíàÿ æèäêîñòü
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