
Известия НАН Армении, Математика, том 58, н. 1, 2023, стр. 47 – 58.

PERIODIC ORTHONORMAL SPLINE SYSTEMS WITH
ARBITRARY KNOTS AS BASES IN H1(T)

L. HAKOBYAN, K. KERYAN

Yerevan State University
University of Southern California, Los Angeles, CA1

E-mails: levon.hakobyan5@ysumail.am; karenkeryan@ysu.am

Abstract. We give a simple geometric characterization of sequences of knots for which the
corresponding periodic orthonormal spline system of order k is a basis in the atomic Hardy space
on the torus T.

MSC2020 numbers: 42C10; 46E30.
Keywords: orthonormal spline system; periodic spline system; basis; H1.

1. Introduction

This paper belongs to a series of papers studying properties of periodic and

non-periodic orthonormal spline systems with arbitrary knots. The detailed study

of non-periodic orthonormal spline systems started in 1960’s with Z. Ciesielski’s

papers [4, 5] on properties of the Franklin system, which is an orthonormal system

consisting of continuous piecewise linear functions with dyadic knots. Next, the

results by J. Domsta (1972), cf. [9], made it possible to extend such study to

orthonormal spline systems of higher order with dyadic knots. These systems occurred

to be bases or unconditional bases in several function spaces like Lp[0, 1], 1 ≤ p <∞,

C[0, 1], Hp[0, 1], 0 < p ≤ 1, Sobolev spaces W p,k[0, 1], they give characterizations

of BMO and VMO spaces, and various spaces of smooth functions.

The extension of these results to orthonormal spline systems with arbitrary knots

has begun with the case of piecewise linear systems, i.e. general Franklin systems,

or orthonormal spline systems of order 2. This was possible due to precise estimates

of the inverse to the Gram matrix of piecewise linear B-spline bases with arbitrary

knots, as presented in [14]. We would like to mention here two results by G.G.

Gevorkyan and A. Kamont. First, each general Franklin system is an unconditional

basis in Lp[0, 1] for 1 < p < ∞, cf. [10]. Second, there is a simple geometric

characterization of knot sequences for which the corresponding general Franklin

system is a basis or an unconditional basis in H1[0, 1], cf. [12]. We note that in

1The second author was supported by the Science Committee of RA, in the frames of the
research project № 21T-1A055
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both of these results, an essential tool for their proof is the association of a so

called characteristic interval to each general Franklin function fn.

The case of splines of higher order is much more difficult. Let us mention that

the basic result – the existence of a uniform bound for L∞-norms of orthogonal

projections on spline spaces of order k with arbitrary order (i.e. a bound depending

on the order k, but independent of the sequence of knots) – was a long-standing

problem known as C. de Boor’s conjecture (1973), cf. [2]. The case of k = 2 was

settled even earlier by Z. Ciesielski [4], the cases k = 3, 4 were solved by C. de

Boor himself (1968, 1981), cf. [1, 3], but the positive answer in the general case was

given by A. Yu. Shadrin [21] in 2001. A much simplified and shorter proof of this

theorem was recently obtained by M. v. Golitschek (2014), cf. [22]. An immediate

consequence of A.Yu. Shadrin’s result is that if a sequence of knots is dense in [0, 1],

then the corresponding orthonormal spline system of order k is a basis in Lp[0, 1],

1 ≤ p <∞ and C[0, 1]. Moreover, Z. Ciesielski [6] obtained several consequences of

Shadrin’s result, one of them being some estimate for the inverse to the B-spline

Gram matrix. Using this estimate, G.G. Gevorkyan and A. Kamont [12] extended

a part of their result from [11] to orthonormal spline systems of arbitrary order

and obtained a characterization of knot sequences for which the corresponding

orthonormal spline system of order k is a basis in H1[0, 1]. Further extension

required more precise estimates for the inverse of B-spline Gram matrices, of the

type known for the piecewise linear case. Such estimates were obtained recently by

M. Passenbrunner and A.Yu. Shadrin [19]. Using these estimates, M. Passenbrunner

[17] proved that for each sequence of knots, the corresponding orthonormal spline

system of order k is an unconditional basis in Lp[0, 1], 1 < p < ∞. With the help

of this result it was obtained a characterization of knot sequences for which the

corresponding orthonormal spline system of order k is an unconditional basis in

H1[0, 1] (see [13]).

Another extension of the previous results can be done for periodic orthonormal

spline systems with arbitrary knots. In the periodic case K. Keryan [15] proved that

for any admissible point sequence the corresponding periodic Franklin system (i.e.

periodic piecewise linear system) forms an unconditional basis in Lp[0, 1], 1 < p <

∞. K. Keryan and M. Passenbrunner [16] obtained an essential estimate for general

periodic orthonormal spline functions. Combining the estimate with the methods

developed in [10] they proved the unconditionality of periodic orthonormal spline

systems in Lp(T), 1 < p < ∞. A result concerning the basis property of periodic

orthonormal spline systems of order 2 in Hardy’s atomic space on the torus was
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carried out by M. Poghosyan and K. Keryan. In the paper [20] they gave a simple

geometric characterization of knot sequences for which the corresponding general

periodic Franklin system is a basis or unconditional basis in H1(T).
The main result of the present paper is to give a characterization of those knot

sequences for which the corresponding periodic orthonormal spline system of fixed

order of smoothness is a basis in H1(T).
The paper is organized as follows. In Section 2 we give necessary definitions

and we formulate the main result of this paper – Theorem 2.1. The proof of the

main result is presented in Section 3: in Subsection 3.1 some properties of periodic

orthonormal spline systems are provided, then in Subsection 3.2 a lower bound for

H1(T) norm of a function is given, and finally in Subsections 3.3 and Sufficiency it is

proved the necessity and sufficiency of k-regularity in Theorem 2.1 correspondingly.

2. Definitions, notation and the main result

We begin with some preliminary notations. The parameter k ≥ 2 will always be

used for the order of the underlying polynomials or splines. We use the notation

A(t) ∼ B(t) to indicate the existence of two constants c1, c2 > 0, such that c1B(t) ≤
A(t) ≤ c2B(t) for all t, where t denotes all implicit and explicit dependencies that

the expressions A and B might have. If the constants c1, c2 depend on an additional

parameter p, we write this as A(t) ∼p B(t). Correspondingly, we use the symbols

≲,≳,≲p,≳p. For a subset E of the real line, we denote by |E| the Lebesgue measure

of E.

Now let k ≥ 2 be an integer and T := (sn)
∞
n=1 be a point sequence from the torus

T such that each point occurs at most k times. Such point sequences are called k

admissible.

For n ≥ k, we define Ŝn to be the space of polynomial splines of order k with

grid points (sj)
n
j=1 ⊂ T. For each n ≥ k + 1, the space Ŝn−1 has codimension 1

in Ŝn and, therefore, there exists a function f̂n ∈ Ŝn with ∥f̂n∥L2(T) = 1 that is

orthogonal to the space Ŝn−1. Observe that this function f̂n is unique up to sign.

In addition, let (f̂n)
k
n=1 be an orthonormal basis for Ŝk. The system of functions

(f̂n)
∞
n=1 is called periodic orthonormal spline system of order k corresponding to

the sequence (sn)
∞
n=1.

Now we define the atomic Hardy space on T.

Definition 2.1. A function a : T → R is called a periodic atom, if either a ≡ 1 or

∃ Γ ⊂ T interval such that all these conditions are satisfied:

(i) supp a ⊂ Γ,
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(ii) ∥a∥L∞(T) ≤ |Γ|−1,

(iii)
∫
T a(x) dx =

∫
Γ
a(x) dx = 0.

Definition 2.2. H1(T) is the family of all the functions f that has representation

f =

∞∑
n=1

cnan

for some periodic atoms (an)
∞
n=1 and real scalars (cn)

∞
n=1 ∈ ℓ1.

The space H1(T) becomes a Banach space under the norm

∥f∥H1(T) := inf
∞∑

n=1

|cn|

where inf is taken over all (periodic) atomic representations
∑
cnan of f . Now, we

introduce regularity conditions in the torus T for sequence (sn)
∞
n=1.

Assume that n ≥ k + 1. Let (σj)
n−1
j=0 be the ordered sequence of knot points

consisting of (sj)nj=1 in T canonically identified with [0, 1):

(2.1) T̂ := T̂n = (0 ≤ σn,0 ≤ σn,1 ≤ · · · ≤ σn,n−2 ≤ σn,n−1 < 1).

For the integers ℓ ≤ k and i ∈ N0, we define T (ℓ)
n,i := [σn,i, σn,i+ℓ] ⊂ T interval.

Here we observe index i periodically, i.e. we use the notation of periodic extension

of the sequence (σj)
n−1
j=0 , i.e. σrn+j = r+ σj for j ∈ {0, . . . , n− 1} and r ∈ Z and in

the subindices of the B-spline functions, we take the indices modulo n.

Definition 2.3. Let ℓ ≤ k and (sn)
∞
n=1 be an ℓ-admissible point sequence the in the

torus T. Then, this sequence is called ℓ-regular in torus T with parameter γ ≥ 1 if

|T (ℓ)
n,i |
γ

≤ |T (ℓ)
n,i+1| ≤ γ|T (ℓ)

n,i |, n ≥ ℓ+ 1, i ∈ N0.

Let P̂ (k)
n be the orthogonal projection operator onto Ŝn with respect to the

canonical inner product in L2(T) and D̂(k)
n be its Dirichlet kernel.

The following is the main result of this paper.

Theorem 2.1. Let k ≥ 1 and let (sn) be a k-admissible sequence of knots in T with

the corresponding periodic orthonormal spline system (f̂
(k)
n ) of the order k. Then,

(f̂
(k)
n ) is a basis in H1(T) if and only if (sn) is k-regular in the torus with some

parameter γ ≥ 1

3. Proof of Theorem 2.1

Since the sequence of knots (sn)∞n=1 is dense in the torus T, the linear span of the

functions {f̂ (k)n , n ≥ 1} is linearly dense in C(T), which implies its linear density in

H1(T). Therefore, {f̂ (k)n , n ≥ 1} is a basis in H1(T) if and only if the partial sum
50



PERIODIC ORTHONORMAL SPLINE SYSTEMS ...

operators P̂ (k)
n are uniformly bounded in H1(T), i.e. there is a constant C = C(T ),

that only depends on the knot sequence (sn)
∞
n=1, such that

(3.1) ∥P̂ (k)
n ∥H1(T) = ∥P̂ (k)

n : H1(T) → H1(T)∥ ≤ C(T ).

We show that (3.1) is equivalent to k-regularity of T . This is an immediate

consequence of the Propositions 3.1 and 3.2, which contain estimates of norms P̂ (k)
n

from below and from above, respectively.

Proposition 3.1. Let T̂n = (0 ≤ σ0 ≤ σ1 ≤ · · · ≤ σn−2 ≤ σn−1 < 1) be a sequence

of knots in the torus T of multiplicities at most k. Let

M =M (k)
n := max

{ |T (k)
n,i |

|T (k)
n,i+1|

,
|T (k)

n,i+1|

|T (k)
n,i |

: 0 ≤ i ≤ n− 1

}
.

Then there is a constant Ck > 0, depending only on k, such that

∥P̂ (k)
n ∥H1(T) ≥ Ck logM

(k)
n .

Proposition 3.2. Let T̂n = (0 ≤ σ0 ≤ σ1 ≤ · · · ≤ σn−2 ≤ σn−1 < 1) be a sequence

of knots in the torus T of multiplicities at most k. Let γ be such that

|T (k)
n,i |
γ

≤ |T (k)
n,i+1| ≤ γ|T (k)

n,i |, n ≥ k + 1, i ∈ N0.

Then there is a constant Ck,γ > 0 depending only on k and γ, such that

∥P̂ (k)
n ∥H1(T) ≤ Ck,γ .

Before we begin to prove the Propositions 3.1 and 3.2, we recall some properties

of splines and orthogonal projections P̂ (k)
n .

3.1. Properties of periodic orthonormal spline systems. The key result

which let us work with periodic orthonormal spline systems of the order k is the

periodic version of A. Yu. Shadrin’s [21] theorem, i.e. uniform boundedness of L∞-

norms of projections P̂ (k)
n . The result was obtained by M. Passenbrunner in [18].

Theorem 3.1 ([18]). There exists a constant Ck depending only on the spline order

k such that for any sequence T̂ of knots of multiplicity at most k

∥P̂ (k)

T̂
∥∞ = ∥P̂ (k)

T̂
: L∞(T) → L∞(T)∥ ≤ Ck.

Clearly, this means that

(3.2) ∥P̂ (k)

T̂
∥∞ = sup

t∈T

∫
T
|D̂(k)

T̂
(t, s)|ds ≤ Ck.

Now, as before, let T̂n = (0 ≤ σ0 ≤ σ1 ≤ · · · ≤ σn−2 ≤ σn−1 < 1) be a sequence of

knots in the torus T of multiplicities at most k. By N̂ (k)
n,i , i = 0, . . . , n−1 we denote

51



L. HAKOBYAN, K. KERYAN

the L∞-normalized periodic B-spline basis of Ŝ(k)
n . These functions are nonnegative,

linearly independent and form a partition of unity, i.e.
∑n−1

i=0 N̂
(k)
n,i (t) = 1 for each

t ∈ T. Moreover, supp N̂ (k)
n,i = [σi, σi+k] and ∥N̂ (k)

n,i ∥L1(T) =
|T (k)

n,i |
k . Corresponding to

this basis, there exists a biorthogonal basis of Ŝ(k)
n , which is denoted by (N̂

(k)∗
n,i )n−1

i=0 .

Let Ĝ(k)
n = [(N̂

(k)
n,i , N̂

(k)
n,j ), 0 ≤ i, j ≤ n − 1] be the Gram matrix for the system

{N̂ (k)
n,i , i = 0, . . . , n− 1}, and let A(k)

n = [âi,j = (N̂
(k)∗
n,i , N̂

(k)∗
n,j ), 0 ≤ i, j ≤ n− 1]. the

following is a equivalent version of Theorem 3.1 (See [18], Section 3, Remark 3.2):

Theorem 3.2 ([18]). Let n ≥ 2k. Then, there exists a constant q ∈ (0, 1) depending

only on the spline order k such that

|âij | ≲k
qd̂(i,j)

max(| supp N̂ (k)
n,i |, | supp N̂

(k)
n,j |)

, 0 ≤ i, j ≤ n− 1,

where d̂ is the periodic distance function on {0, . . . , n− 1}.

In particular, since D̂(k)
n (t, s) =

∑n−1
i,j=0 âi,jN̂

(k)
n,i (t)N̂

(k)
n,j (s), Theorem 3.2 implies

that

(3.3) |D̂(k)
n (t, s)| ≲k

n−1∑
i,j=0

qd̂(i,j)

max(| supp N̂ (k)
n,i |, | supp N̂

(k)
n,j |)

N̂
(k)
n,i (t)N̂

(k)
n,j (s).

If the setting of the parameters k and n is clear from the context, we will omit k

and n and write N̂i instead of N̂ (k)
n,i .

3.2. A lower bound for H1(T) norm of a function. In order to prove Proposition 3.1

we will need the periodic version of the claim used in [12] (cf. page 7, estimate (3.4)).

Proposition 3.3 ([12]). Define Φ(x) := max(0, 1/2 − |x/4|) and Φϵ(x) =
1
ϵΦ(

x
ϵ ),

for x ∈ [0, 1]. Then, there is a constant C > 0 such that

∥f∥H1[0,1] ≥ C∥f∗∥L1[0,1], where f∗(x) = sup
ϵ>0

|
∫ 1

0

Φϵ(x− t)f(t)dt|.

Using this proposition we prove the following.

Lemma 3.1. Define the 1-periodic functions Φ̂(x) := max(0, 1/2 − |x/4|) and

Φ̂ϵ(x) =
1
ϵ Φ̂(

x
ϵ ), for x ∈ T. Then, for some constant c > 0 the following holds,

∥f∥H1(T) ≥ c∥f∗∗∥L1(T), where f∗∗(x) = sup
ϵ>0

|
∫
T
Φ̂ϵ(x− t)f(t)dt|.

Proof. Let f be a function from H1(T). Then, there exists a sequence of periodic

atoms (âi)
∞
i=1 and coefficients (λi)

∞
i=1 such that,

(3.4) f =

∞∑
i=1

λiâi, and

∞∑
i=1

|λi| ≤ 2∥f∥H1(T).
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Now by (3.4), we get

∥f∗∗∥L1(T) =

∫
T
sup
ϵ>0

|
∫
T
Φ̂ϵ(x− t)

∞∑
i=1

λiâi(t)dt|dx

≤
∞∑
i=1

|λi|
∫
T
sup
ϵ>0

|
∫
T
Φ̂ϵ(x− t)âi(t)dt|dx

≤
∞∑
i=1

|λi|
∫
T

sup
0<ϵ<1/16

|
∫
T
Φ̂ϵ(x− t)âi(t)dt|dx

+

∞∑
i=1

|λi|
∫
T

sup
1/16≤ϵ

|
∫
T
Φ̂ϵ(x− t)âi(t)dt|dx =: Σ1 +Σ2

First we estimate Σ2. We have that

Φ̂ϵ(x) ≤
1

2ϵ
, x ∈ T,

and ∥âi∥L1(T) ≤ 1 so we get the following,

Σ2 ≤
∞∑
i=1

8|λi| ≲ ∥f∥H1(T).

Now, let Γj ⊂ T be the interval that contains the support of the periodic atom âj .

Define J := {i : |Γc
i | ≥ 1/4} and split Σ1 into 2 sums. The first sums over all the

indices from the set J and the second one sums over indices of Jc. Let’s denote the

sums by Σ1,J and Σ1,Jc , respectively.

Observe Σ1,J . Fix an arbitrary i ∈ J and identify tours T with [0, 1) in such

a way that 0 coincides with the the center of Γc
i . We have that 0 < ϵ < 1

16 and

|Γc
i | ≥ 1

4 . Hence, we get that Φ̂ϵ(·) = Φϵ(·). Consequently, by Proposition 3.3 we

get

Σ1,J =
∑
i∈J

|λi|
∫
T

sup
0<ϵ<1/16

|
∫
T
Φϵ(x− t)âi(t)dt|dx

≤
∑
i∈J

|λi|∥â∗i ∥L1[0,1] ≲
∑
i∈J

|λi|∥âi∥H1[0,1] ≤ ∥f∥H1(T).

The last inequality comes from ∥âi∥H1[0,1] ≤ 1. This is true because by the right

identification of T with [0, 1), i.e. the starting point 0 is not Γi, we made sure that

âi is an atom on [0, 1).

Consider Σ1,Jc . For all i ∈ Jc we have |Γi|−1 ≤ 4/3 and ∥âi∥L∞(T) ≤ |Γi|−1.

Thus,

Σ1,Jc ≤
∑
i∈Jc

|λi|
|Γi|

∫
T

sup
0<ϵ<1/16

∫
T
Φ̂ϵ(x− t)dtdx

≤ 4

3

∑
i∈Jc

|λi| ≲ ∥f∥H1(T)
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Combining all above we get the desired result, i.e.

∥f∗∗∥L1(T) ≲ ∥f∥H1(T).

3.3. Necessity of k-regularity: proof of Proposition 3.1. Since P̂
(k)
n is a

projection onto Ŝ(k)
n , it follows that ∥P̂ (k)

n ∥H1(T) ≥ 1. Therefore we can assume

that M ≥ M(k), where M(k) ≥ 2 will be specified later. Let u be such that

M =
|T (k)

n,u|
|T (k)

n,u+1|
(clearly, the case of M =

|T (k)
n,u+1|
|T (k)

n,u|
is analogous). As M ≥ 2, it follows

that

|T (1)
n,u| ≥ (M − 1)|T (k)

n,u+1| ≥
M

2
|T (k)

n,u+1|.

Here we identified the torus T with [0, 1) in such a way that the starting point 0 is

not in the intervals T (1)
n,u and T

(k)
n,u+1. Now let ϕ1(·) = k

|T (k)
n,u+1|

N̂u+1(·) and ϕ2(·) =

ϕ1(·+|T (k)
n,u+1|). Then supp ϕ1 = [σu+1, σu+k+1], supp ϕ2 = [σu+1−|T (k)

n,u+1|, σu+1] ⊂
[σu, σu+1] and ∥ϕ1∥1 = ∥ϕ2∥1 = 1. Put ϕ = ϕ1 − ϕ2. Then

∫
T ϕ(x)dx = 0, suppϕ =

Γ = [σu+1 − |T (k)
n,u+1|, σu+k+1] and ∥ϕ∥∞ ≤ 2k

|Γ| , so ∥ϕ∥H1(T) ≤ 2k. We need to

estimate from below ∥P̂ (k)
n ϕ∥H1(T). For this, we use Lemma 3.1.

At first, consider P̂ (k)
n ϕ2. We observe D̂(k)

n : the kernel of the projection P̂
(k)
n .

Note that D̂(k)
n is a polynomial of degree at most k− 1 on T (1)

n,u, and by comparison

of different norms of polynomials of fixed degree (cf. e.g. Theorem 2.6 of Chapter

4 in [8]) ∫
T

(1)
n,u

|D̂(k)
n (t, x)|dt ∼k |T (1)

n,u| max
t∈T

(1)
n,u

|D̂(k)
n (t, x)|,

and the constants in the above equivalences depend only on k. As supp ϕ2 ⊂ T
(1)
n,u,

we find

|P̂ (k)
n ϕ2(x)| = |

∫
T
D̂(k)

n (t, x)ϕ2(t)dt| ≤
∫
T

(1)
n,u

|D̂(k)
n (t, x)||ϕ2(t)|dt

≤ max
t∈T

(1)
n,u

|D̂(k)
n (t, x)|∥ϕ2∥L1(T) ≤

Ck

|T (1)
n,u|

∫
T

(1)
n,u

|D̂(k)
n (t, x)|dt.

Combining 3.2 and the last sequence of inequalities we get |P̂ (k)
n ϕ2(x)| ≤ Ck

|T (1)
n,u|

, and

consequently

(3.5) (P̂ (k)
n ϕ2)

∗∗ ≤ Ck

|T (1)
n,u|

.

Now, we estimate (P̂
(k)
n ϕ1)

∗∗ from below . Clearly, since P̂
(k)
n is a projection

onto Ŝ(k)
n , we have P̂

(k)
n ϕ1 = ϕ1. Take x ∈ T

(1)
n,u, x ≤ σu+1 − |T (k)

n,u+1| and let

ϵ(x) = σu+k+1 − x. Then Φ̂ϵ(x)(x − t) = Φ̂ϵ(x)(t − x) ≥ 1
4ϵ(x) for t ∈ supp ϕ1, and

consequently

ϕ∗∗1 (x) ≥
∫ 1

0

Φ̂ϵ(x)(t− x)ϕ1(t)dt ≥
1

4ϵ(x)
.
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Combining this with (3.5) we find that

(P̂ (k)
n ϕ)∗∗(x) ≥ ϕ∗∗1 (x)−(P̂ (k)

n ϕ2)
∗∗(x) ≥ 1

4ϵ(x)
− Ck

|T (1)
n,u|

for x ∈ [σu, σu+1−|T (k)
n,u+1|].

Then, as |T (1)
n,u| ≥ M

2 |T (k)
n,u+1|, we have for M ≥ 32Ck

(3.6) (P̂ (k)
n ϕ)∗∗(x) ≥ 1

8ϵ(x)
for x ∈ [σu+1 −

|T (1)
n,u|

16Ck
, σu+1 − |T (k)

n,u+1|].

Using again |T (1)
n,u| ≥ M

2 |T (k)
n,u+1|, we get from the last inequality

∥(P̂ (k)
n ϕ)∗∗∥L1(T) ≥

∫ σu+1−|T (k)
n,u+1|

σu+1−
|T (1)

n,u|
16Ck

(P̂ (k)
n ϕ)∗∗(x)dx

≥
∫ |T (1)

n,u|
16Ck

+|T (k)
n,u+1|

2|T (k)
n,u+1|

1

8u
du ≥ 1

8
logM − Ck,1.

Fix M(k) ≥ 32Ck and such that 1
16 logM(k) ≥ Ck,1; then for M ≥ M(k) we have

1
8 logM −Ck,1 ≥ 1

16 logM . As ∥ϕ∥H1(T) ≤ 2k, by Lemma 3.1 we get ∥P̂ (k)
n ∥H1(T) ≥

Ck logM . •

3.4. Sufficiency of k-regularity: proof of Proposition 3.2. The idea of the

proof is analogous to the idea of the proof of Proposition 3.2 in [12]. We recall the

mesh (2.1) obtained by the canonical identification of T with [0, 1)

T̂n = (0 ≤ σn,0 ≤ σn,1 ≤ · · · ≤ σn,n−2 ≤ σn,n−1 < 1).

Let n ≥ 2k and η be a periodic atom. It is enough to show that

∥P̂ (k)
n η∥H1(T) ≲k,γ 1.

For this, we find a suitable atomic decomposition of P̂ (k)
n η.

If η ≡ 1, then also P̂ (k)
n η ≡ 1 and it is a periodic atom.

Now, let
∫
T η(t)dt = 0, and let Γ ⊂ T be an interval such that supp η ⊂ Γ,

∥η∥L∞(T) ≤ 1
|Γ| . Let

G = {0 ≤ i ≤ n− 1 : supp N̂i ∩ Γ = ∅}.

Put

(3.7) ψi = N̂i · P̂ (k)
n η for i ∈ G, and ψ = P̂ (k)

n η −
∑
i∈G

ψi.

We check that the collection {ψ,ψi, i ∈ G} gives a desired (periodic) atomic

decomposition of P̂ (k)
n . Clearly, P̂ (k)

n = ψ +
∑

i∈G ψi. For i ∈ G the supports of N̂i

and η are disjoint. Since P̂ (k)
n is an orthogonal projection onto Ŝ(k)

n we have for

i ∈ G ∫
T
ψi(t)dt =

∫
T
N̂i(t) · P̂ (k)

n η(t)dt =

∫
T
N̂i(t) · η(t)dt = 0.
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Since
∫
T η(t) = 0, we have also

∫
T P̂

(k)
n η(t)dt = 0, which implies

∫
T ψ(t)dt = 0.

Now, we estimate ∥ψi∥∞ for i ∈ G. Let 0 ≤ m ≤ n− 1 be the unique index such

that σm is not in Γ, but σm+1 is in Γ. Next, we let 0 ≤ l ≤ n − 1 be the unique

index such that σl−1 is in Γ, but σl is not in Γ, Then G = {0 ≤ i ≤ n − 1 : i ≤
m− k} ∪ {0 ≤ i ≤ n− 1 : i ≥ l} =: G1 ∪ G2.

Consider the case i ∈ G1. Note that supp ψi ⊂ supp N̂i = [σi, σi+k]. Recall that

(cf. formulae in the Section 3.1)

(3.8) P̂ (k)
n η(t) =

n−1∑
j1,j2=0

âj1,j2

∫
T
N̂j1(u)η(u)du N̂j2(t).

By Theorem 3.2, we have the estimate

|âj1,j2 | ≲k
qd̂(j1,j2)

max(| supp N̂j1 |, | supp N̂j2 |)
,

where 0 < q < 1, depends only on the order k. Note that if t ∈ supp ψi and j2 is

such that N̂j2(t) ̸= 0, then for those indices j2 we have

|T (k)
n,j2

| ∼k,γ |T (k)
n,i |,

by the k-regularity. Therefore, for j2 such that N̂j2(t) ̸= 0

|âj1,j2 | ≲k,γ
qd̂(j1,j2)

|T (k)
n,i |

.

Moreover, the number of the indices j2 such that Nj2(t) ̸= 0 doesn’t exceed 2k− 1.

Thus, (3.8) gives

|ψi(t)| ≤ |P̂ (k)
n η(t)| ≲k,γ

1

|T (k)
n,i |

n−1∑
j1=0

qd̂(i,j1)|
∫
T
N̂j1(u)η(u)du|.

Next, note that if j1 is such that supp N̂j1 ∩ suppη ̸= ∅ then m−k+1 ≤ j1 ≤ l− 1.

Moreover, we have
∫
T |N̂j1(u)η(u)|du ≤ 1. Therefore the above inequality implies

|ψi(t)| ≲k,γ
1

|T (k)
n,i |

l−1∑
j1=m−k+1

qd̂(i,j1) ≲k
qmin{d̂(i,l),d̂(i,m)}

|T (k)
n,i |

.

Now, put αi = ∥ψi∥L∞(T)|T
(k)
n,i | and ψi = αiψ̃i. Clearly, supp ψ̃i = supp ψi ⊂

[σi, σi+k] and ∥ψ̃i∥L∞(T) ≤ 1

|T (k)
n,i |

, so ψ̃i is a periodic atom. Since

0 ≤ αi ≲k,γ q
min{d̂(i,l),d̂(i,m)},

we finally get

(3.9)
∑

0≤i≤m−k

ψi =
∑

0≤i≤m−k

αiψ̃i with
∑

0≤i≤m−k

αi ≲k,γ 1.
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Analogously, for i ≥ l we get ψi = αiψ̃i with ψ̃i a periodic atom and 0 ≤ αi ≲k,γ

qmin{d̂(i,l),d̂(i,m)}, and consequently

(3.10)
∑

l≤i≤n−1

ψi =
∑

l≤i≤n−1

αiψ̃i with
∑

l≤i≤n−1

αi ≲k,γ 1.

It remains to consider ψ. Since the functions N̂j , 0 ≤ j ≤ n− 1, are a partition

of unity, we have ψ = P̂
(k)
n η ·

∑l−1
j=m−k+1 N̂j . Let Γ̃ = [σm−k+1, σl+k−1]. Note that

supp ψ ⊂ Γ̃. We will show that ∥ψ∥L∞(T) ≲k,γ
1
|Γ̃| .

At first, consider the case when Γ contains at least one support of N̂j . Then by

the k-regularity |Γ| ∼k,γ |Γ̃|. Using
∫
T |D̂

(k)
n η(t, s)|ds ≲k 1 (cf. 3.1) we get

|ψ(t)| ≤ |P̂ (k)
n η(t)| ≤

∫
T
|D̂(k)

n η(t, s)||η(s)|ds ≤ 1

|Γ|

∫
T
|D̂(k)

n (t, s)|ds ≲k,γ
1

|Γ̃|
.

In the other case, i.e. when Γ does not contain any B-spline support, it follows

by the k-regularity that |T (k)
n,m| ∼k,γ |Γ̃|. We again use formula (3.8) to estimate

∥ψ∥∞. If j1 is such that (N̂j1 , η) ̸= 0, then m − k + 1 ≤ j1 ≤ l − 1, so by the k-

regularity |T (k)
n,m| ∼k,γ |T (k)

n,j1
|. This and Theorem 3.2 imply that |â(k)j1,j2

| ≲k,γ
1

|T (k)
n,m|

.

As |(N̂j1 , η)| ≤ 1, we get
∑n−1

j1=0 |âj1,j2 ||(N̂j1 , η)| =
∑m+k

j1=m−k+1 |âj1,j2 ||(N̂j1 , η)| ≲k,γ

1

|T (k)
n,m|

. As the functions N̂j2 , 0 ≤ j2 ≤ n − 1 are a partition of unity, we get for

t ∈ Γ̃

|ψ(t)| ≤ |P̂ (k)
n η(t)| ≲k,γ

1

|T (k)
n,m|

≲k,γ
1

|Γ̃|
.

It follows from these considerations that ψ = αψ̃, where ψ̃ is a periodic atom and

0 ≤ α ≲k,γ 1. Putting together this fact, (3.7), (3.9) and (3.10) we get for periodic

atoms ψ̃, ψ̃i

P̂ (k)
n η =

∑
0≤i≤m−k

αiψ̃i + αψ̃ +
∑

l≤i≤n−1

αiψ̃i,

where α, αi ≥ 0 and
∑

0≤i≤m−k αi + α +
∑

l≤i≤n−1 αi ≲k,γ 1. This is the desired

atomic decomposition of P̂ (k)
n η.

Next we consider the case when n < 2k. Let f ∈ H1(T), then

∥
n∑

m=1

(f, f̂m)f̂m∥H1(T) ≤
n∑

m=1

∥f∥L1(T)∥f̂m∥L∞(T)∥f̂m∥H1(T)

≤ ∥f∥H1(T)

2k∑
m=1

∥f̂m∥L∞(T)∥f̂m∥H1(T) ≤ Ck∥f∥H1(T).

This concludes the proof of the proposition.
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