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1. INTRODUCTION

This paper belongs to a series of papers studying properties of periodic and
non-periodic orthonormal spline systems with arbitrary knots. The detailed study
of non-periodic orthonormal spline systems started in 1960’s with Z. Ciesielski’s
papers [4, 5] on properties of the Franklin system, which is an orthonormal system
consisting of continuous piecewise linear functions with dyadic knots. Next, the
results by J. Domsta (1972), cf. [9], made it possible to extend such study to
orthonormal spline systems of higher order with dyadic knots. These systems occurred
to be bases or unconditional bases in several function spaces like LP[0,1],1 < p < oo,
C[0,1], H?[0,1], 0 < p < 1, Sobolev spaces WP-*[0, 1], they give characterizations
of BMO and VMO spaces, and various spaces of smooth functions.

The extension of these results to orthonormal spline systems with arbitrary knots
has begun with the case of piecewise linear systems, i.e. general Franklin systems,
or orthonormal spline systems of order 2. This was possible due to precise estimates
of the inverse to the Gram matrix of piecewise linear B-spline bases with arbitrary
knots, as presented in [I4]. We would like to mention here two results by G.G.
Gevorkyan and A. Kamont. First, each general Franklin system is an unconditional
basis in LP[0,1] for 1 < p < oo, cf. [I0]. Second, there is a simple geometric
characterization of knot sequences for which the corresponding general Franklin
system is a basis or an unconditional basis in H'[0,1], cf. [I2]. We note that in

IThe second author was supported by the Science Committee of RA, in the frames of the
research project Ne 21T-1A055
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both of these results, an essential tool for their proof is the association of a so
called characteristic interval to each general Franklin function f,.

The case of splines of higher order is much more difficult. Let us mention that
the basic result — the existence of a uniform bound for L°-norms of orthogonal
projections on spline spaces of order k with arbitrary order (i.e. a bound depending
on the order k, but independent of the sequence of knots) — was a long-standing
problem known as C. de Boor’s conjecture (1973), cf. [2]. The case of k = 2 was
settled even earlier by Z. Ciesielski [4], the cases k = 3,4 were solved by C. de
Boor himself (1968, 1981), cf. [I, [3], but the positive answer in the general case was
given by A. Yu. Shadrin [2I] in 2001. A much simplified and shorter proof of this
theorem was recently obtained by M. v. Golitschek (2014), cf. [22]. An immediate
consequence of A.Yu. Shadrin’s result is that if a sequence of knots is dense in [0, 1],
then the corresponding orthonormal spline system of order k is a basis in L?[0, 1],
1 <p < oo and C[0,1]. Moreover, Z. Ciesielski [6] obtained several consequences of
Shadrin’s result, one of them being some estimate for the inverse to the B-spline
Gram matrix. Using this estimate, G.G. Gevorkyan and A. Kamont [I2] extended
a part of their result from [I1] to orthonormal spline systems of arbitrary order
and obtained a characterization of knot sequences for which the corresponding
orthonormal spline system of order k is a basis in H'[0,1]. Further extension
required more precise estimates for the inverse of B-spline Gram matrices, of the
type known for the piecewise linear case. Such estimates were obtained recently by
M. Passenbrunner and A.Yu. Shadrin [I9]. Using these estimates, M. Passenbrunner
[I7] proved that for each sequence of knots, the corresponding orthonormal spline
system of order k is an unconditional basis in LP[0,1], 1 < p < oo. With the help
of this result it was obtained a characterization of knot sequences for which the
corresponding orthonormal spline system of order k is an unconditional basis in
HY0,1] (see [13]).

Another extension of the previous results can be done for periodic orthonormal
spline systems with arbitrary knots. In the periodic case K. Keryan [I5] proved that
for any admissible point sequence the corresponding periodic Franklin system (i.e.
periodic piecewise linear system) forms an unconditional basis in LP[0,1], 1 < p <
oo. K. Keryan and M. Passenbrunner [16] obtained an essential estimate for general
periodic orthonormal spline functions. Combining the estimate with the methods
developed in [I0] they proved the unconditionality of periodic orthonormal spline
systems in LP(T), 1 < p < oo. A result concerning the basis property of periodic

orthonormal spline systems of order 2 in Hardy’s atomic space on the torus was
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carried out by M. Poghosyan and K. Keryan. In the paper [20] they gave a simple
geometric characterization of knot sequences for which the corresponding general
periodic Franklin system is a basis or unconditional basis in H!(T).

The main result of the present paper is to give a characterization of those knot
sequences for which the corresponding periodic orthonormal spline system of fixed
order of smoothness is a basis in H!(T).

The paper is organized as follows. In Section [2| we give necessary definitions
and we formulate the main result of this paper — Theorem [2.I} The proof of the
main result is presented in Section [3} in Subsection [3.1] some properties of periodic
orthonormal spline systems are provided, then in Subsection [3.2] a lower bound for
H(T) norm of a function is given, and finally in Subsectionsand Sufficiency it is
proved the necessity and sufficiency of k-regularity in Theorem correspondingly.

2. DEFINITIONS, NOTATION AND THE MAIN RESULT

We begin with some preliminary notations. The parameter k£ > 2 will always be
used for the order of the underlying polynomials or splines. We use the notation
A(t) ~ B(t) to indicate the existence of two constants ¢y, ca > 0, such that ¢; B(t) <
A(t) < c2B(t) for all t, where t denotes all implicit and explicit dependencies that
the expressions A and B might have. If the constants ¢, co depend on an additional
parameter p, we write this as A(t) ~, B(t). Correspondingly, we use the symbols
<, 2, Spy Zp- For a subset E of the real line, we denote by |E| the Lebesgue measure
of E.

Now let k > 2 be an integer and T := (s,,)22 be a point sequence from the torus
T such that each point occurs at most k times. Such point sequences are called k
admissible.

For n > k, we define S,, to be the space of polynomial splines of order k with
grid points (s;)7_; C T. For each n > k + 1, the space S,_1 has codimension 1
in S, and, therefore, there exists a function f, € S, with ||anL2(T) = 1 that is
orthogonal to the space Sn_1. Observe that this function fn is unique up to sign.
In addition, let (f,)*_, be an orthonormal basis for Sg. The system of functions

( fn);’f:l is called periodic orthonormal spline system of order k corresponding to

oo

the sequence (s,,)22 ;.

Now we define the atomic Hardy space on T.

Definition 2.1. A function a : T — R is called a periodic atom, if either a =1 or
3T C T interval such that all these conditions are satisfied:

(i) suppa C T,
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(ii) llal[ ooy < |F\71
(i) [pa(z)de = [.a(z)dz=0.

Definition 2.2. HY(T) is the family of all the functions f that has representation

o0
f=Ycnan
n=1

for some periodic atoms (a,)2%, and real scalars (c,)S, € (.

The space H!(T) becomes a Banach space under the norm

oo
£l (py :=inf Y fen]
n=1
where inf is taken over all (periodic) atomic representations Y c,a,, of f. Now, we
introduce regularity conditions in the torus T for sequence (s,)%2 ;.

Assume that n > k + 1. Let (Jj)] '~ be the ordered sequence of knot points

consisting of (s;)7_; in T canonically identified with [0, 1):
(21) 7: = 7: = (O < On,0 < On,1 <-.- < On,n—2 < On,n—1 < 1)

For the integers £ < k and ¢ € Ny, we define Tffz = [On,i,0n,ite) C T interval.
Here we observe index i periodically, i.e. we use the notation of periodic extension
of the sequence (oj)?;ol, ie oppyj=r+0;forj€{0,...,n—1} and r € Z and in

the subindices of the B-spline functions, we take the indices modulo n.

Definition 2.3. Let ¢ < k and (s,)5% 1 be an {-admissible point sequence the in the

torus T. Then, this sequence is called f-regular in torus T with parameter v > 1 if
(4)
| i <ITO 1 <HTEL, n>t+1, ieN,.

Let Py(lk) be the orthogonal projection operator onto S, with respect to the
canonical inner product in L2(T) and DY be its Dirichlet kernel.

The following is the main result of this paper.

Theorem 2.1. Let k > 1 and let (s,,) be a k-admissible sequence of knots in T with
the corresponding periodic orthonormal spline system ( ) of the order k. Then,

p(k)
(

w ) is a basis in HY(T) if and only if (s,) is k-reqular in the torus with some

parameter v > 1

3. PROOF oF THEOREM [2.1]

Since the sequence of knots (s,)% ; is dense in the torus T, the linear span of the
functions { fy(Lk), n > 1} is linearly dense in C(T), which implies its linear density in
H'(T). Therefore, {f,&’“), n > 1} is a basis in H!(T) if and only if the partial sum
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operators P are uniformly bounded in H*(T), i.e. there is a constant C' = C(T),
that only depends on the knot sequence (s,)52 4, such that

n=1»
(3.1) 1B iy = 1P+ HY(T) = HY(T)|| < C(T).

We show that (3.1]) is equivalent to k-regularity of 7. This is an immediate
o . . : 5 (k)
consequence of the Propositions|3.1|and [3.2] which contain estimates of norms P,

from below and from above, respectively.

Proposition 3.1. Let 7A;L =0<o09<o01 < - <op_2<o,_1<1) be a sequence
of knots in the torus T of multiplicities at most k. Let

70 )
‘(Z;Z| ,| n,(z]:;1|: 0<z<n—1}
|Tn,i+l‘ |Tn,z |

Then there is a constant Cy, > 0, depending only on k, such that

M = Mék) = max{

[P || g1 (py > Ci log M.

Proposition 3.2. Let T = (0<09<o01 < - <op_o<o,_1<1) be a sequence
of knots in the torus T of multiplicities at most k. Let vy be such that
T _ b
=S ILDG AL nz kel i€ N
Then there is a constant Cy > 0 depending only on k and vy, such that
1P i1 1y < Cy-

Before we begin to prove the Propositions [3.1] and we recall some properties

of splines and orthogonal projections Py(Lk)

3.1. Properties of periodic orthonormal spline systems. The key result
which let us work with periodic orthonormal spline systems of the order k is the
periodic version of A. Yu. Shadrin’s [2I] theorem, i.e. uniform boundedness of L°-

norms of projections P{®) . The result was obtained by M. Passenbrunner in [18].

Theorem 3.1 ([18]). There exists a constant Cy, depending only on the spline order
k such that for any sequence T of knots of multiplicity at most k

1P ]loo = |1 P L°(T) — L(T)|| < C.
Clearly, this means that

(3.2) 120 = sup/ DY (t,5)|ds < C.
teT JT

Now, as before, let 7, = (0 < 0p <01 < -+ <0,-2 < 0,1 < 1) be a sequence of
knots in the torus T of multiplicities at most k. By N,(L’fi), 1=20,...,n—1 we denote
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the L°°-normalized periodic B-spline basis of Sy (*) These functions are nonnegative,

linearly independent and form a partition of unity, i.e. > ., 'N (k)( t) = 1 for each

% Corresponding to

this basis, there exists a biorthogonal basis of SSJ“), which is denoted by (N (k) )l 0 -
Let G = [(N(k) N(k)) 0 <i,5 < n—1] be the Gram matrix for the system

n,t?

(N i=0,...,n—1}, and let AL = [a;; = (V%" N{V),0 <4, j <n—1]. the

n,:’ n,:.

t € T. Moreover, supp Nr(fi) = [0y, 04+k] and ||N7(1,2||L1(T) =

following is a equivalent version of Theorem [3.1] (See [I8], Section 3, Remark 3.2):

Theorem 3.2 ([I8]). Let n > 2k. Then, there exists a constant q¢ € (0,1) depending
only on the spline order k such that

qd(m‘)

|ais] Sk 0<i4,5<n-1,

o (k
max(| supp N[, | supp M)
where d is the periodic distance function on {0,...,n — 1}.
In particular, since DY (t,s) =St &”N( )( )N(k)( ), Theorem implies

2,7=0
that
n-l 2-9)

(33) DMt s)] Sn NB N (s).

n,j

iﬁmmwNHme
If the setting of the parameters k and n is clear from the context, we will omit k

and n and write ]\77 instead of NT(L]?

3.2. A lower bound for H'(T) norm of a function. In order to prove Proposition

we will need the periodic version of the claim used in [12] (cf. page 7, estimate (3.4)).

Proposition 3.3 ([12]). Define ®(z) := max(0,1/2 — |z/4]) and ®.(z) = 1&(%),

for x € [0,1]. Then, there is a constant C > 0 such that
1
£l 0,1y = Cllf*[lErjo,y,  where  f*(z) = Sl>118| De(z — 1) f(t)dt].
e 0

Using this proposition we prove the following.

Lemma 3.1. Define the I-periodic functions ®(x) := max(0,1/2 — |z/4]) and
és(o:) = %@(%), for x € T. Then, for some constant ¢ > 0 the following holds,

I fllarery > el f|lpiery, where f**(x)—s;lg\ i (ac—t f®)dt).

Proof. Let f be a function from H'(T). Then, there exists a sequence of periodic

atoms (a;)52; and coefficients (A;)$2; such that,

(3.4) =Y Nai, and > N < 2/fllmr)
=1 =1
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Now by (3.4), we get

[Fa /sup\ do(z—1)> Ny (t)dt|dx
( ) T €>0 T ;
< INil [ sup| | ®c(x — t)a;(t)dt|da
; T €>0 T
e ~
< SN[ s | [ e naatds
i1 T 0<e<1/16 JT
+ Z |Ail sup | [ ®(x — t)a;(t)dt|dz =: 2y + s
i—1 T1/16<e JT

First we estimate ¥5. We have that
N 1
(pe < a0
(@) < 2€

and ||a;| r1(ry < 1 so we get the following,

zeT,

oo
¥ < 28\)\i| Sl -
i=1

Now, let I'; C T be the interval that contains the support of the periodic atom a;.
Define J := {i : |I'¢| > 1/4} and split ¥, into 2 sums. The first sums over all the
indices from the set J and the second one sums over indices of J¢. Let’s denote the
sums by X1 ;7 and X je, respectively.

Observe ¥ ;. Fix an arbitrary ¢ € J and identify tours T with [0,1) in such
a way that 0 coincides with the the center of I'{. We have that 0 < ¢ < - and
|rs| > %. Hence, we get that ég() = ®(-). Consequently, by Proposition we

get

Y1, ZI)\Z-I sup I/ée(x—t)&i(t)dﬂd:c
T

= T 0<e<1/16
< S llladliea D illlaillmo,y < 1l
ict ics

The last inequality comes from ||G;|| 10,17 < 1. This is true because by the right
identification of T with [0, 1), i.e. the starting point 0 is not I';, we made sure that
@; is an atom on [0, 1).

Consider ¥ je. For all i € J¢ we have |I;|™! < 4/3 and ||a; || poe(r) < T3]
Thus,

i .
g < Z Al sup /@€(a:—t)dtdz
icJe |Fz| T 0<e<1/16 JT
4
< 3 >INl S Il e

ieJe
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Combining all above we get the desired result, i.e.
1 Nzrery S N1 11memy-

3.3. Necessity of k-regularity: proof of Proposition Since 1575’“) is a
projection onto Sr(f), it follows that ||]57§k)|| mi(r)y = 1. Therefore we can assume

that M > M(k), where M (k) > 2 will be specified later. Let u be such that
|T,

nu‘

M= (clearly, the case of M = —futl

75"

is analogous). As M > 2, it follows

2 k
10 > (M = )T > ST
Here we identified the torus T with [0, 1) in such a way that the starting point 0 is

not in the intervals Télg and T,(LkgH Now let ¢1(:) = Nus1(-) and ¢o(-) =

¢ (- +|Tnkz+1|) Then supp ¢1 = [O'u+170'u+k+1]7 supp ¢o = [O'u+1_|T7(L{2+1|a 0u+1] -
(0w, 0ut1] and [[¢1]l1 = [[¢2]l1 = 1. Put ¢ = ¢y — ¢o. Then [ ¢(x)dx = 0, suppop =
T = o — 1T 1] ourkir) and [[8]ee < 25, 50 (6]l (n) < 2k We need to

estimate from below ||P( )¢||H1 . For this, we use Lemma
At first, consider P,(L )¢2. We observe D% ). the kernel of the projection Py(bk).

k
|qu> N

Note that b,(lk) is a polynomial of degree at most k — 1 on TT(L}%, and by comparison
of different norms of polynomials of fixed degree (cf. e.g. Theorem 2.6 of Chapter
4 in [8])

|DP(t, )| dt ~, | TS max |IDW) (£, z)],

T, teTiM,
and the constants in the above equivalences depend only on k. As supp ¢o C T,(L,ll,
we find

BPet) = | [ DO e < [ DO D0l

. Ch .
< (k) (k) ,
< oy 1D lenllo < / L 1DW ()t

t€Tn

Combining and the last sequence of inequalities we get |PT(Lk)¢) (2)| < \T“ i , and
consequently
(k) Ch
(3.5) (P o)™
=l

Now, we estimate (Py(Lk)qbl)** from below . Clearly, since Pf(lk) is a projection
onto SA',(lk), we have P(k)gbl = ¢1. Take z € T,Sll)“ x < Oyy1 — |T,(Lk3+1| and let
€(x) = oysk+r1 — . Then <I>6(w) (x—1t) = 6(1:)( x) > 46(35) for ¢ € supp ¢1, and

consequently
. 1

@ > [ bt oa0a>
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Combining this with (3.5) we find that

. N 1 C
(k) 1)** K% o (k) ok N k . (k)
(B 9)™ () = o017 (2) = (P ¢2)™" () = @ ] for z € [ow, our1=[Ty yiall-
Then, as \Tr(llm > %|T£’2+1|, we have for M > 32C},
(3.6) (B g)* (2) > 8e(2) for € [ou1 — m’auﬂ - IT£,3+1H-
Using again |T, 751&\ > %|T7(Lk3 411, we get from the last inequality
~ Uu+1*|Tr(fl+1| R
B I = [ 0" (BP0 @)s
Ou+17 60,
(1)
Tl )l 1
> / —du > -logM — Cl ;.
AT ] Bu— 8

Fix M (k) > 32C), and such that - log M (k) > Cy 1; then for M > M (k) we have
tlog M — Cy > L log M. As ||| g1 (m) < 2k, by Lemmawe get Hp»ygk)”Hl('[) >
CrlogM. e

3.4. Sufficiency of k-regularity: proof of Proposition The idea of the
proof is analogous to the idea of the proof of Proposition 3.2 in [I2]. We recall the
mesh (2.1)) obtained by the canonical identification of T with [0, 1)

Tn = (0 < On,0 < On,1 <. < On,n—2 < Onn—1 < ]-)
Let n > 2k and n be a periodic atom. It is enough to show that

1Bl ey Sy 1
For this, we find a suitable atomic decomposition of PA’,(L’C)U.
If n = 1, then also P,(Lk)n =1 and it is a periodic atom.
Now, let an(t)dt = 0, and let I' C T be an interval such that supp n C T,
9]l poe () < 1oy~ Let
G={0<i<n—1:suppN;NT =0}
Put
(3.7 Y =N;- PPy for ieG, and o= PFy— Zwi'
i€
We check that the collection {1,v;,i € G} gives a desired (periodic) atomic
decomposition of P,S’“) Clearly, ]57(116) =Y+ Zieg ;. For i € G the supports of N;
and 7 are disjoint. Since I—C’ék) is an orthogonal projection onto Sr(lk) we have for
icg
/@bi(t)dt:/Ni(t) ~P,§k)n(t)dt:/]\7i(t) -n(t)dt = 0.
T T T
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Since [ 7(t) = 0, we have also [ PFn(t)dt = 0, which implies Jr(t)dt = 0.
Now, we estimate |||/ for i € G. Let 0 < m < n — 1 be the unique index such
that oy, is not in I', but 0,41 is in I'. Next, we let 0 < [ < n — 1 be the unique
index such that 0,1 isin I', but oy isnot in I', Then § = {0 <i<n—-1:4 <
m—ktU{0<i<n-—1:i>1} =G UG,.
Consider the case i € G;. Note that supp ¢; C supp N; = [0, 0i4k]- Recall that
(cf. formulae in the Section

(3.8) PO = S a0 / w)du Ny, (2).

J1,52=0
By Theorem we have the estimate
d(j1,52)
N q
|a’j1>j2| Sk = = ’
max (| supp Ny, |, | supp Ny, |)
where 0 < ¢ < 1, depends only on the order k. Note that if ¢ € supp ¢; and js is

such that sz (t) # 0, then for those indices jo we have

k k
|()| ‘T()‘

T e
by the k-regularity. Therefore, for jo such that Nj,(t) # 0
‘i(jl \J2)

@51,32) Sk L o

Moreover, the number of the indices jo such that Nj, () # 0 doesn’t exceed 2k — 1.

Thus, (3.8) gives
% o [ 5, oo

Next, note that if j; is such that supp le Nsuppn # P then m—k+1 <7, <Il-—1.

(O] < [PPn(0)] Sen (k)

| n1|j1 0

Moreover, we have [ |le (u)n(u)|du < 1. Therefore the above inequality implies

-1 s N s
1 i qmln{d(z,l)7d(z7m)}
O] S T > S

| |J1 =m—k+1 | n,i|
Now, put a; = ||1/1z'”Loo(1r)|T7(,,i)| and ¢; = a;1);. Clearly, supp ¢); = supp ¢; C

[0i, 0i1k) and ||7;7;||Loo(11‘) < , 50 1; is a periodic atom. Since

_1
1)
0 < a; Sy gmintdEDdGm)

we finally get

(39) Z P; = Z Otil/;i with Z o Sk,'y 1.

0<i<m—k 0<i<m—k 0<i<m—k
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Analogously, for i > | we get 1; = a“/;i with J)Z a periodic atom and 0 < oy S~
qmi“{d(i’l)’d(i’m)}, and consequently

(3.10) Yo=Y aih with > Spyl

1<i<n—1 1<i<n—1 1<i<n—1

It remains to consider w Since the functions Nj, 0 <j <n-—1, are a partition
of unity, we have 1) = P n Z] 1 N- Let T = [6rm—k+1, 01+k—1]- Note that
supp ¢ C T'. We will show that 19l oo (1) Sk IF\
At first, consider the case when I' contains at least one support of N;. Then by

the k-regularity |T'| ~y,, |T|. Using [} IDF (¢, s)|ds i 1 (cf. we get
(O] < 1EE0] < [ 1DEn(e9lnolds < 7 [1DO¢9lds Sy =
IT] L]
In the other case, i.e. when I' does not contain any B-spline support, it follows
by the k-regularity that |T7(L]f,)n| ~k~ |T|. We again use formula (3.8) to estimate
9|0 If 71 is such that (Nj,,n) # 0, then m — k +1 < j; < — 1, so by the k-

regularity |T7(Lk7)n| Ny |T( ) _|. This and Theoremlmply that |a]1 JQ\ Sk 17 (k)

n,m

+k
As ‘( 31a77)| < 1, we get 2]1—0 lay 5,1 1( 11777)| = Z;:L:m_k_u |y, 1( jlan)| kY

\T,(L’i)n\ As the functions sz, 0 < jo < n—1 are a partition of unity, we get for

tel
1 1

m Sk,v ﬁ

It follows from these considerations that ¢ = oa/;, where 1/; is a periodic atom and
0 < o Sgy 1. Putting together this fact, (3.7), (3.9) and (3.10) we get for periodic
atoms 1/1, 1/12-

W) < 1P ()] Sk

Py = Z it + ot + Z i,
0<i<m—k 1<i<n—1
where o, a; > 0 and Zo<z<m RO+ a+ Zlgignfl o; Sk,'y 1. This is the desired

atomic decomposition of P(k)

Next we consider the case when n < 2k. Let f € H'(T), then

| Z(f, Fo) Frnllmrncmy < D oyl fonll oo ey | ol
m=1 m=1

2k

< Nl ey Z ||meL°°(’JI‘)||meH1(T) < Crllf ey

m=1

This concludes the proof of the proposition.
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