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interpolation with polynomials of total degree at most n. We are interested in correct sets with
the property that all fundamental polynomials are products of linear factors. In 1982, M. Gasca
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1. Introduction

Denote by Πn the space of bivariate polynomials of total degree ≤ n, for which

N := Nn := dimΠn = (1/2)(n+ 1)(n+ 2).

Let X := Xs = {(x1, y1), . . . , (xs, ys)} be a set of s distinct nodes in the plane.

The problem of finding a polynomial p ∈ Πn satisfying the conditions

(1.1) p(xi, yi) = ci, i = 1, 2, . . . s,

for a data c̄ := {c1, . . . , cs} is called interpolation problem.

Definition 1.1. A set of nodes Xs is called n-correct if for any data c̄ there exists

a unique polynomial p ∈ Πn, satisfying the conditions (1.1).

A necessary condition of n-correctness is: #Xs = s = N.

Denote by p|X the restriction of p on X .

Proposition 1.1. A set of nodes X with #X = N is n-correct if and only if

p ∈ Πn, p|X = 0 =⇒ p = 0.

A polynomial p ∈ Πn is called an n-fundamental polynomial for A ∈ X if

p|X\{A} = 0 and p(A) = 1.

We denote an n-fundamental polynomial of A ∈ X by p⋆A = p⋆A,X .

1The work on the part of the first named author was carried out under grant 21T-A055 from
the Scientific Committee of the Ministry of ESCS RA.
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Definition 1.2. A set of nodes X is called n-independent if each node has n-

fundamental polynomial. Otherwise, it is n-dependent. A set X is called essentially

n-dependent if none of its nodes has n-fundamental polynomial.

Fundamental polynomials are linearly independent. Therefore a necessary condition

of n-independence is #Xs = s ≤ N.

One can readily verify that a node set Xs is n-independent if and only if the

interpolation problem (1.1) is solvable, i.e., for any data {c1, . . . , cs} there is a

(possibly not unique) polynomial p ∈ Πn satisfying (1.1).

A plane algebraic curve is the zero set of some bivariate polynomial of degree ≥
1. To simplify notation, we shall use the same letter, say p, to denote the polynomial

p and the curve given by the equation p(x, y) = 0. In particular, by ℓ (or α) we

denote a linear polynomial from Π1 and the line defined by the equation ℓ(x, y) = 0.

Definition 1.3. Let X be a set of nodes. We say, that a line ℓ is a k-node line if

it passes through exactly k nodes of X .

The following proposition is well-known (see e.g. [8] Prop. 1.3):

Proposition 1.2. Suppose that a polynomial p ∈ Πn vanishes at n+ 1 points of a

line ℓ. Then we have that p = ℓq, where q ∈ Πn−1.

This implies that at most n+ 1 nodes of an n-independent set can be collinear.

An (n+ 1)-node line ℓ is called a maximal line (C. de Boor, [1]).

Set

d(n, k) := Nn −Nn−k = (1/2)k(2n+ 3− k).

The following is a generalization of Proposition 1.2.

Proposition 1.3 ([14], Prop. 3.1). Let q be an algebraic curve of degree k ≤ n with

no multiple components. Then the following hold:

(i) any subset of q containing more than d(n, k) nodes is n-dependent;

(ii) any subset X of q containing exactly d(n, k) nodes is n-independent if and

only if

p ∈ Πn and p|X = 0 =⇒ p = qr, where r ∈ Πn−k.

Thus at most d(n, k) n-independent nodes lie in a curve q of degree k ≤ n.

Definition 1.4. Let X be an n-independent set of nodes with #X ≥ d(n, k). A

curve of degree k ≤ n passing through d(n, k) points of X is called maximal.

The following is a characterization of the maximal curves:
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Proposition 1.4 ([14], Prop. 3.3). Let X be an n-independent set of nodes with

with #X ≥ d(n, k). Then a curve µ of degree k, k ≤ n, is a maximal curve if and

only if

p ∈ Πn, p|X∩µ = 0 =⇒ p = µs, s ∈ Πn−k.

One readily gets from here that for a GCn set X and µ ∈ Πk :

(1.2) µ is a maximal curve ⇐⇒ X \ µ is a GCn−k set.

In the sequel we will need the following results:

Theorem 1.1 (case i=1: [13], Thm. 4.2; case i=2: [10], Thm. 3). Let i = 1 or 2.

Assume that X is an n-independent set of d(n, k−i)+i nodes with 1+i ≤ k ≤ n−1.

Then at most 2i different curves of degree ≤ k pass through all the nodes of X .

Moreover, there are such 2i curves for the set X if and only if all the nodes of

X but i lie in a maximal curve of degree k − i.

Theorem 1.2 ([11], Thm. 2.5, [7], Thm. 3.2). Assume that X is an n-independent

set of d(n, k − 2) + 3 nodes, 3 ≤ k ≤ n − 1. Then at most 3 linearly independent

curves of degree ≤ k pass through all the nodes of X .

Moreover, there are such three curves for the set X if and only if all the nodes of

X lie in a curve of degree k − 1, or all the nodes of X but three lie in a (maximal)

curve of degree k − 2.

Below we bring a characterization of n-dependent sets X with #X ≤ 3n.

Theorem 1.3 ([12], Thm. 5.1). A set X consisting of at most 3n nodes is n-

dependent if and only if one of the following conditions holds.
(i) n+ 2 nodes are collinear,

(ii) 2n+ 2 nodes belong to a (possibly reducible) conic,

(iii) #X = 3n, and there exist γ ∈ Π3 and σ ∈ Πn such that X = γ ∩ σ .

Corollary 1.1. A set X consisting of at most 3n− 1 nodes is n-dependent if and

only if either n+2 nodes are collinear, or 2n+2 nodes belong to a (possibly reducible)

conic.

Consider special n-correct sets: GCn sets, defined by Chung and Yao:

Definition 1.5 ([5]). An n-correct set X is called GCn set, if the n-fundamental

polynomial of each node A ∈ X is a product of n linear factors.

Now we are in a position to present the Gasca-Maeztu, or briefly GM [[6], 1982]

Any GCn set contains n+ 1 collinear nodes.
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So far, the GM conjecture has been confirmed to be true only for n ≤ 5. The

case n = 2 is trivial. The case n = 3 was established by M. Gasca and J. I. Maeztu

in [6]. The case n = 4 was proved by J. R. Busch [2]. Other proofs of this case

have been published since then (see e.g. [3], [8]). The case n = 5 was proved by H.

Hakopian, K. Jetter and G. Zimmermann [9]. Recently G. Vardanyan provided a

simpler and shorter proof for this case [16].

In this paper we make a step in proving the Gasca-Maeztu conjecture for n = 6

(see Proposition 3.8). The analogue of this step was crucial in the proof of the case

n = 5 (see [9], Prop. 3.12; [16], Prop. 2.8).

Definition 1.6. Let X be an n-correct set. We say, that a node A ∈ X uses a line

ℓ, if p⋆A = ℓq, q ∈ Πn−1.

Since the fundamental polynomial in an n-correct set is unique we get

Lemma 1.1. Suppose X is an n-correct set and a node A ∈ X uses a line ℓ. Then

ℓ passes through at least two nodes from X , at which q from the above definition

does not vanish.

Definition 1.7. For a given set of lines ℓ1, . . . , ℓk , we define Nℓ1,...,ℓk to be the set

of those nodes in X which do not lie in any of the lines ℓi, and for which at least

one of the lines is not used.

In the case of one line ℓ we have

Nℓ = {A ∈ X : A /∈ ℓ, and A is not using ℓ} .

Proposition 1.5 ([8], Thm. 3.2). Assume that X is a GCn set, and ℓ1, . . . , ℓk are

lines. Then the following hold for N = Nℓ1,...,ℓk .
(i) If N is nonempty, then it is essentially (n− k)-dependent.

(ii) N = ∅ if and only if the product ℓ1 · · · ℓk is a maximal curve.

For k = 1 this result has been proved by Carnicer and Gasca [3].

Assume that Xi is a set of ki collinear points:

Xi ⊂ ℓi, #X = ki, i = 1, 2, 3, ℓi is a line.

Assume also that non of the points is an intersection point of the lines.

Consider the set LX1,X2,X3
of lines containing one point from each of Xi i = 1, 2, 3,

and denote by Mk1,k2,k3 the maximal possible number of such lines.

We shall need the following estimate (see [8], [9])

(1.3) M3,3,2 = 5.
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1.1. The m-distribution sequence of a node. In this section we bring a number

of concepts from [9], Section 2.

Suppose that X is a GCn set. Consider a node A ∈ X together with the set of n

used lines denoted by LA. The N − 1 nodes of X \ {A} belong to the lines of LA.

Let us order the lines of LA in the following way:

The line ℓ1 is a line in LA that passes through maximal number of nodes of X ,

denoted by k1 : X ∩ℓ1 = k1. The line ℓ2 is a line in LA that passes through maximal

number of nodes of X \ ℓ1, denoted by k2 : (X \ ℓ1) ∩ ℓ2 = k2.

In the general case the line ℓs, s = 1, . . . , n, is a line in LA that passes through

maximal number of nodes of the set X\∪s−1
i=1 ℓi, denoted by ks : (X\∪s−1

i=1 ℓi)∩ℓs = ks.

A correspondingly ordered line sequence

S = (ℓ1, . . . , ℓn)

is called a maximal line sequence or briefly an m-line sequence if the respective

sequence (k1, . . . , kn) is the maximal in the lexicographic order [9]. Then the latter

sequence is called a maximal distribution sequence or briefly an m-d sequence.

Evidently, for the m-d sequence we have that

(1.4) k1 ≥ k2 ≥ · · · ≥ kn and k1 + · · ·+ kn = N − 1.

Though the m-distribution sequence for a node A is unique, it may correspond

to several m-line sequences.

An intersection point of several lines of LA is counted for the line containing it

which appears in S first. A node in X is called primary for the line it is counted

for, and secondary for the other lines containing it.

According to Lemma 1.1, a used line contains at least two primary nodes:

(1.5) ki ≥ 2 for i = 1, . . . , n .

Let (ℓ1, . . . , ℓk) be a line sequence.

Definition 1.8. We say that a polynomial has (s1, . . . , sk) primary zeroes in the

lines (ℓ1, . . . , ℓk) if the counted zeroes are primary nodes in the respective lines.

From Proposition 1.2 we get

Corollary 1.2. If p ∈ Πm−1 has (m,m− 1, . . . ,m− k + 1) primary zeroes in the

lines (ℓ1, . . . , ℓk) then we have that p = ℓ1 · · · ℓkr, where r ∈ Πm−k−1.

In some cases a particular line ℓ̃ used by a node is fixed and then the properties

of the other factors of the fundamental polynomial are studied.
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In this case in the corresponding m-line sequence, called ℓ̃-m-line sequence, one

takes as the first line ℓ1 the line ℓ̃, no matter through how many nodes it passes.

Then the second and subsequent lines are chosen, as in the case of the m-line

sequence. Thus the line ℓ2 is a line in LA \ {ℓ̃1} that passes through maximal

number of nodes of X \ ℓ̃1, and so on.

Correspondingly the ℓ̃-m-distribution sequence is defined.

2. The Gasca-Maeztu conjecture for n = 6

Now let us formulate the Gasca-Maeztu conjecture for n = 6 as:

Theorem 2.1. Any GC6 set contains seven collinear nodes.

To make a step for the proof assume by way of contradiction:

Assumption. The set X is a GC6 set without a maximal line.

In view of (1.4) and (1.5) the only possible m-distribution sequences for any

node A ∈ X in the case n = 6 with N = 28 are

(i) (6, 6, 6, 4, 3, 2) (ii) (6, 6, 5, 5, 3, 2) (iii) (6, 6, 5, 4, 4, 2)
(iv) (6, 6, 5, 4, 3, 3) (v) (6, 6, 4, 4, 4, 3) (vi) (6, 5, 5, 5, 4, 2)
(vii) (6, 5, 5, 5, 3, 3) (viii) (6, 5, 5, 4, 4, 3) (ix) (6, 5, 4, 4, 4, 4)
(x) (5, 5, 5, 5, 5, 2) (xi) (5, 5, 5, 5, 4, 3) (xii) (5, 5, 5, 4, 4, 4).

Here we omitted the distribution sequences (6, 6, 6, 5, 2, 2) and (6, 6, 6, 3, 3, 3). The

reason is that ℓ1ℓ2ℓ3 is a maximal cubic with 18 (= 6 + 6 + 6) nodes and, in view

of (1.2), three 6 must be followed by 4, 3, 2, as in above (i).

3. Lines used several times

A 2-node line shared. Consider a 2-node line ℓ̃. For the ℓ̃-m-distribution sequence

of a node A /∈ ℓ̃ there are only the following five possibilities:

(3.1) (i) (2̃, 6, 6, 6, 4, 3) (ii) (2̃, 6, 6, 5, 5, 3) (iii) (2̃, 6, 6, 5, 4, 4)

(vi) (2̃, 6, 5, 5, 5, 4) (x) (2̃, 5, 5, 5, 5, 5).

Note that in ℓ̃-m-d sequences, we use the tilde to indicate the place of ℓ̃.

It was proved in [4], Prop. 4.2, that any 2-node line in a GCn set X can be used

at most by one node from X . This yields the following

Proposition 3.1. Assume that X is a GC6-set, and suppose that ℓ̃ is a 2-node

line. Then ℓ̃ can be used by at most one node A ∈ X . The m-d sequence of A has

to be one of (i), (ii), (iii), (vi), and (x), presented in (3.1).
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A 3-node line shared. Then, consider a 3-node line ℓ̃. For the ℓ̃-m-d sequence of a

node A /∈ ℓ̃ there are only the following possibilities:

(i) (3̃, 6, 6, 6, 4, 2) (ii) (3̃, 6, 6, 5, 5, 2) (iv) (3̃, 6, 6, 5, 4, 3)

(v) (3̃, 6, 6, 4, 4, 4) (vii) (3̃, 6, 5, 5, 5, 3) (viii) (3̃, 6, 5, 5, 4, 4)

(xi) (3̃, 5, 5, 5, 5, 4).

Here, and in all subsequent cases, denote a respective ℓ̃-m-line sequence by (ℓ̃, ℓ2, . . . , ℓ6).

Denote also by ℓAB the line through the nodes A and B.

Suppose that the line ℓ̃ is used by two nodes A, B ∈ X :

p⋆A = ℓ̃ q1 and p⋆B = ℓ̃ q2 , qi ∈ Π5 .

Then we have that the curves: q1, q2 ∈ Π5, pass through 6-independent nodes of

the set Y := X \ (ℓ̃ ∪ {A,B}), #Y = 28− (3 + 2) = 23.

Note that 23 = d(6, 5− 1) + 1 = d(6, 4) + 1 = 7 + 6 + 5 + 4 + 1.

Therefore, in view of Theorem 1.1, case i=1, we get that all the nodes of Y but

one, denoted by C, belong to a maximal curve µ of degree 4. Note that p⋆C = ℓ̃µ4ℓAB ,

meaning that the node C uses ℓ̃ too.

Since X is a GC set we conclude that µ has 4 line-components coinciding with

ℓ2, . . . , ℓ5. It is easily seen that these four lines have 6, 6, 6, 4 or 6, 6, 5, 5, nodes,

respectively. For D = A,B,C, we have that

(3.2) p⋆D = ℓ̃ ℓ2 · · · ℓ6,

where ℓ6 is a line depending on D with two primary nodes.

Thus the ℓ̃-m-d sequence indicated in (3.2) may correspond only to the m-d

sequences (i) (6, 6, 6, 4, 3, 2) and (ii) (6, 6, 5, 5, 3, 2).

Note that all the 6 nodes in X \ µ, included C, share the 4 line-components of

µ. As it is proved in [13], Corollary 6.1, no node in µ uses the line ℓ̃.

Thus we have shown the following:

Proposition 3.2. Assume that X is a GC6-set without a maximal line, and suppose

that a 3-node line ℓ̃ is used by two nodes A, B ∈ X . Then there exists a third node

C using ℓ̃ and ℓ̃ is used by exactly three nodes of X .

Moreover, A, B, and C, share four other lines with either 6, 6, 6, 4, or 6, 6, 5, 5,

primary nodes, respectively. Furthermore, the m-d sequence of these three nodes is

either (6, 6, 6, 4, 3̃, 2), or (6, 6, 5, 5, 3̃, 2), respectively.
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A 4-node line shared. Now, consider a 4-node line ℓ̃. X . The ℓ̃-m-d sequence of

A /∈ ℓ̃ has to be one of the following:

(i) (4̃, 6, 6, 6, 3, 2) (iii) (4̃, 6, 6, 5, 4, 2) (iv) (4̃, 6, 6, 5, 3, 3)

(v) (4̃, 6, 6, 4, 4, 3) (vi) (4̃, 6, 5, 5, 5, 2) (viii) (4̃, 6, 5, 5, 4, 3)

(ix) (4̃, 6, 5, 4, 4, 4) (xi) (4̃, 5, 5, 5, 5, 3) (xii) (4̃, 5, 5, 5, 4, 4).

Suppose that the line ℓ̃ is used by the nodes A,B,C ∈ X : Then, as in the previous

case, we get three curves of degree 5 passing through 21 = 28−(4+3) 6-independent

nodes of the set Y := X \ (ℓ̃ ∪ {A,B,C}).
Note that 21 = d(6, 5− 2) + 3 = d(6, 3) + 3 = 7 + 6 + 5 + 3.

This, in view of Theorem 1.2, implies that either

(a) all the nodes of Y but three, i.e., 18 nodes, belong to a maximal curve µ of

degree 3, or

(b) all the nodes of Y, i.e., 21 nodes, belong to a curve q of degree 4.

Since any node outside of µ uses it we get that µ has 3 line-components, passing

through 6 + 6 + 6 nodes, respectively.

Concerning (b) note that ℓ̃q is a maximal curve of degree 4 and any node D =

A,B,C, uses q :

p⋆D = ℓ̃qℓ6,

where ℓ6 is a line depending on D with two primary nodes.

Hence q has 4 line-components. It is easily seen that these four lines have either

6 + 6 + 6 + 3, 6 + 6 + 5 + 4, or 6 + 5 + 5 + 5 nodes, correspondingly. We readily

get also that these lines coincide with the lines ℓ2, . . . , ℓ5, of the corresponding ℓ̃-m-

distribution (3.2). Hence, these three cases may correspond only to the above cases

(i) and (iii) and (vi).

Now suppose that except of A,B,C, another node D ∈ X uses ℓ̃. Then we have

four curves of degree 5 passing through 20 = 28− (4+ 4) 6-independent nodes. We

have that 20 = d(6, 5− 2) + 2 = d(6, 3) + 2 = 7 + 6 + 5 + 2.

Therefore, in view of Theorem 1.1, case i=2, we obtain that all the nodes of

X \ {A,B,C,D} but two, i.e., 18 nodes belong to a maximal curve µ of degree

3. As was stated above this maximal curve has 3 line-components with 6 + 6 + 6

nodes, correspondingly. We readily get also that these lines coincide with the lines

ℓ2, ℓ3, ℓ4. Consequently, this case may correspond only to the above case (i). As it

is proved in [10], Corollary, no node in µ uses the line ℓ̃.

By summarizing we obtain the following

Proposition 3.3. Assume that X is a GC6-set without a maximal line, and suppose

that a 4-node line ℓ̃ is used by three nodes A, B, C ∈ X . Then, A, B, and C,
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besides ℓ̃, share four lines with either 6, 6, 6, 3; 6, 6, 5, 4; or 6, 5, 5, 5, primary nodes,

respectively.

Moreover the m-d sequence for A, B, C, is (6, 6, 6, 4, 3̃, 2), (6, 6, 5, 5, 3̃, 2),

(6, 6, 5, 4, 4̃, 2), or (6, 5, 5, 5, 4̃, 2).

Proposition 3.4. Assume that X is a GC6-set without a maximal line, and suppose

that some 4-node line ℓ̃ is used by four nodes A, B, C, D ∈ X . Then, ℓ̃ is used by

exactly 6 nodes.

Moreover, besides ℓ̃, these six nodes share also three other lines each passing

through 6 primary nodes. Furthermore the m-d sequence for all six nodes is (6, 6, 6, 4̃, 3, 2).

A 5-node line shared. Now suppose that ℓ̃ is a 5-node line. The ℓ̃-m-d sequence of

A /∈ ℓ̃ has to be one of the following:

(ii) (5̃, 6, 6, 5, 3, 2) (iii) (5̃, 6, 6, 4, 4, 2) (iv) (5̃, 6, 6, 4, 3, 3)

(vi) (5̃, 6, 5, 5, 4, 2) (vii) (5̃, 6, 5, 5, 3, 3) (viii) (5̃, 6, 5, 4, 4, 3)

(ix) (5̃, 6, 4, 4, 4, 4) (x) (5̃, 5, 5, 5, 5, 2) (xi) (5̃, 5, 5, 5, 4, 3)

(xii) (5̃, 5, 5, 4, 4, 4).

Let us start with a well-known

Lemma 3.1. Given m linearly independent polynomials. Then for any point A

there are m− 1 linearly independent polynomials, in their linear span, vanishing at

A.

Proposition 3.5. Assume that X is a GC6-set without a maximal line, and ℓ̃ is a

5-node line used by five nodes of X . Then it is used by exactly six nodes.

Moreover, besides ℓ̃, these six nodes share also three other lines passing through

6, 6, 5 primary nodes, respectively. Furthermore the m-d sequence for each of the six

nodes is (6, 6, 6, 4, 3, 2), or (6, 6, 5, 5, 3, 2).

Proof. Assume that the nodes of the set A5 := {A1, . . . , A5} ⊂ X use the line

ℓ̃. Assume that

p⋆A1
= ℓ̃ℓ2 · · · ℓ6.

Evidently, the nodes A2, . . . , A5 belong to the lines ℓ2, . . . , ℓ6.

In view of Lemma 3.1 for any points Ti, i = 1, 2, 3, there is a polynomial

p0 ∈ P4 := linearspan{p⋆A2
, . . . , p⋆A5

}, p0 ̸= 0,

such that p0(Ti) = 0, i = 1, . . . , 3. On the other hand we have that

p0 = ℓ̃q0, q0 ∈ Π5.
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Assume that the three points are not intersection points of the six lines. They also

are taken outside of ℓ̃, whence q0(Ti) = 0, i = 1, 2, 3.

Consider the set of nodes

C := X \
(
ℓ̃ ∪ A5

)
, |C| = 28− 5− 5 = 18.

The following cases of distribution of these 18 nodes in the lines ℓ2, . . . , ℓ6 in some

order are possible:

(1) (6, 6, 6, 0, 0); (2) (6, 6, 5, 1, 0); (3) (6, 6, 4, 2, 0); (4) (6, 6, 4, 1, 1);
(5) (6, 6, 3, 3, 0); (6) (6, 6, 3, 2, 1); (7) (6, 6, 2, 2, 2); (8) (6, 5, 5, 2, 0);
(9) (6, 5, 5, 1, 1); (10) (6, 5, 4, 3, 0); (11) (6, 5, 4, 2, 1); (12) (6, 5, 3, 3, 1);
(13) (6, 5, 3, 2, 2); (14) (6, 4, 4, 4, 0); (15) (6, 4, 4, 3, 1); (16) (6, 4, 4, 2, 2);
(17) (6, 4, 3, 3, 2); (18) (6, 3, 3, 3, 3); (19) (5, 5, 5, 3, 0); (20) (5, 5, 5, 2, 1);
(21) (5, 5, 4, 4, 0); (22) (5, 5, 4, 3, 1); (23) (5, 5, 4, 2, 2); (24) (5, 5, 3, 3, 2);
(25) (5, 4, 4, 4, 1); (26) (5, 4, 4, 3, 2); (27) (5, 4, 3, 3, 3); (28) (4, 4, 4, 4, 2);

(29) (4, 4, 4, 3, 3).

We assume for the convenience that the lines are in the increasing order.

We may assume also that in each above distribution the listed zeros are primary

in the respective lines. Indeed, by reordering the lines and making the zeros primary

we will get another distribution listed above.

Now one can verify readily that the cases (3)-(29) are not possible, since by

adding three arbitrary points Ti, i = 1, 2, 3, we make the polynomial q0 to have at

least (6, 5, 4, 3, 2) primary zeroes in the lines ℓ2, . . . , ℓ6.

For example, for several particular cases below, we add the three points to the

lines ℓ2, . . . , ℓ6, according to the following distributions:

(3) (0, 0, 0, 1, 2); (14) (0, 1, 0, 0, 2); (25) (1, 1, 0, 0, 1); (29) (2, 1, 0, 0, 0).

This implies that q0 = ℓ2 · · · ℓ6 hence p0 = ℓ̃ℓ2 · · · ℓ6 = p⋆A1
. Therefore we get

p⋆A1
∈ P4, which is a contradiction.

Then note that also the case (1) is not possible since the curve ℓ̃ℓ2ℓ3ℓ4 ∈ Π4

contains 23 = 5+6+6+6 nodes, while a maximal quartic contains 22 = 7+6+5+4

nodes. Thus the only possible case is the distribution (2).

Evidently, the curve µ4 := ℓ̃ℓ2 · · · ℓ4 here is a maximal curve. Hence the node

in the line ℓ5 together with the five nodes of A5, use the lines ℓ2, . . . , ℓ4. Thus the

six nodes besides ℓ̃, share also the three lines ℓ2, ℓ3, ℓ4, passing through 6, 6, and 5

primary nodes.

Thus the distribution (2) may correspond only to the following m-d sequences:

(6, 6, 6, 4̃, 3, 2) and (6, 6, 5̃, 5, 3, 2). □
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A 6-node line shared. Finally suppose that ℓ̃ is a 6-node line. For the ℓ̃-m-d sequence

of a node A /∈ ℓ̃ there are only the following possibilities:

(i) (6̃, 6, 6, 4, 3, 2) (ii) (6̃, 6, 5, 5, 3, 2) (iii) (6̃, 6, 5, 4, 4, 2)

(iv) (6̃, 6, 5, 4, 3, 3) (v) (6̃, 6, 4, 4, 4, 3) (vi) (6̃, 5, 5, 5, 4, 2)

(vii) (6̃, 5, 5, 5, 3, 3) (viii) (6̃, 5, 5, 4, 4, 3) (ix) (6̃, 5, 4, 4, 4, 4).

Proposition 3.6. Assume that X is a GC6 set without a maximal line, and ℓ̃ is

a 6-node line. Assume also that ℓ̃ is used by eight nodes of X . Then it is used by

exactly ten nodes of X .

Moreover, these ten nodes form a GC3 set and share two more lines with six

primary nodes each. Furthermore, each of these ten nodes has the m-d sequence

(6, 6, 6, 4, 3, 2).

Proof. Since ℓ̃ is used by at least eight nodes, we have that #Nℓ̃ ≤ 28−(6+8) =

14. By Proposition 1.5 the set Nℓ̃ is 5-dependent. Since 14 = 3 × 5 − 1, one may

apply Corollary 1.1 to conclude that either Nℓ̃ contains 5 + 2 = 7 collinear nodes,

which contradicts the hypothesis, or 12 (= 2 · 5 + 2) nodes there are in a conic β.

Thus the latter case takes place and #Nℓ̃ ≥ 12.

Now note that Nℓ̃ ⊂ β. Indeed, we may have one or two nodes in Nℓ̃ outside of

β. But in this case those nodes evidently have fundamental polynomial of degree 3,

for the set Nℓ̃, contradicting Proposition 1.5, (i).

Then let us show that #Nℓ̃ = 12. Assume by way of contradiction that there are

≥ 13 nodes in Nℓ̃. Then there are at most 9 nodes outside of β ∪ ℓ̃ and therefore

they are contained in a cubic γ. Then we readily get that X ⊂ ℓ̃βγ ∈ Π6, which

contradicts Proposition 1.1.

Finally note that ℓ̃β contains 18 nodes, i.e., is a maximal cubic. Therefore, by

Proposition 1.4, it is used by all the 10 nodes in X \ (ℓ̃∪ β), and hence β has to be

the product of two 6-node lines. □

Proposition 3.7. Assume that X is a GC6 set without a maximal line, and ℓ̃i, i =

1, 2, are two disjoint 6-node lines. Assume also that six nodes of Xare using ℓ̃1 and

ℓ̃2. Then, the six nodes besides ℓ̃1 and ℓ̃2 share either one more line with 6 primary

nodes or two more lines each with 5 primary nodes. In the first case the lines ℓ̃1

and ℓ̃2 are used by exactly ten nodes of X and in the second case they are used by

exactly six nodes of X .

Moreover, in the first and second cases the ten and six nodes form a GC3 and

GC2 sets, respectively. Furthermore, each of the ten nodes and each of the six nodes

has the m-d sequence (6, 6, 6, 4, 3, 2), and (6, 6, 5, 5, 3, 2), respectively.
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Proof. We have that #Nℓ̃1,ℓ̃2
≤ 28−(6+6+6) = 10. By Proposition 1.5, the set

Nℓ̃1,ℓ̃2
is 4-dependent. Since 10 = 3× 4− 2 = 2× 4 + 2, we can apply Corollary 1.1

and conclude that either Nℓ̃1,ℓ̃2
contains 4 + 2 = 6 nodes lying in a line ℓ̃3, or all

the ten nodes are lying in a conic β.

In the first case we readily conclude that ℓ̃1ℓ̃2ℓ̃3 is a maximal cubic with 18 nodes

and hence the remaining ten nodes of X are using it.

In the second case we readily conclude that βℓ̃1ℓ̃2 is a maximal quartic with

22 nodes and hence the remaining six nodes of X are using it. Hence the conic β

reduces to two lines with 5 primary nodes.

It remains to mention that if a seventh node uses the lines ℓ̃1 and ℓ̃2 then we get

#Nℓ̃1,ℓ̃2
≤ 28− (6+6+7) = 9 = 2×4+1 which readily reduces to the first case. □

The following table is an analog of one in [9]. It is obtained from Propositions 3.1

- 3.6, and shows how many times at most a line ℓ̃, under certain restrictions, can

be used, provided that the GC6-set has no maximal line.

(3.3)

maximal # of nodes using ℓ̃
−−−total # in general no node uses no node uses

of nodes (6, 6, 6, 4, 3, 2) (6, 6, 6, 4, 3, 2),

on ℓ̃ constellation (6, 6, 5, 5, 3, 2)
6 10 7 7
5 6 6 4
4 6 3 3
3 3 3 1
2 1 1 1

3.1. The main result. In this paper we will prove the following

Proposition 3.8. Assume that X is a GC6 set with no maximal line. Then for no

node in X the m-d sequence is (6, 6, 6, 4, 3, 2).

Assume by way of contradiction that for a node in X the m-d sequence is

(6, 6, 6, 4, 3, 2). Let (α1, . . . , α6) be a respective m-line sequence.

Set X = A ∪ B (see Fig. 3.1) with

A = X ∩ {α1 ∪ α2 ∪ α3}, #A = 18, and B = X \ A, #B = 10.

Denote L3 := {α1, α2, α3}. Note that no intersection point of the three lines of L3

belongs to X . The following is the analogue of [9], Lemma 3.2.

Lemma 3.2.
(i) The set B is a GC3 set, and each node B ∈ B uses the three lines of L3

and the three lines it uses within B, i.e.,

(3.4) p⋆B,X = α1α2α3p
⋆
B,B .
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Рис. 3.1. The case (6, 6, 6, 4, 3, 2) with X = A ∪ B.

(ii) No node in A uses any of the lines of L3.

Proof. (i) Suppose by way of contradiction that the set B is not 3-correct, i.e.,

it is a subset of a cubic γ0. Then X is a subset of the zero set of the polynomial

α1α2α3γ0 ∈ Π6, which contradicts Proposition 1.1.

Now, we readily obtain the formula (3.4).

(ii) Without loss of generality assume that A ∈ α1 uses the line α2. Then p⋆A =

α2 q, where q ∈ Π5. It is easily seen that q has (6,5) primary zeros in the lines

(α3, α1). Therefore, in view of Corollary 1.2, we obtain that p⋆A = α1α2α3r, r ∈ Π3,

which is a contradiction. □

Lemma 3.3. No node from A can have the m-d sequence (6, 6, 6, 4, 3, 2).

Proof. Assume conversely that A ∈ A has the m-d sequence (6, 6, 6, 4, 3, 2).

Denote a respective m-line sequence by (α′
1, . . . , α

′
6). The lines here, according to

Lemma 3.2, (ii), are different from α1, α2, α3.

Denote A′ = X ∩ {α′
1 ∪ α′

2 ∪ α′
3}. The three lines α′

1, α
′
2, α

′
3 contain at least

9 = 3 + 3 + 3 nodes outside of γ := α1 ∪ α2 ∪ α3. The fourth line ℓ′4 contains at

least 1 = 4 − 3 node outside of γ denoted by C. Since #B = 10 we conclude that

these four lines have exactly 10 nodes in B and 12 = 4 × 3 nodes in A. Therefore

we obtain that B ⊂ α′
1 ∪ · · · ∪ α′

4, and C ∈ X \ (A ∪A′).

This, in view of Lemma 3.2, (i), implies that p⋆C = α1α2α3α
′
1α

′
2α

′
3.

From here we readily conclude that the node C uses six lines none of which

is a maximal line within B. Indeed, we have that αi ∩ B = ∅, i = 1, 2, 3, and

|α′
i ∩ B| = 3, i = 1, 2, 3. This contradicts Lemma 3.2, (i). □

Definition 3.1. We say, that a line ℓ is a kA-node line if it passes through exactly

k nodes of A, k = 0, 1, 2, 3.
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Lemma 3.4. (i) Assume that a line ℓ̃ /∈ L3 does not intersect a line α ∈ L3 at a

node in X . Then the line ℓ̃ can be used by atmost 1 node from A. Moreover, this

latter node can belong only to α.

(ii) If ℓ is 0A or 1A-node line then no node from A uses it.

(iii) If ℓ is 2A-node line then it can be used by atmost one node from A.

Proof. (i) Without loss of generality assume that α = α1 and A ∈ α2 uses

ℓ̃ : p⋆A = ℓ̃ q, q ∈ Π4. It is easily seen that q has (6, 5, 4) primary zeros in

the lines (α1, α3, α2). Therefore, in view of Corollary 1.2, we conclude that p⋆A =

ℓ̃ α1 α2 α3 r, r ∈ Π1, which is a contradiction.

Now assume conversely that A,B ∈ α1 ∩ X use the line ℓ̃. Choose a point

C ∈ α2 \ (ℓ̃ ∪ X ). Then, in view of Lemma 3.1, choose numbers a and b, with

|a| + |b| ̸= 0, such that p(C) = 0, where p := ap⋆A + bp⋆B . It is easily seen that

p = ℓ̃ q, q ∈ Π5 and the polynomial q has (6, 5, 4) primary zeros in the lines

(α2, α3, α1). Therefore p = ℓ̃α1 α2 α3 q, where q ∈ Π2. Thus p(A) = p(B) = 0,

implying that a = b = 0, which is a contradiction.

The items (ii) and (iii) readily follow from (i). □

A node is called an im-node, i ≤ 2, if it lies in exactly i maximal lines.

Lemma 3.5. Let ℓ̃ be a 3A type line passing through a 2m-node B ∈ B. Assume

also that the node set B\{ℓ̃} contains 4 collinear nodes. Then the line ℓ̃ can be used

by at most three nodes from A.

Proof. Assume by way of contradiction that the line ℓ̃ is used by four nodes

from a set A4 := {A1, . . . , A4} ⊂ A. For any chosen points Ti, i = 1, 2, 3, (see the

proof of Proposition 3.5 for the details) there is a polynomial

(3.5) p0 ∈ X4 := linearspan{p⋆A1
, . . . , p⋆A4

}, p0 ̸= 0,

such that p0(Ti) = 0, i = 1, 2, 3. On the other hand we have that

p0 = ℓ̃q0, q0 ∈ Π5, and q0(Ti) = 0, i = 1, 2, 3.

Now consider the set of nodes

C := A \
(
ℓ̃ ∪ A4

)
, |C| = 18− 3− 4 = 11.

Denote by ℓ∗ the line passing through the four collinear nodes of B \ {ℓ̃}.
The following cases of distribution of above 11 nodes in the three lines of L are

possible:

(1) (5, 5, 1); (2) (5, 4, 2); (3) (5, 3, 3); (4) (4, 4, 3).

One can verify that the cases (1)-(4) are not possible in the following way. By

locating conveniently the three points Ti, i = 1, 2, 3, we make the polynomial q0
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to have at least (6, 5, 4, 3) primary zeroes in the lines α1, α2, α3, ℓ
∗, in some order.

Thus we get q0 = α1α2α3β, β ∈ Π2, implying p0 = α1α2α3γ, γ ∈ Π3. Hence, in

view of Lemma 3.2, (i), we readily get that p0 ∈ linearspan{p⋆B,X : B ∈ B}, which

contradicts (3.5).

To implement the above described verification in details suppose that

|ℓ∗ ∩ C| = k, k ≤ 2.

Case 1: k = 0. In the case of distribution (1), (5, 5, 1), we add the three points

in the form (1, 0, 2), meaning that we add a point to the line α1 and the remaining

two points to the line α3. In the case of distributions (2)-(4) we add the three points

in the form (1, 1, 1), (1, 2, 0), (2, 1, 0), respectively.

Then note that the polynomial q0 has at least (6, 5, 4, 3) primary zeroes in the

lines α1, α2, ℓ
∗, α3, in the indicated order.

Case 2: k = 1. In this case a node denoted by A∗ in C belongs to the line ℓ∗.

The following are the cases of distribution of remaining 10 nodes of C in the lines

of L:

(1′) (5, 5, 0); (2′) (5, 4, 1); (3′) (5, 3, 2); (4′) (4, 4, 2); (5′) (4, 3, 3).

Consider the distribution sequence (1′), (5, 5, 0). In this case we have that A4 ∪
{A∗} ⊂ α3. Note that this is the only case when instead of ℓ∗ we use the two

maximal lines passing through B ∈ B, denoted by ℓ∗∗1 and ℓ∗∗2 . Each of these lines

passes through 3 nodes in B \ ℓ̃. Note that these lines do not pass through A∗ since

they intersect ℓ∗ at B ∈ B.
Thus in case (1′) we add a point to the line ℓ∗∗1 . Then we add the remaining two

points to the lines of L in the form (1, 0, 1). Now note that the polynomial q0 has at

least (6, 5, 4, 3, 2) zeroes in the following ordered lines: α1, α2, ℓ
∗∗
1 , ℓ∗∗2 , α3, counting

also A∗ ∈ α3.

In the remaining cases (2′) − (5′) we add a point to the line ℓ∗ to have there 6

zeroes and use it as the first line in the ordered line sequence. Then we add the

remaining two points to the lines of L in the form (0, 0, 2), (0, 1, 1), (1, 0, 1)

(1, 1, 0), respectively.

Finally notice that the polynomial q0 has at least (6, 5, 4, 3) zeroes in the ordered

lines: ℓ∗, α1, α2, α3.

Case 3: k = 2. In this case two nodes of A belong to the line ℓ∗. The following

are the cases of distribution of the remaining 9 nodes of C in the three lines of L:

(1′′)(5, 4, 0); (2′′)(5, 3, 1); (3′′)(5, 2, 2); (4′′)(4, 4, 1); (5′′)(4, 3, 2); (6′′)(3, 3, 3).
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In these cases the line ℓ∗ has 6 zeroes and is the first line in the ordered sequence

of lines. For the distributions (1′′) − (6′′) we add the three points in the form

(0, 0, 3), (0, 1, 2), (0, 2, 1) (1, 0, 2), (2, 1, 0), respectively.

Then note that as above the polynomial q0 has at least (6, 5, 4, 3) zeroes in the

following ordered lines: ℓ∗, α1, α2, α3. □

3.2. The proof of the main result. Consider all the lines passing through a node

B ∈ B and at least one more node of X . Denote the set of these lines by L(B). Let

mk := mk(B), k = 1, 2, 3, be the number of kA-node lines from L(B). Then the

following holds:

(3.6) 1m1(B) + 2m2(B) + 3m3(B) = #A = 18.

Lemma 3.6. We have that m3(B) ≤ 5.

Proof. The relation (3.6) implies that m3(B) ≤ 6. Assume by way of contradiction

that six lines pass through B and three nodes in A. Therefore these six lines intersect

the three lines α1, α2, α3, at all the 18 nodes of A.

Note that α1α2α3 is a maximal cubic. Hence, by Proposition 1.4, the six lines

contain as components the lines α1, α2, α3, which is a contradiction. □ The proof

of Proposition 3.8. We will prove Proposition in three steps. Recall that the set B
is a GC3 set.

Step 1. The set B is a Chung-Yao set (with 5 maximal lines, Fig. 3.1).

Let us fix as a node B ∈ B. Note that all nodes in this case are 2m-nodes.

According to Lemma 3.5 any 3A type line ℓ̃ here is used by at most 3 nodes of

A. Indeed, ℓ̃ passes through at most two nodes of B. Thus it intersects at most

4 = 2× 2 maximal lines of B and the four nodes of the fifth maximal line of B are

outside of B \ ℓ̃ (see Fig. 3.1).

Therefore, in view of Lemma 3.4, the number of usages of the lines ℓ̃ through B

with the nodes from A equals at most:

m2(B) + 3m3(B) ≥ 18 = m1(B) + 2m2(B) + 3m3(B).

Hence m1 = m2 = 0 and m3 = 6, which contradicts Lemma 3.6.

Step 2. B is a Carnicer-Gasca set (with 4 maximal lines, Fig. 3.2).

We have that there are at most four 3-node lines in B ([15], Prop. 5). Moreover,

any 3-node line passes through 1m, 1m, 1m, or through 2m, 1m, 1m, nodes [15].

There are exactly six 2m-nodes in B. Therefore we have at least two nodes in B,

denoted by B0 and B1, through which no 3-node line passes.

Denote the line passing through the nodes B0 and B1, by ℓ01.
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Рис. 3.2. The set B is a Carnicer-Gasca set

Lemma 3.7. The line ℓ01 is a 3A type 5-node line and is used by exactly six nodes

from A.

Proof. Assume by way of contradiction that ℓ01 is a ≤ 4-node line. Then, in

view of Lemma 3.4, it is used ≤ 1 times from A. On the other hand if ℓ01 is a

5-node line but is not used six times from A then, according to Propostion 3.5, it

is used ≤ 4 times from A.

Note that there is no 6-node line through B := B0, since there is no 3-node line

through it in B. Next, by Lemma 3.5, any 5-node line through B, except of ℓ01, is

used by ≤ 3 nodes from A (see Fig. 3.2).

Thus, in view of Lemma 3.4, we have that the number of usages of the lines

through B with the nodes from A equals at most:

m2(B) + 4 + 3(m3(B)− 1) ≥ 18 = m1(B) + 2m2(B) + 3m3(B).

Hence m1 +m2 ≤ 1, and m3 ≥ 6, which contradicts Lemma 3.6. □

Denote by A6 ⊂ A the set of six nodes that are using the line ℓ01.

We get from Proposition 3.5 that the six nodes of A6 besides ℓ01, share also

three other lines passing through 6, 6, 5 primary nodes, respectively. Furthermore

the m-d sequence for the six nodes is (6, 6, 6, 4, 3, 2), or (6, 6, 5, 5, 3, 2).

Lemma 3.3 implies that the first case cannot take place. Thus the m-d sequence

for all nodes of A6 is (6, 6, 5, 5, 3, 2). Note that, in view of (1.2), A6 is a GC3 set,

since ℓ1 · · · ℓ4 is a maximal quartic.

Let ℓ1, . . . , ℓ6 be a respective m-line sequence, where ℓ3 := ℓ01. Note that ℓ1, . . . , ℓ4
are invariable lines, and ℓ5, ℓ6 are variable lines, for the nodes of A6. The lines

ℓ1, . . . , ℓ4 have at least 10 = 3 + 3 + 2 + 2 distinct nodes in B. Since #B = 10 we
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conclude that these four lines have exactly 10 nodes in B and 12 = 4× 3 nodes in

A (see Fig. 3.2).

Recall that we have four maximal lines in B which are 4-node lines and intersect

in primary nodes of X each of the lines ℓ1, . . . , ℓ4. The nodes B0 and B1 are in the

line ℓ3. Denote by B2, B3 the two primary nodes in ℓ4 ∩ B.
We readily conclude that Bi, i = 0, . . . , 3, are 2m-nodes of B and the 4 maximal

lines are the lines ℓ02, ℓ03, ℓ12, ℓ13, where ℓij is the line passing through the nodes

Bi and Bj (see Fig. 3.2).

The remaining two 2m-nodes of B are the remaining two intersection points of

the maximal lines denoted by D1 := ℓ03 ∩ ℓ12 and D2 := ℓ02 ∩ ℓ13.

The nodes D1 and D2 one by one lie in the lines ℓ1 and ℓ2, respectively, since the

latters are 3-node lines within B and each contains at most one 2m-node.

Lemma 3.8. The following is true for at least one of B ∈ {B2, B3} :

No 3-node line within B passes through the node B.

Proof. Consider the node B2. We have that X \ (ℓ02∪ℓ12) = {B3, C1, C3}. Since

ℓ23 is a 2-node line in B we get that the only candidate for 3-node line through B2

is the line passing through the nodes B2, C1, C3, provided that the latter triple of

nodes is collinear (see Fig. 3.2).

Similarly we get that the only candidate for a 3-node line through B3 is the line

passing through the nodes B3, C0, C2, provided they are collinear.

What we need to show is that at least one of the two triples of nodes is not

collinear. Assume by way of contradiction that the both triples are collinear, lying

in some two lines ℓ0 and ℓ′0, respectively.

Consider the following collinear sets

X1 := {C0, D1, C1}, X2 := {C2, D2, C3}, X3 := {B2, B3}.

It is easily seeen that the four maximal lines of B pass through one point from each

of X1,X2,X3. Note that the above two lines ℓ0 and ℓ′0, have the same property.

Therefore we get #LX1,X2,X3 ≥ 6, which contradicts (1.3). □ Thus from now on

one can assume, without loss of generality, that no 3-node line passes through the

node B2.

Lemma 3.9. The set B, except of the lines ℓ1 and ℓ2, may have just one more 3-

node line, which passes through the nodes B3, C0, C2, provided that the latter nodes

are collinear.

Moreover, (ℓ1, ℓ2) is the only disjoint pair of 3-node lines in B.
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Proof. Indeed, any 3-node line must pass through a node of B outside of the

lines ℓ1 and ℓ2, i.e., through one of B0, . . . , B3. Thus it must pass through B3 and

therefore also through C0 and C2, provided that the latter triple of nodes is collinear

(see Fig. 3.2). It remains to note that the third 3-node line intersects both of the

lines ℓ1 and ℓ2 at nodes of B. □

Lemma 3.10. There is a type 3A 4-node line through each of the nodes B0, B1,

and B2. Moreover, these lines are used by exactly 3 nodes from A.

Proof. Denote by B any of the nodes B0, B1, B2. Note that there are no 6-

node lines through B. Then we get, from Lemma 3.5, that any type 3A 5-node line

through B, except of ℓ3 or ℓ4 is used by ≤ 3 nodes from A.

Thus, the number of usages of the lines through B with the nodes from A equals

at most:

(3.7) m2(B) + 6 + 3(m3(B)− 1) ≥ 18 = m1(B) + 2m2(B) + 3m3(B).

Hence we obtain that m1 +m2 ≤ 3.

Let us denote by maxuse := maxuse(B) the maximum possible usage of lines

through B we obtained, i.e., maxuse = m2 + 3m3 + 3.

Then, as it follows from the equality in (3.7), the quantity m1 +2m2 is divisible

by 3. Thus the following four cases are possible here.

1) m1 = m2 = 0, then m3 = 6, which contradicts Lemma 3.6.

2) m1 = m2 = 1, then m3 = 5, maxuse = 19,

3) m1 = 3,m2 = 0, then m3 = 5, maxuse = 18,

4) m1 = 0,m2 = 3, then m3 = 4, maxuse = 18.

Note that in each of the above cases 2), 3), 4) there are at least 4,5,4 lines of

type 3A, respectively. Since in the case 2) maxuse = 19 = 18 + 1 one of the type

3A lines may be used less than 3 times, or more precisely 2 times.

It remains to take into account that from these four lines only three may be

5-node lines. For example, for B = B0 these three lines are ℓB0B1
, ℓB0C1

and ℓB0C2

(see Fig. (3.2)). The remaining one certainly is a 4-node line. □

Consider a 4-node line ℓ̃ through B0, B1, B2, mentioned in Lemma 3.10, used

by exactly 3 nodes of A. According to Proposition 3.3 the ℓ̃-m-d sequence of each

mentioned triple of nodes is either

(a) (4̃, 6, 6, 5, 4, 2) or

(b) (4̃, 6, 5, 5, 5, 2).

Note that the first five lines in the respective ℓ̃-m-line sequences are invariable

for the triples of nodes.
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Now assume that the case (a) holds for a triple of nodes. Denote a respective ℓ̃-m-

line sequence for the nodes of the triple by ℓ̃, ℓ′2, . . . , ℓ
′
6. Consider the m-d sequence

for the nodes of A6 : (6, 6, 5, 5, 3, 2), and the respective m-line sequence ℓ1, . . . , ℓ6.

Note that A6 is a GC3 set.

We get from Lemma 3.9 that the pair of the lines ℓ′2, ℓ
′
3 coincides with ℓ1, ℓ2.

Then note that in the set B \ (ℓ1 ∪ ℓ2) the only 3A lines with two primary nodes

are the lines ℓ3 and ℓ4. Thus ℓ′4 coincides with one of them.

Now, in view of Corollary 1.2, we readily obtain that any node E of A6, besides

the lines ℓ′2, ℓ
′
3, ℓ

′
4, uses also the lines ℓ̃ and ℓ′5. Indeed, in view of Proposition 1.2,

the node E uses one of the lines ℓ̃, ℓ′5 to which it does not belong. Then we get

that E uses also the other line. This is a contradiction, since outside of the curve

ℓ̃ℓ′2 · · · ℓ′5 ∈ Π5 there are only 3 nodes.

It remains to consider the case when all the three ℓ̃-m-d sequences equal (b).

Denote a respective ℓ̃-m-line sequence by ℓ̃, ℓ′′2 , . . . , ℓ
′′
6 .

Lemma 3.11. (i) The above three triples are disjoint in this case.

(ii) Suppose the line ℓ′′2 with 6 primary nodes for a triple coincides with one of the

lines ℓ1 or ℓ2. Then the triple is not a subset of the set A6.

Proof. (i) Consider a pair of triples. Note that for them a line among the 4

invariable lines ℓ′′2 , . . . , ℓ′′5 is different. Indeed, assume conversely that all threse lines

coincide with each other. Then as above we readily get that also the 4-node lines ℓ̃

coincide, which is a contradiction. Thus the invariable lines for each pair of triples

differ at least with two lines. Therefore for any variable line the line sequences are

different. Hence the triples are disjoint.

(ii) Assume that the line ℓ′′2 coincides, say, with ℓ1. Then the three invariable lines

ℓ′′3 , ℓ
′′
4 , ℓ

′′
5 cannot coincide with ℓ2, ℓ3, ℓ4. Indeed, otherwise any node in A, together

with ℓ′′2 , . . . , ℓ
′′
5 uses also the 4-node line ℓ̃, which is a contradiction since outside of

ℓ̃, ℓ′′2 , . . . , ℓ
′′
5 there are only 3 nodes.

Thus, by taking into account ℓ̃, we have two invariable lines in the m-line sequence

of the triple that are not present in {ℓ1, . . . , ℓ4}. Next let us fix the variable line

ℓ5 such that it differs from the two mentioned lines. Indeed, we may choose as ℓ5

any maximal line of the GC3 set A6. Thus the considered triple is disjoint with the

three nodes of A6 \ ℓ5 that use the lines ℓ1, . . . , ℓ5. It remains to note that the triple

does not coincide with the three nodes of A6 ∩ ℓ5, since the latter three nodes are

collinear. □
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Рис. 3.3. The set B is a principal lattice

Now suppose that for all three triples the the line ℓ′′2 with 6 primary nodes is the

third possible 3-node line of B, different from ℓ1 and ℓ2 (Lemma 3.9). Then, in view

of Lemma 3.11, (i), this line is used by 9 = 3+3+3 nodes, which is a contradiction.

Finally suppose that for one of the triples the line ℓ′′2 coincides with one of the

two disjoint 6-node lines, say with ℓ1. Then, in view of Lemma 3.11, (ii), the line

ℓ1 is used by at least 7 = 6 + 1 nodes from A. Observe that ℓ1 is used by a node

from B too. Thus in all the 6-node line ℓ1 is used by at least 8 nodes. This, in view

of Proposition 3.6 and Lemma 3.3, is a contradiction.

Step 3. The set B is a principal lattice (with three maximal lines).

Concider a 2m-node B ∈ B. Note that there is no 3-node line through B within

B (see Fig. 3.3).

Assume that the line ℓ̃ = ℓBC (or ℓBD) is a 5-node line and is used ≥ 5 times

from A. Then, according to Proposition 3.5, it is used by exactly 6 nodes from A
and the 6 nodes besides ℓ̃ share also 3 lines with 6, 6, 5 primary nodes. The two

6-node lines are 3-node disjoint lines within B. Thus they pass through the 1m

nodes C,C ′, C ′′, and D,D′, D′′, respectively. This is a contradiction since the node

C belongs to the line ℓ̃ and is not primary.

Thus the lines ℓBC and ℓBD are used ≤ 4 times from A. Note that the line ℓBO,

as well as any 4-node line through B, according to Lemma 3.5, is used ≤ 3 times

from A.

Hence the maximal possible number of usages of the lines through B with the

nodes from A equals:

m2(B) + 4 + 4 + 3(m3(B)− 2) ≥ 18 = m1(B) + 2m2(B) + 3m3(B).
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Hence m1+m2 ≤ 2. Then m1+2m2 is divisible by 3 and maxuse(B) = m2+3m3+2.

Thus the following two cases are possible:

1) m1 = m2 = 0,m3 = 6, which contradicts 3.6,

2) m1 = m2 = 1,m3 = 5, maxuse = 18.

Now we readily conclude that:

B1) The lines ℓBC and ℓBD are 5-node lines used exactly 4 times from A.

B2) No node of A may use two lines through B.

B3) There are at least two 4-node lines through B that are of type 3A and are

used by exactly 3 nodes from A.

B3′) Note that if the line ℓBO is not of type 3A then there are three above

mentioned 4-node lines through B.

Then let us consider the usages of lines passing through the 0m node O ∈ B by

the nodes of A. Consider the three lines through O : OC,OC ′, OC ′′, which can be

6-node lines. These lines are used by 3 nodes of B and therefore, by Proposition

3.6, they can be used by at most 4 nodes of A.

Similarly the lines OB,OB′, OB′′ can be 5-node lines, in which case, according

to Lemma 3.5, they can be used by at most 3 nodes from A.

Thus for the maximal possible number of usages of the lines through O with the

nodes from A we have:

m2(O) + 4 + 4 + 4 + 3(m3(O)− 3) ≥ 18 = m1(O) + 2m2(O) + 3m3(O).

Hence m1+m2 ≤ 3. Then m1+2m2 is divisible by 3 and maxuse(O) = m2+3m3+3.

Thus the following cases are possible

1) m1 = m2 = 0,m3 = 6, which contradicts Lemma 3.6.

2) m1 = m2 = 1,m3 = 5, maxuse = 19,

3) m1 = 3,m2 = 0,m3 = 5, maxuse = 18,

4) m1 = 0,m2 = 3,m3 = 4, maxuse = 18.

Now we readily conclude that

O1) At least two of the three lines through O : OC,OC ′, OC ′′, are 6-node lines

and are used exactly 4 times from A.

O2) At most one node of A may use two lines through O all others may use only

one line through O.

O3) From the six lines through O : OC,OC ′, OC ′′, OB,OB′, OB′′, in view of

Lemma 3.6, at most five are of type 3A and possibly are used by ≥ 3 nodes from

A.

Thus, by the remarks B3), and B3′), there are at least six, possibly seven, type

3A 4-node lines, through the 2m-nodes of B, that are used by exactly 3 nodes from
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A. In view of Proposition 3.3 again for these 4-node lines we have one of the two

ℓ̃-m-d sequences: (a) (4̃, 6, 6, 5, 4, 2) or (b) (4̃, 6, 5, 5, 5, 2).

Lemma 3.12. The second 4 in the ℓ̃-m-d sequence (a), in a respective ℓ̃-m line

sequence, corresponds to a 3A 4-node line passing through B,B′ or B′′.

Proof. Suppose that ℓ1, . . . , ℓ6 is a respective ℓ̃-m-line sequence. Then ℓ2 and ℓ3

pass through the six 1m-nodes of B. Thus the line ℓ4 coincides with one of the lines

B′O, or B′′O, say with B′O (see Fig. 3.3).

Now ℓ5 passes through B′′ as the only remaining primary node in B. Let us show

that it does not pass through any other node of B.
Note that ℓ5 cannot pass through O since then each of the three nodes will use

two lines passing through O, which contradicts the remark O2).

Then assume conversely that ℓ5 passes through one of 1m nodes, say C ′. As we

know from the remark B1), the line ℓB′C′ is used by the fourth node of A denoted

by F. In view of Proposition 1.2 the node F uses one of ℓ2, ℓ3 to which it does not

belong and then the other. Next we readily get that F uses also the lines ℓ4 and ℓ1.

Thus the 4-node line ℓ1 is used by 4 nodes which, in view of Proposition 3.4 and

Lemma 3.3, is a contradiction. □

Lemma 3.13. Any two triples of nodes corresponding to two distributions of type

(a) or (b) are disjoint.

Proof. Note that the variable lines with 2 primary nodes in respective ℓ̃-m line

sequences cannot be equal to any of the 4-node line. Indeed the first five lines

pass through all the nodes of the set B. Now if a sixth line becomes 4-node line

through a 2m-node of B then we have two lines passing through the 2m-node, which

contradicts the remark B2).

Then since in each case of distributions (a) and (b) we have different 4-node lines

therefore the corresponding triples are disjoint. □

Now assume that for at least two pairs of 4-node lines we have the ℓ̃-m-d sequence

(a). Then the two disjoint lines ℓ2 and ℓ3 in the respective ℓ̃-m line sequence are

used by two triples of nodes, i.e., by six nodes.

In view of Proposition 3.7 we get that each of the six nodes has either m-d

sequence (6, 6, 6, 4, 3, 2) or (6, 6, 5, 5, 3, 2). The first case contradicts Lemma 3.3.

While the second sequence clearly differs from the sequence (a), since there we

have two invariable 4-node lines.

Then assume that for one pair of 4-node lines the ℓ̃-m-d sequence (a) takes place

and for other 4-node lines the sequence (b) takes place.
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In view of the remarks B3′), O1), and O3), let us consider the following

Case 1) There are three 6-node lines through O used by three nodes and therefore

there are at least seven 4-node lines through 2m-nodes, and

Case 2) There are exactly two 6-node lines through O used by three nodes and

therefore there are at least six 4-node lines through 2m-nodes.

Now recall that the two disjoint 6-node lines are ℓ2 and ℓ3. Denote the 6-node

lines passing through O by ℓ0, ℓ
′
0, ℓ

′′
0 . Finally denote the above seven possible 4-node

lines through the 2m-nodes of B by αi, i = 1, . . . , 7.

In Case 1) we have six different triples. Let us consider only the 4-node and

6-node lines in the respective line sequences:

(α1, α2, ℓ2, ℓ3); (α3, ℓ2); (α4, ℓ3); (α5, ℓ0); (α6, ℓ
′
0); (α7, ℓ

′′
0).

In Case 2) we have 5 different triples corresponding to:

(α1, α2, ℓ2, ℓ3); (α3, ℓ2); (α4, ℓ3); (α5, ℓ0); (α6, ℓ
′
0).

Note that in both cases all the possible 6-node lines are used by six nodes,

counted also the triple usage of each of lines ℓ0, ℓ
′
0, ℓ

′′
0 , from B. Therefore, in view

of Proposition 3.6 and Lemma 3.3, no place for another 6-node line in the line

sequences, and consequently the additional triple usage.

Thus all the lines with 5 primary nodes in the line sequences, actually have to

be exact 5-node lines.

Let us show that these 5-node lines are different. Indeed, assume conversely that

a 5-node line ℓ̃ is in two m-line sequences used by different triples. Then ℓ̃ is used by

6 nodes. As we know, by Proposition 3.7, these nodes must have the m-d sequence

(6, 6, 5, 5, 3, 2), which clearly differs from (a) and (b).

Now in Case 1) we need for 16 (= 5 × 3 + 1) and in Case 2) we need for 13 (=

4× 3 + 1) different 5-node lines.

Below we show that actually there are not that many 3A 5-node lines, which

finishes the proof in this case.

For this end let us count the number of 2-node lines in B. There are 9 (=

3× 3) such lines through the three 2m-nodes (see Fig. 3.3). Then there are 3 such

lines through the 1m nodes. Here we take into account that C,C ′, C ′′ ∈ ℓ2, and

D,D′, D′′ ∈ ℓ3. Hence in all we may have atmost 12 lines.

Finally, let us consider the case when for all 4-node lines the ℓ̃-m-d sequence (b)

takes place. Then in Case 1) we have seven disjoint triples whose union is A, which

is a contradiction since #A = 18.

In Case 2) we have 6 different triples corresponding to:

(α1, ℓ2); (α2, ℓ2); (α3, ℓ3); (α4, ℓ3); (α5, ℓ0); (α6, ℓ
′
0).
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In this case no place for another 6-node line too. Thus again all the lines with 5

primary nodes actually are exact 5-node lines. Here we need for 18 (= 6×3) 5-node

lines. As we showed above there can be atmost 12 such lines.
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