Известия НАН Армении, Физика, т.57, №4, с.617–628 (2022)

УДК 535.14 DOI:10.54503/0002-3035-2022-57.4-617

КВАНТОВАЯ ДИНАМИКА НЕВЫРОЖДЕННОГО ПАРАМЕТРИЧЕСКОГО РАСПАДА В ОПТИЧЕСКОМ РЕЗОНАТОРЕ

С.Т. ГЕВОРГЯН^{*}, М.С. ГЕВОРГЯН

Институт физических исследований НАН Армении, Аштарак, Армения

*e-mail: saribek.gevorgyan@gmail.com

(Поступила в редакцию 10 июля 2022 г.)

Для процесса невырожденного параметрического распада в оптическом резонаторе, в котором квант с энергией $\hbar\omega_3$ распадаетса на два кванта с энергиями $\hbar\omega_2$ и $\hbar\omega_1$ $\hbar\omega_3 = \hbar\omega_2 + \hbar\omega_1$, исследована квантовая динамика числа фотонов, динамика квантовой энтропии и функции Вигнера взаимодействующих мод поля. Показано, что мода с частотой ω_3 в области очень сильной связи между взаимодействующими модами может локализоваться в сжатом состоянии, а моды с частотами ω_1 или ω_2 , не зависимо от значения коэффициента связи, локализуются в состояниях являющихся статистической смесью Фоковских состояний.

1. Введение

Внутрирезонаторный параметрический распад, при котором фотоны накачки параметрически преобразуются в пары фотонов внутри $\chi^{(2)}$ нелинейной среды, является интересным процессом из-за его многочисленных приложений, в частности, для создания источников света настраиваемых в широком спектральном диапозоне – даже шириной до двух октав. [1–4], и генерации сжатого света [5–7]. Отметим также, что, в частности, уже почти три десятилетия внерезонаторный параметрический распад используется для генерации запутанных пар фотонов [8,9].

Также отметим что для соответствующего внерезонаторного процесса, из-за диапазона фазового синхронизма внутри кристалла ширина полосы взаимодействующих мод относительно велика (обычно порядка терагерц или несколько нанометров) для обычных длин кристаллов [10], а использование резонатора позволяет ее сузить.

Квантовая динамика внутрирезонаторного невырожденного параметрического распада к примеру теоретически была исследована также в работах [11– 13]. В работе [11] представлена квантовая теория невырожденного параметрического осциллятора выше порога генерации. Обсуждалось влияние диффузии сигнала и холостой фазы на различные типы спектральных измерений внешнего сжатия. В работе [12] развита квантовая теория управляемого внутрирезонаторного параметрического генератора в случае невырожденного сигнала и холостой

моды. В работе [13] авторы обсуждали модель невырожденного параметрического осциллятора в адиабадическом пределе сильно затухающей накачки и нашли точные аналитические решения для совместной двухмодовой функции Вигнера в стационарном режиме. В работах [14,15] достаточно хорошо теоретически исследована квантовая динамика вырожденного параметрического распада, то есть генерация второй субгармоники. В работе [14] в положительном Р представлении с помощью адиабатического исключения из ланжевеновских уравнений движения фундаментальной моды показано, что в стационарной области взаимодействия в этой системе можно получить свет, находящийся как в сжатом состоянии, так и в суперпозиционном состоянии двух когерентных компонент. В работе [15] с помощью Монте Карло метода, предложенного в работе [16], исследована квантовая динамика числа фотонов фундаментальной моды и моды субгармоники в зависимости от коэффициента нелинейной связи между взаимодействующими модами. В зависимости от этого же коэффициента исследована динамика квантовой энтропии взаимодействующих мод. Получены функции Вигнера стационарных состояний полей и динамика корреляционных функций флуктуаций числа фотонов фундаментальной моды и моды субгармоники. Показано, что динамики этих величин сильно зависят от значения коэффициента связи между взаимодействующими модами. Для больших значений коэффициента связи между модами показано, что мода субгармоники в больших временах взаимодействия локализуется в двухкомпонентном состоянии с одинаковой вероятностью обнаружения моды в каждой компоненте состояния. Квантовая энтропия этого состояния меньше максимальной энтропии двухкомпонентного состояния ln2, что показывает наличие квантовомеханической интерференции между компонентами состояния моды субгармоники. Показано также, что в подпороговом режиме генераци мода субгармоники в области больших времен взаимодействия локализуется в сжатом вакуумном состоянии.

В настоящей работе с помощью Монте Карло метода [16] исследована квантовая динамика невырожденного параметрического распада в оптическом резонаторе.

2. Нелинейная система и основные уравнения

Мы рассматриваем модель невырожденного параметрического распада в оптическом резонаторе, в которой квант с энергией $\hbar\omega_3$ распадается на два кванта с энергиями $\hbar\omega_2$ и $\hbar\omega_1$, $\hbar\omega_3 = \hbar\omega_2 + \hbar\omega_1$. Мода с частотой ω_3 резонансно возмущается внешним классическим полем. Уравнение матрицы плотности этой оптической системы можно представить в следующем виде:

$$\frac{\partial \rho}{\partial t} = (i\hbar)^{-1} \left[H_{\rm sys}, \rho \right] + L(\rho) \,, \tag{1}$$

где

$$H_{\rm sys} = \frac{i\hbar\chi}{2} \left(a_3^+ a_2 a_1 - a_3 a_2^+ a_1^+ \right) + i\hbar E \left(a_3^+ - a_3 \right), \tag{2}$$

$$L(\rho) = \sum_{i=1}^{3} \frac{\gamma_i}{2} \left(2a_i \rho a_i^+ - \rho a_i^+ a_i - a_i^+ a_i \rho \right).$$
(3)

Здесь a_i и a_i^+ (i = 1, 2, 3) – операторы уничтожения и рождения фотонов взаимодействующих мод, χ – коэффициент связи между модами пропорциональный нелинейной восприимчивости $\chi^{(2)}$ среды, E – классическая амплитуда возмущающего поля на частоте ω_3 , γ_i (i = 1, 2, 3) – коэффициенты затухания взаимодействующих мод через зеркала резонатора. В выражении (2) фаза возмущающего поля для простоты опущена.

Исследуем динамику числа фотонов и квантовой энтропии мод поля. Последние вычисляются с помощью формулы

$$S_i(t) = -\operatorname{Tr}(\rho_i(t)\ln(\rho_i(t))), \ (i = 1, 2),$$
(4)

где матрицы плотности взаимодействующих мод получаются с помощью вычисления следа от матрицы плотности системы. Квантовую энтропию мод поля вычисляем с помощью численной диагонализации соответствующих матриц плотностей в фоковском базисе [17]. Для исследования квантовых свойств оптической системы вычисляем также функции Вигнера состояния мод поля. Эти функции вычисляем в полярных координатах $x = r \cos(\theta)$, $y = r \sin(\theta)$ с помощью формулы [17]

$$W_i(r,\theta) = \sum_{m,n} \rho_{i,mn} w_{mn}(r,\theta), \quad (i = 1, 2, 3).$$
(5)

Здесь $\rho_{i,mn}$ – матричные элементы матриц плотности взаимодействующих мод в фоковском базисе. Выражение для $w_{mn}(r,\theta)$ определяется с помощью следующей формулы:

$$w_{mn}(r,\theta) = \begin{cases} \frac{2}{\pi} (-1)^n \left(\frac{n!}{m!}\right)^{1/2} \exp(i(m-n)\theta) \exp(-2r^2)(2r)^{m-n} L_n^{m-n}(4r^2), & m \ge n, \\ \frac{2}{\pi} (-1)^m \left(\frac{m!}{n!}\right)^{1/2} \exp(i(m-n)\theta) \exp(-2r^2)(2r)^{n-m} L_m^{n-m}(4r^2), & m \le n. \end{cases}$$
(6)

В последнем выражении L_p^q – полиномы Лагерра.

В работе, как приведено выше, наряду со средним значением числа фотонов мы исследуем также квантовую энтропию и функции Вигнера взаимодействующих мод. Для вычисления последних двух величин необходимо иметь матрицу плотности системы. (см. формулу 4 вместе с приведенным алгоритмом вычисления квантовых энтропий взаимодействующих мод поля и формулы 5, 6 с помощью которых вычисляются функции Вигнера).

Уравнение (1) для матрицы плотности оптической системы решаем численным Монте Карло методом, приведенным в работе [16], в случае началного вакуумного состояния всех взаимодействующих мод. Согласно этого алгоритма матрицу плотности системы в случае развития из начального чистого состояния можно вычислить как математическое ожидание величины $\sigma(t) = |\phi(t)\rangle \langle \phi(t)|$

$$\rho(t) = M\left\{\sigma(t)\right\} \equiv M\left\{\left|\phi(t)\right\rangle\left\langle\phi(t)\right|\right\}.$$
(7)

Здесь $|\phi(t)\rangle$ представляют квантовые траектории системы, которые вычисляются с помощью некоторого Монте Карло алгоритма [16].

Для читателя не знакомого с методом [16], кратко без формул и выражений опишем как вводится случайность в схему вычислений, которая и приводит к отличным друг от друга траекториям метода.

Для вычисления квантовой траектории системы в данный момент времени вычисляется вероятность квантового скачка траектории системы в предыдущий момент времени. Затем генерируется случайное число, имеющее равномерное распределение в интервале ноль-один. Если число меньше вероятности квантового скачка, то в системе должен произойти квантовый скачок траектории системы. В этом случае вычисляются нормированные вероятности, которые определяют вероятности квантовых скачков траектории системы с помощью операторов скачков соответствующих каналов диссипации. Генерируется второе случайное число имеющее равномерное распределение в интервале ноль – один. Используя значения вышеуказанных вероятностей и случайного числа выбирается оператор, с помощью которого должен произойти скачок траектории системы. Далее с помощью этого оператора выполняется скачкообразное изменение траектории системы. В противном случае, если первое случайное число больше вероятности квантового скачка траектории системы, то система развивается непрерывным образом с помощью некоторого неэрмитового Гамильтониана.

Динамику системы исследуем в безразмерном времени $\tau = \gamma_t t$ в случае равенства коэффициентов затухания мод в оптическом резонаторе $\gamma_1 = \gamma_2 = \gamma_3$ и в безразмерных параметрах:

$$\varepsilon = E / \gamma_1, \quad k = \chi / \gamma_1, \tag{8}$$

в случае развития взаимодействующих мод из начальных вакуумных состояний, для значения внешнего классического возмущения $\varepsilon = 10$ и для значений параметра k = 0.1, 1, 10.

3. Квантовая динамика оптической системы в случае слабой связи между взаимодействующими модами

Рассмотрим квантовую динамику оптической системы в случае слабой связи между взаимодействующими модами (k = 0.1). На рис.1 кривая I представлена квантовая динамика числа фотонов моды частотой ω_3 . В области больших времен взаимодействия ($\tau > 10$) число фотонов этой моды переходит в стационарное значение и приблизительно равно $n_3 \approx 8$. На рис.1 кривая 2 представлена квантовая динамика числа фотонов моды с частотой ω_2 . Из рисунка видно, что число фотонов этой моды в области больших времен взаимодействия намного меньше единицы $n_2 <<1$. В этом случае эта мода поля локализована в вакуумном состоянии, что является следствием слабости взаимодействия между модами. На рис.2 (кривая I) представлена динамика квантовой энтропии моды с частотой ω_3 . Квантовая энтропия этой моды в области больших времен взаимодействия взаимодействия ($\tau > 10$) переходит в стационарное значение и приблизительно динамика квантовой энтропии моды с частотой ω_3 . Квантовая энтропия этой моды в области больших времен взаимодействия взаимодействия ($\tau > 10$) переходит в стационарное значение и приблизительно равна $s_3 \approx 2.7$. Последнее показывает, что эта мода в этой области взаимодействия локализована

Рис.1. Динамика числа фотонов моды частотой ω_3 (кривая *1*) и динамика числа фотонов моды частотой ω_2 (кривая *2*) для значения параметра системы k = 0.1.

Рис.2. Динамика квантовой энтропии моды частотой ω_3 (кривая *l*) и динамика квантовой энтропии моды частотой ω_2 (кривая *2*) для значения параметра системы k = 0.1.

в состоянии являющемся статистической смесью. Функция Вигнера этого состояния представлена на рис.3. Она имеет сложную структуру и представляет статистическую смесь. На рис.2 (кривая 2) представлена динамика квантовой энтропии моды с частотой ω_2 . Квантовая энтропия этой моды в области больших времен взаимодействия много меньше единицы $s_2 \approx 0.06$. Малое значение квантовой энтропии показывает, что в этой области взаимодействия эта мода локализуется в чистом состоянии. На рис.4 представлена функция Вигнера моды с частотой ω_2 в области больших времен взаимодействия ($\tau = 15$). Она напоминает функцию Вигнера вакуумного состояния. Таким образом, мода с частотой ω_2 в случае слабой связи между взаимодействующими модами и в области больших времен взаимодействия локализуется в чистом вакуумном состоянии, а мода с частотой ω_3 в этой же области взаимодействия локализуется в состоянии являющемся статистической смесью.

Рис.3. Функция Вигнера стационарного состояния поля моды частотой ω_3 для значения параметра системы k = 0.1.

Рис.4 Функция Вигнера стационарного состояния поля моды частотой ω_2 для значения параметра системы k = 0.1.

4. Квантовая динамика оптической системы в случае сильной связи между взаимодействующими модами

В этом разделе исследуем квантовую динамику оптической системы для случая сильной связи между взаимодействующими модами (k = 1). На рисунке 5 кривая l и кривая 2 представлены квантовые динамики числа фотонов мод с частотами ω_3 и ω_2 соответственно. Как видно из рисунка 5 (кривая 2), мода ω_2 уже находится выше порога генерации этой моды. В области больших времен взаимодействия ($\tau > 10$) среднее значение числа фотонов этой моды переходит в стационарное значение и приблизительно равно $n_2 \approx 5$. Среднее значение числа фотонов моды с частотой ω_3 в этом случае почти не менялось и в области больших времен ших времен взаимодействия приблизительно равно $n_3 \approx 8$. На рис.6 (кривая l)

Рис.5. Динамика числа фотонов моды частотой ω_3 (кривая *l*) и динамика числа фотонов моды частотой ω_2 (кривая 2) для значения параметра системы k = 1.

Рис.6. Динамика квантовой энтропии моды частотой ω_3 (кривая *l*) и динамика квантовой энтропии моды частотой ω_2 (кривая *2*) для значения параметра системы k = 1.

представлена динамика квантовой энтропии моды с частотой ω_3 . Квантовая энтропия этой моды в области больших времен взаимодействия переходит к тому же стационарному значению $s_3 \approx 2.7$ как и для предыдущего случая взаимодействия с коэффициентом связи k = 0.1. Большое значение квантовой энтропии показывает, что мода локализована в состоянии являющемся статистической смесью. На рис.7 для этого случая (k = 1) и в области больших времен взаимодействия ($\tau = 15$) представлена функция Вигнера моды с частотой ω_3 , Функция Вигнера имеет сложную структуру и можно сказать, что она представляет статистическую смесь. На рис.6 (кривая 2) для этого случая представлена динамика квантовой энтропии моды поля с частотой ω_2 . Квантовая энтропия этого случая, в отличие от квантовой энтропии той же моды в случае малого коэффициента связи между модами в области больших времен взаимодействия, имеет большое

Рис.7. Функция Вигнера стационарного состояния поля моды частотой ω_3 для значения параметра системы k = 1.

Рис.8. Функция Вигнера стационарного состояния поля моды частотой ω_2 для значения параметра системы k = 1.

значение и уже представляет не чистое состояние, а статистическую смесь чистых состояний. Значение квантовой энтропии этой моды в стационарном пределе в области больших времен взаимодействия приблизительно равно $s_2 \approx 2.5$. На рис.8 для этого случая в области больших времен взаимодействия ($\tau = 15$) представлена функция Вигнера оптической моды с частотой ω_2 . Она напоминает функцию Вигнера статистической смеси Фоковских состояний.

5. Квантовая динамика оптической системы в случае очень сильной связи между взаимодействующими модами

В этом разделе рассматриваем квантовую динамику оптической системы в случае очень сильной связи между взаимодействующими модами (k = 10). На рисунке 9 кривая I и кривая 2 представлены квантовые динамики числа фотонов

Рис.9. Динамика числа фотонов моды частотой ω_3 (кривая *1*) и динамика числа фотонов моды частотой ω_2 (кривая *2*) для значения параметра системы k = 10.

Рис.10. Динамика квантовой энтропии моды частотой ω_3 (кривая *l*) и динамика квантовой энтропии моды частотой ω_2 (кривая *2*) для значения параметра k = 10.

мод оптического поля с частотами ω_3 и ω_2 соответственно. В этом случае, в противоположность случаю слабой связи между взаимодействующими модами, в области больших времен взаимодействия числа фотонов моды с частотой ω_3 уже наоборот намного меньше числа фотонов моды с частотой ω_2 . На рисунке 10 (кривая *l*) представлена динамика квантовой энтропии моды с частотой ω_3 . Значение квантовой энтропии этой моды в области больших времен взаимодействия в стационарном пределе приблизительно равна $s_3 \approx 0.2$. Это значение намного меньше значения квантовой энтропии той же моды в случае слабой связи между модами. Очень малое значение квантовой энтропии показывает, что в области больших времен взаимодействия эта мода локализуется в почти чистом состоя-

Рис.11. Функция Вигнера стационарного состояния поля моды частотой ω_3 для значения параметра системы k = 10.

Рис.12. Функция Вигнера стационарного состояния поля моды частотой ω_2 для значения параметра системы k = 10.

нии. На рисунке 11 для этого случая и этой моды в области больших времен взаимодействия ($\tau = 15$) в стационарном пределе приведена функция Вигнера. Эта функция напоминает функцию Вигнера сжатого состояния света. Таким образом можно сказать, что в случае очень сильной связи между модами, в области больших времен взаимодействия мода с частотой ω_3 локализуется в сжатом состоянии с очень малой квантовой энтропией. На рисунках 10 (кривая 2) и 12 представлены динамика квантовой энтропии взаимодействующих мод с частотой ω_2 и функция Вигнера стационарного состояния этой же моды соответственно. Квантовая энтропия моды в области больших времен взаимодействия, в стационарном пределе приблизительно равна $s_3 \approx 0.25$. Функция Вигнера напоминает функцию Вигнера статистической смеси Фоковских состояний оптического поля. Таким образом, в случае сильной и очень сильной связи между взаимодействующими модами моды с частотами ω_2 и ω_1 в области больших времен взаимодействия локализуются в состояниях являющихся статистической смесью Фоковских состояний оптического поля, а в области слабой связи между модами в стационарном пределе взаимодействия локализуются в вакуумном состоянии.

6. Заключение

В работе Монте Карло методом [16] исследована квантовая динамика взаимодействующих мод поля в процессе невырожденного параметрического распада в оптическом резонаторе. Показано, что квантовые состояния взаимодействующих мод поля сильно зависят от коэффициента связи между взаимодействующими модами оптического поля. В области очень сильной связи между модами мода с частотой ω_3 ($\hbar\omega_3 = \hbar\omega_2 + \hbar\omega_1$) локализуется в сжатом состоянии. Другие моды поля в зависимости от коэффициента связи локализуются в квантовых состояниях поля, которые являются статистической смесью Фоковских состояний, функции Вигнера которых сильно отличаются.

ЛИТЕРАТУРА

- 1. M.K. Olsen. Phys. Rev. A, 96, 063839 (2017).
- D.B. Kolker, N.Y. Kostyukova, A.A. Boyko, V.V. Badikov, D.V. Badikov, A.G. Shadrintseva, N.N. Tretyakova, K.G. Zenov, A.A. Karapuzikov, J.-J. Zondy. J. Phys. Commun., 2, 035039 (2018).
- 3. M.K. Olsen. Opt. Commun., 410, 966 (2018).
- 4. J. Li, M.K. Olsen. Phys. Rev. A, 97, 043856 (2018).
- 5. J.U. Fürst, D.V. Strekalov, D. Elser, A. Aiello, U.L. Andersen, C. Marquardt, G. Leuchs. Phys. Rev. Lett. 106, 113901 (2011).
- V. Peano, H.G.L. Schwefel, C. Marquardt, F. Marquardt. Phys. Rev. Lett., 115, 243603 (2015).
- 7. U.L. Andersen, T. Gehring, C. Marquardt, G. Leuchs. Phys. Scr., 91, 053001 (2016).
- P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y. Shih. Phys. Rev. Lett., 75, 4337 (1995).
- P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, P.H. Eberhard. Phys. Rev. A, 60, R773 (1999).
- O. Slattery, L. Ma, P. Kuo, X. Tang. Quantum Communications and Quantum Imaging XIII, International Society for Optics and Photonics, 961507 (2015).
- 11. M.D. Reid, P.D. Drummond. Phys. Rev. A, 40, 4493 (1989).
- 12. P.D. Drummond, M.D. Reid. Phys. Rev. A, 41, 3930 (1990).
- 13. K.V. Kheruntsyan, K.G. Petrosyan. Phys. Rev. A, 62, 015801 (2000).
- 14. M. Wolinski, H.J. Carmichael. Phys. Rev. Let., 60, 1836 (1988).
- 15. S. Gevorgyan, M. Gevogyan. Quantum Phenomena in Simple Optical Systems, Cambridge Scholars Publishing, 2020.
- 16. K. Molmei, Y. Gastin, J. Dalibard. JOSA B, 10, 1447 (1992).
- 17. L. Gilles, B.M. Garraway, P.L. Knight, S.J. D. Phoenix. Phys. Rev. A., 49, 2785 (1994).

ՉԱՅԼԱՍԵՐՎԱԾ ՊԱՐԱՄԵՏՐԻԿԱԿԱՆ ՏՐՈՀՄԱՆ ԵՐԵՎՈՒՅԹԻ ՔՎԱՆՏԱՅԻՆ ԴԻՆԱՄԻԿԱՆ ՕՊՏԻԿԱԿԱՆ ՌԵՉՈՆԱՏՈՐՈՒՄ

Ս.Թ. ԳԵՎՈՐԳՅԱՆ, Մ.Ս. ԳԵՎՈՐԳՅԱՆ

Oպտիկական ռեզոնատորում չայլասերված պարամետրիկական տրոհման երևույթի համար, որում $\hbar\omega_3$ էներգիայով քվանտը տրոհվում է $\hbar\omega_2$ և $\hbar\omega_1$ էներգիաներով երկու քվանտի, որտեղ $\hbar\omega_3 = \hbar\omega_2 + \hbar\omega_1$, հետազոտված է ֆոտոնների թվի, դաշտի փոխազդող մոդերի քվանտային էնտրոպիաների և Վիգների ֆունկցիաների քվանտային դինամիկան։ Յույց է տրված, որ ω_3 հաձախություն ունեցող մոդանը մոդերի միջն շատ ուժեղ փոխազդեցության տիրույթում կարող է լոկալացվել սեղմ վիձակում, իսկ ω_1 կամ ω_2 հաձախությամբ մոդերը անկախ մոդերի միջն եղած փոխազդեցության գործակցի արժեքից լոկալացվում են Ֆոկի վիձակների վիձակագրական խառնուրդ հանդիսացող վիձակում։

QUANTUM DYNAMICS OF NON-DEGENERATE PARAMETER DECAY IN AN OPTICAL CAVITY

S.T. GEVORGYAN, M.S. GEVORGYAN

The quantum dynamics of the number of photons, of the quantum entropy, and the Wigner functions of field interacting modes are studied for the process of non-degenerate parametric decay in an optical cavity, where a quantum with energy $\hbar\omega_3$ decays into two photons with energies $\hbar\omega_2$ and $\hbar\omega_1$ ($\hbar\omega_3 = \hbar\omega_2 + \hbar\omega_1$). It is shown that the mode with frequency ω_3 can localize in a squeezed state in the region of very strong coupling between the interacting modes. It is shown that the modes with frequencies ω_1 and ω_2 localize in states that are a statistical mixtures of Fock states regardless of the value of the coupling coefficient.