Известия НАН Армении, Физика, т.57, №4, с.563–573 (2022)

УДК 537.528 DOI:10.54503/0002-3035-2022-57.4-563

ЭЛЕКТРОИСКРОВОЙ СИНТЕЗ ПОРОШКА α-WC И ИССЛЕДОВАНИЕ ЕГО ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ ОТЖИГЕ

А.В. АГАНЯН¹, А.Н. АВАГЯН², А.К. КОСТАНЯН², Л.А. ПЕТРОСЯН³, С.Г. МАНУКЯН¹, В.С. АРУТЮНЯН^{3*}

¹Наноцентр «Hyule», Ереван, Армения ²Институт общей и неорганической химии НАН Армении, Ереван, Армения ³Ереванский государственный университет, Ереван, Армения

*e-mail: vharut@ysu.am

(Поступила в редакцию 5 июля 2022 г.)

В данной работе предложен способ синтеза порошка α-WC методом электроискрового разряда, где в качестве электродных материалов использованы WC - 8% Co (анод) и W (катод), а в качестве диэлектрической жидкости использована деионизированная вода. Синтезированный порошок после высушки был подвергнут термическому отжигу в воздушной атмосфере при температурах 250, 400 и 600°С в течение 2 ч с целью анализа его термической стабильности и выявления возможных температурно-зависимых фазовых переходов. Фазовый состав, морфология и размеры частиц синтезированного порошка и порошков, подвергнутых термическому отжигу, были исследованы методами порошковой рентгеновской дифракции И сканирующей электронной микроскопии. Синтезированный порошок содержит две фазы: доминирующую фазу α-WC и фазу α -W₂C. При температуре отжига 600°C обе фазы α -WC и α -W₂C практически полностью переходят в фазу CoWO₄. Обсуждены процессы формирования фазовых компонент синтезированного порошка и перехода этих компонент в фазу CoWO₄ в результате термического отжига.

1. Введение

Метод электроискрового разряда широко используется для нанесения покрытий WC–Co на поверхность стали [1–5], Ni [6], Ti [7], сплавов на основе Mg [8] и других типов материалов [8] для улучшения их устойчивости к коррозии и износу. В частности, нанесение покрытий WC–Co на поверхность режущих, шлифовальных и формообразующих инструментов приводит к значительному повышению их стойкости к коррозии и износу, что делает их работу более эффективной в условиях высоких давлений и температур. Электроды и микроэлектроды WC–Co эффективно используются в процессах электроэрозионной обработки (резка, сверление, формовка) твердосплавных композитов на основе WC и других материалов [9,10]. Другим важным практическим применением электродов WC–Со является их использование в электроискровом синтезе WC содержащих порошков в различных жидких диэлектрических средах, в частности, таких как техническое масло [11], вода [12], водные растворы глицерина [12]. Электроды WC–Со обычно изготавливают из сплава WC–Со с содержанием Со от 6 до 12 масс.%.

При электроискровом синтезе порошков с высоким содержанием WC, кроме электродов WC-Co [11,12], использовались также комбинации пар электродов W-W [13,14] и W-C (графит) [15–17]. В этом методе синтеза порошков с высоким содержанием WC в качестве жидких диэлектрических сред использовались индустриальное масло [11,13,14], этанол [15,16], керосин [17] и деионизированная вода [12,17]. Важно отметить, что в упомянутых выше исследованиях [11-17], независимо от типа применяемых электродов, жидкой диэлектрической среды и использованных технологических параметров синтеза, в синтезированных порошках WC формировался со структурой β-WC фазы с кубической кристаллической решеткой. Фаза β-WC, для которой в литературе также используется обозначение WC_{1-x} [15,17], термодинамически стабильна при высоких температурах > 2789К [17], однако, может проявлять постсинтезную стабильность и при комнатных температурах благодаря формированию в наноструктурном состоянии [15–17]. При электроискровом разряде температура на поверхности электродов и в диэлектрической жидкости между электродами повышается до $\sim 10^4$ К с очень высокой скоростью $10^6 - 10^9$ К с⁻¹. [12]. Высокая температура на этом уровне приводит к мгновенной термической эрозии электродов, что создает условия для образования в диэлектрической жидкости частиц фазы β-WC (из молекул и частиц W и C в расплавленном и паровом состояниях) при быстром понижении максимальной температуры разряда до температуры затвердевания этой фазы 3028 К [17].

В то же время представляет большой практический интерес разработка технологий синтеза методом электроискрового разряда также порошков карбида вольфрама с высоким содержанием α -WC фазы, имеющей гексагональную кристаллическую решетку. С одной стороны, этот интерес обусловлен более широким технологическим применением порошков α -WC фазы по сравнению с порошками β -WC фазы. С другой стороны, разработка технологий для синтеза чистых порошков α -WC фазы или порошков с высоким содержанием α -WC фазы методом электроискрового разряда расширит наши знания в направлении контролируемого синтеза порошков WC с определенной/требуемой полиморфной структурой.

В данной работе предложен способ прямого синтеза порошка α-WC методом электроискрового разряда. В качестве электродных материалов использованы WC-8% Co (анод) и W (катод), а в качестве диэлектрической жидкости использована деионизированная вода. Синтезированный порошок после сушки был подвергнут термическому отжигу в воздухе при температурах 250, 400 и 600°C

с целью анализа его термической стабильности и выявления возможных температурно-зависимых фазовых переходов. Фазовый состав, морфология и размеры частиц синтезированного порошка и порошков, подвергнутых термическому отжигу, были исследованы методами порошковой рентгеновской дифракции и сканирующей электронной микроскопии.

2. Эксперимент

2.1. Синтез и постсинтезный термический отжиг порошка WC

Схема экспериментальной установки, использованной для синтеза порошка WC методом электроискрового разряда, представлена на рис.1. Установка состоит из следующих основных элементов для реализации процесса синтеза: генератора импульсов разряда, электродов, стеклянного сосуда, содержащего рабочую жидкость с погружными электродами, и системы водяного охлаждения. Разряд создавался между двумя электродами: катодом W и анодом WC–8%Co, в котором WC имеет структуру α-WC фазы. В качестве рабочей жидкости было использовано 0.3 л деионизированной воды. Синтез порошка WC основан на электроэрозии электродов [11].

Процесс синтеза порошка WC осуществлялся методом электроискрового разряда согласно экспериментальной схеме, представленной на рис.1. После серии экспериментов с целью получения синтезированных порошков с высоким содержанием фазы α-WC была установлена следующая оптимизированная комбинация технологических параметров: энергия разрядного импульса 0.13 Дж, длительность разрядного импульса 30 мкс и частота разрядов 1 Гц. Синтезированный порошок формировался в рабочей жидкости.

Рис.1. Схема экспериментальной установки для синтеза порошка WC методом электроискрового разряда: 1 – генератор импульсов разряда, 2 – держатели электродов, 3 – электроды (анод WC-8%Co и катод W), 4 – рабочая жидкость (деионизированная вода), 5 – сосуд с рабочей жидкостью и погружными электродами, 6 и 7 – вход и выход для жидкости в системе водяного охлаждения, 8 – осциллограф для контроля разрядного напряжения и тока.

После отстаивания синтезированный порошок был отделен от рабочего раствора декантацией и затем трижды промыт деионизированной водой. Для исследования аналитическими методами полученный порошок был подвергнут сушке в сушильном шкафу при температуре 120°C до постоянного веса. Из высушенного порошка были отобраны три пробы и подвергнуты термическому отжигу в муфельной печи при температурах 250, 400 и 600°C в течение 2 ч.

2.2. Методы исследования полученных образцов

Фазовый состав образцов был исследован методом порошковой рентгеновской дифракции. Рентгенодифракционные спектры были зарегистрированы на дифрактометре МД-10 с источником рентгеновского излучения СиК α в диапазоне 20 углов 15° < 20 < 70°.

Электронно-микроскопические изображения порошковых образцов были получены на сканирующем электронном микроскопе ВЕГА ТС 5130MM при ускоряющем напряжении 20 кВ.

3. Результаты и обсуждение

3.1. Рентгенодифракционные измерения

На рис.2 представлены рентгенодифракционные спектры синтезированного порошка и порошков, подвергнутых термическому отжигу при температурах 250, 400 и 600°С. Спектр, зарегистрированный от синтезированного порошка, показывает образование двух фаз. Первой, доминирующей фазой является фаза

Рис.2. Рентгенодифракционные спектры синтезированного порошка и порошков, подвергнутых термическому отжигу при температурах 250, 400 и 600°С в течение 2 ч.

карбида вольфрама α-WC, идентифицированная по порошковому дифракционному файлу ICDD PDF № 25-1047, а второй фазой является α-фаза полукарбида вольфрама α -W₂C, идентифицированная по порошковому дифракционному файлу ICDD PDF № 35-0776. Фаза CoWO₄, сформировавшаяся в отожженных порошках, идентифицирована по порошковому дифракционному файлу ICDD PDF № 15-0867.

Из сравнительного анализа спектров, приведенных на рис.2 следует, что:

- синтезированный порошок содержит две фазы: фазу α-W₂C и доминирующую фазу α-WC;
- с повышением температуры отжига относительное содержание фазы α-WC в отожженных порошках уменьшается, а при температуре отжига 600°C эта фаза исчезает;
- отжиг при температуре 250°С приводит к уменьшению α-W₂C, которая исчезает при более высоких температурах отжига 400 и 600°С;
- отжиг при температуре 250°С приводит к образованию новой фазы CoWO₄, относительное содержание которой увеличивается с повышением температуры отжига;
- при самой высокой температуре отжига 600°С обе фазы α-WC и α-W₂C практически полностью переходят в фазу CoWO₄.

Фазовые составы исследованных порошковых образцов, установленные из рентгенодифракционных спектров, представлены в табл.1.

С использованием рентгеновского спектра синтезированного порошка (рис.2), из угловых уширений дифракционных пиков фазы α -W₂C с угловыми положениями $2\theta = 34.76^{\circ}$ (отражение 001) и $2\theta = 52.71^{\circ}$ (отражение 102) рассчитано, что размеры частиц этой фазы ~0.3 мкм.

Образец	Фазовый состав	
синтезированный	α -WC, α -W ₂ C	
отожженный при 250°С в течение 2 ч	α -WC, α -W ₂ C, CoWO ₄	
отожженный при 400°С в течение 2 ч	α-WC, CoWO ₄	
отожженный при 600°С в течение 2 ч	CoWO ₄	

Табл.1. Фазовые составы исследованных порошковых образцов

3.2. Электронно-микроскопические исследования

Электронно-микроскопические изображения, полученные от разных фракций синтезированного порошка и порошков, отожженных при температурах 250°С и 400°С, имели практически одинаковые особенности как по дисперсии частиц по размерам, так и по морфологии. На рис.3а и b представлены элек-

Рис.3. Электронно-микроскопические изображения синтезированного порошка (а) и порошка, отожженного при температуре 600°С в течение 2ч (b).

тронно-микроскопические изображения, полученные от синтезированного порошка и порошка, отожженного при температуре 600°С. На рис.4 представлены электронно-микроскопические изображения, полученные с большим увеличением от порошков, отожженных при температурах 250°С (рис.4а), 400°С (рис.4b) и 600°С (рис.4с). Из анализа электронно-микроскопических изображений, представленных на рис.3 и 4, и других изображений, не включенных в настоящую статью, следует, что:

- в синтезированном порошке и во всех порошках, подвергнутых отжигу, размер частиц практически варьируется в одном и том же широком диапазоне ≈ 0.3–150 мкм;
- 2. в синтезированном порошке и во всех порошках, подвергнутых отжигу, частицы размером от ≈ 1 до ≈ 150 мкм имеют неправильную форму;
- в синтезированном порошке и во всех порошках, подвергнутых отжигу, частицы с размерами в пределах ≈ 0.3–1 мкм имеют как неправильную, так и округлую форму, однако, доля этих частиц с округлой формой в порошке,

Рис.4. Электронно-микроскопические изображения порошков, отожженных в течение 2 ч при температурах 250°С (а), 400°С (b) и 600°С (c). На рисунке (c) белые стрелки указывают на некоторые агломераты частиц тороидальной формы.

отожженном при температуре 600°С, значительно больше, чем в синтезированном порошке и порошках, отожженных при температурах 250°С и 400°С;

- в порошке, отожженном при температуре 600°С, часть малых частиц с размерами ≈ 0.3–1мкм образует многочисленные агломераты размером до 50 мкм, предположительно, под действием сил Ван-дер-Ваальса, а другая часть этих частиц плотно покрывает поверхность крупных частиц порошка (рис.3b);
- в порошке, отожженном при температуре 600°С, большое число агломератов малых округлых частиц имеет тороидальную форму с размером/диаметром в диапазоне ≈1–4 мкм (рис.4с).

Из сопоставления данных, полученных методами рентгеновской дифракции и электронной микроскопии, следует, что в синтезированном порошке доминирующая фаза α -WC содержится с объемной долей $\approx 90\%$ и состоит из частиц неправильной формы с размерами в диапазоне $\approx 1-150$ мкм, в то время как фаза α -W₂C содержится с объемной долей $\approx 10\%$ и состоит из частиц преимущественно округлой формы с размерами ~ 0.3 мкм.

3.3. Механизмы образования фаз в исследованных порошках

В процессе электроискрового разряда длительность одиночного импульса разряда может варьироваться от микросекунд до миллисекунд [13,15,17], поэтому синтез порошкообразных материалов в системе «электроды-диэлектрическая жидкость» характеризуется высокими скоростями нагрева и охлаждения и коротким изотермическим периодом выдержки максимальной температуры в канале разряда. При электроискровом разряде между электродами образуется плазменный канал с высокой температурой $\sim 10^4$ К и давлением до ≈ 300 МПа [12,18]. Независимо от типа электродов и диэлектрической жидкой среды, под действием высокой температуры и давления плазмы происходит эрозия поверхностных слоев электродов в жидкую (расплавленная фаза), паровую и твердую фазы [19]. Среди этих фаз, паровая фаза состоит из пузырьков пара, образующихся в результате кавитационного процесса. Эти пузырьки пара, предположительно, заполнены растворенным в рабочей жидкости воздухом, мельчайшими каплями этой жидкости, а также испаренными молекулами и наноразмерными частицами материалов электродов. Окончание импульса разряда приводит к быстрому падению температуры, коллапсу плазмы в канале разряда и затвердеванию/ осаждению частиц синтезированных соединений из жидкой и паровой фаз. При электроэрозии электродов WC-Co в воде, формирующиеся из жидкой фазы частицы имеют форму, близкую к сферической, с размерами в диапазоне от нескольких микрон до ≈ 60 мкм [12,18,19]. Формирующиеся из паровой фазы частицы имеют субмикронные размеры, округлую форму и образуют характерные агломераты [12,18,19]. В отличие от частиц, выпадающих из жидкой и паровой фаз, твердые частицы, образующиеся в результате эрозии электродов, имеют неправильную форму и могут достигать больших размеров ~150 мкм. Эти частицы неправильной формы образуются в результате хрупкого разрушения преимущественно поверхностного слоя материала анода при термических

напряжениях, вызванных процессом разряда [19]. При электроэрозии электродов WC-Co в воде, как на размеры, так и на относительные объемные доли частиц, выпадающих из жидкой, паровой и твердой фаз, сильное влияние оказывают особенно длительность и энергия импульса электроискрового разряда [18]. При этом в диапазоне частот разряда до ≈1600 Гц удельная эрозия (т.е. количество порошка, синтезируемого в результате эрозии электродов за единицу времени) с увеличением частоты разрядов возрастает практически линейно [18]. Это означает, что закономерности физико-химических процессов эрозии материалов электродов при единичном импульсе разряда циклически повторяются при чередовании импульсов, чем обеспечиваются равные аддитивные количественные вклады импульсов в общее количество синтезированного порошка.

С целью сравнительного анализа в табл.2 представлены данные экспериментальных параметров и фазовых составов порошков, синтезированных методом электроискрового разряда, в литературных публикациях [11,12,18,20] и настоящей работе. В этой таблице приведены следующие главные экспериментальных данные: материалы электродов (катода и анода), тип использованной диэлектрической рабочей жидкости; длительность (τ), энергия (E) и мощность (P) единичного импульса разряда и фазовый состав синтезированного порошка. Мощность P единичного импульса разряда определяется как отношение энергии импульса к его длительности:

$$P = E/\tau \,. \tag{1}$$

Параметр Р является важным физическим параметром процесса электроискрового разряда, количественно характеризующим интенсивность выделения тепловой энергии (т.е. тепловой энергии, выделяемой за единицу времени) в канале разряда. Из физических соображений логично предположить, что именно от этого параметра зависит максимальный уровень температуры, достигаемый в канале разряда, т.е. увеличение мощности импульса Р приводит к повышению максимума температуры разряда на поверхностях электродов и в рабочей жидкости в межэлектролной области. В табл.2 значения параметра *Р* рассчитаны согласно уравнению (1) с использованием соответствующих данных параметров τ и *E*, приведенных в той же таблице. Ланные табл.2 показывают, что в экспериментах с использованием органических рабочих жидкостей: глицеринового раствора [12], технического масла [11], керосина и этанола [20], α -WC фаза формируется при относительно большей величине мощности импульса разряда P=13 кВт [20], т.е. предположительно при относительно большей температуре в канале разряда. Эта тенденция сохраняется и в экспериментах (см. табл.2), в которых в качестве рабочей жидкости была использована вода, т.е. α-WC фаза формируется при относительно больших величинах мощности импульса разряда: *P* = 13 кВт в работе [20] и P = 43.3 кВт в настоящей работе. В этом контексте, важно отметить, что в порошках, синтезированных в работе [20], относительная объемная доля α -WC фазы по сравнению с другими фазами очень мала (~ 5 %), в то время как в порошке, синтезированном в нашем эксперименте, α -WC фаза является доминирующей (~ 90 объемных %). Это можно объяснить тем, что мощность импульсов

Табл.2. Данные экспериментальных параметров и фазовых составов порошков, синтезированных методом электроискрового разряда, в литературных публикациях и настоящей работе. Пояснения к данным таблицы: ДРЖ – диэлектрическая рабочая жидкость, т – длительность импульса разряда, *E* – энергия импульса разряда, *P* – мощность импульса разряда, г-в раст. – водный раствор глицерина, тех. масло – техническое масло

Электроды * (Катод / Анод)	ДРЖ	τ, мкс.	Е, Дж	<i>Р</i> , кВт	Фазовый состав	Ссылка
WC-Co / WC-Co	г-в раст.	300	0.9	3.0	β -WC, W ₂ C, W	[12]
WC-Co / WC-Co	тех. масло	30	0.25	8.3	β -WC, W ₂ C	[11]
WC-Co / WC-Co	керосин	200	2.6	13.0	β -WC, W ₂ C, Co ₆ W ₆ C	[20]
WC-Co / WC-Co	этанол	200	2.6	13.0	β -WC, α -WC, W ₂ C, CoO	[20]
WC-Co / WC-Co	вода	300	0.9	3.0	W ₂ C, W	[12]
WC-Co / WC-Co	вода	120	0.64	5.3	β-WC, W ₂ C, W, Co	[18]
WC-Co / WC-Co	вода	200	2.6	13.0	α -WC, W ₂ C, W, WO ₃	[20]
W / WC-Co	вода	30	1.3	43.3	α -WC, W ₂ C	наст. раб.
		_				

* В работах [11,12,18] и в настоящей работе использовались электроды состава WC-8%Co, а в работе [20] – состава WC-6%Co. Во всех этих электродах карбид вольфрама содержался со структурой α-WC фазы

разряда P = 43.3 кВт в нашем эксперименте намного превосходила мощность импульсов P=13 кВт в работе [20].

Известно, что повышение энергии импульса разряда (т.е. увеличение мощности импульса и, как следствие, повышение температуры в канале разряда) приводит к возрастанию в синтезированном порошке доли частиц неправильной формы, которые образуются в результате высокотемпературной эрозии (хрупкого разрушения) материала электродов под воздействием возникающих больших термических напряжений [19]. Из вышеприведенных доводов и результатов, представленных в разделе 3.2, можно заключить, что в порошке, синтезированном в нашем эксперименте, доминирующая фаза α -WC (с частицами неправильной формы и высоким объемным содержанием $\approx 90\%$) была сформирована в результате высокотемпературной эрозии материала анода WC-8%Co благодаря высокой мощности импульсов разряда P = 43.3 кВт (см. табл.2). Вторая фаза в этом порошке, фаза α -W₂C, состоящая из частиц субмикронных размеров (см. разд.3.1), предположительно была сформирована в результате конденсации из паровой фазы в канале разряда. При этом в состав этой паровой фазы предположительно определенный вклад мог иметь также W, испарившийся от катода.

Из порошков, отожженных при температурах 250, 400 и 600°С, наибольший практический интерес представляет порошок, отожженный при температуре 600°С, так как он практически полностью состоит из фазы CoWO₄. Формирование фазы CoWO₄ в результате отжига синтезированного порошка WC–W₂C в воздушной среде при температуре 600°С обусловлено процессами термической декарбонизации и окисления фазовых компонент порошка WC и W₂C. При этом

источником кобальта при формировании фазы CoWO₄ предположительно являются ультрадисперсные частицы Co, растворенные в исходных фазовых компонентах WC и W₂C при их формировании в процессе электроискрового разряда [18]. Из-за специфических оптических, электрических, магнитных и химических свойств соединения CoWO₄ [21], в последние годы ведутся интенсивные исследования с целью разработки различных эффективных методов синтеза этого вещества и его практических применений.

Результаты настоящей работы представляют определенный практический интерес для синтеза порошков фазы α-WC с применением метода электроискрового разряда и синтеза порошков CoWO₄ с последовательным применением методов электроискрового разряда и термического отжига.

4. Заключение

С применением метода электроискрового разряда разработан способ синтеза порошка с высоким объемным содержанием фазы α -WC ($\approx 90\%$). Высокое содержание фазы α -WC в синтезированном порошке достигается благодаря такому подбору значений энергии и длительности импульса разряда, при которых мощность импульса достигает высокого уровня P = 43.3 кВт. Механизм формирования фазы α -WC в синтезированном порошке обусловлен высокотемпературной эрозией преимущественно материала анода WC-8%Co благодаря достигнутой в эксперименте высокой мощности импульсов разряда.

При температуре отжига 600°С практически полный переход обеих α -WC и α -W₂C фаз синтезированного порошка в фазу CoWO₄ обусловлен процессами термической декарбонизации и окисления этих компонент. При этом источником кобальта при формировании фазы CoWO₄ предположительно являются ультрадисперсные частицы Co, растворенные в исходных фазовых компонентах α -WC и α -W₂C при их формировании в синтезированном порошке в процессе электроискрового разряда.

Результаты настоящей работы представляют определенный практический интерес для синтеза порошков фазы α-WC с применением метода электроискрового разряда и синтеза порошков CoWO₄ с последовательным применением методов электроискрового разряда и термического отжига.

Авторы выражают глубокую благодарность Г. Бадаляну (лаборатория материаловедения ИФИ НАН РА, Аштарак, Армения) за помощь при регистрации электронно-микроскопических изображений. Исследование выполнено при финансовой поддержке Комитета по науке РА в рамках научного проекта No. 21T-1C324.

ЛИТЕРАТУРА

- 1. A.A. Burkov, S.A. Pyachin. J. Mater. Engineer. Perform., 23, 2034 (2014).
- E.G. Grigoryev, K.L. Smirnov, E.L. Strizhakov, S.V. Neskoromniy. J. Phys.: Conf. Ser., 1393, 012084 (2019).
- 3. A.V. Ribalko, O. Sahin. Surf. Coat. Technol., 201, 1724 (2006).
- 4. Yu.G. Tkachenko, O.I. Tolochyn, V.F. Britun, D.Z. Yurchenko. Powder Metall. Met.

Ceramic., 58, 692 (2020).

- 5. J.S. Wang, H.M. Meng, H.Y. Yu, Z.S. Fan, D.B. Sun. Int. J. Miner. Metall. Mater., 16, 707 (2009).
- 6. E.I. Zamulaeva, E.A. Levashov, A.E. Kudryashov. Metallurgist, 55, 628 (2012).
- 7. S.J.R. Arab, H. Aghajani. J. Tribol., 141, 051605 (2019).
- 8. A.T. Tabrizi, M. Pouzesh, F.F. Laleh, H. Aghajani. Powder Metall. Prog., 20, 30 (2020).
- 9. K. Kumar, U. Batra. Mater. Today: Proceed., 18, 2970 (2019).
- G. Bhadauria, S.K. Jha, B.N. Roy, N.S. Dhakry. Mater. Today: Proceed., 5, 24760 (2018).
- V.I. Marusina, G.A. Iskhakova, V.N. Filimonenko, V.I. Sindeev. Powder Metall. Met. Ceram., 30, 417 (1991).
- M. Dvornik, E. Mikhailenko, S. Nikolenko, N. Vlasova, A. Skiruta. Mater. Res. Express, 7, 096504 (2020).
- 13. G.A. Iskhakova, V.I. Marusina. Powder Metall. Met. Ceram., 28, 749 (1989).
- V.I. Marusina, G.A. Iskhakova, Kh.M. Rakhimyanov. Powder Metall. Met. Ceram., 31, 870 (1992).
- 15. V.S. Burakov, N.A. Savastenko, N.V. Tarasenko, E.A. Nevar. J. Appl. Spectrosc., 75, 114 (2008).
- V.S. Burakov, A.V. Butsen, V. Bruser, F. Harnisch, P.Y. Misakov, et al. J. Nanopart. Res., 10, 881 (2008).
- 17. M.R. Shabgard, A.F. Najafabadi. Adv. Powder Technol., 25, 937 (2014).
- 18. М.И. Дворник, А.Д. Верхотуров, Т.Б. Ершова, В.И. Палажченко. Электрон. Обраб. Матер., 2, 14 (2005).
- 19. M.I. Dvornik. Int. J. Refract. Met. Hard Mater., 28, 523 (2010).
- 20. M.R. Shabgard, F. Kabirinia. Mater. Manufact. Proc., 29, 1269 (2014).
- 21. E. Bandiello, P. Rodriguez-Hernandez, A. Munoz, M.B. Buenestado, C. Popescu, D. Errandonea. Mater. Adv., 2, 5955 (2021).

ELECTROSPARK SYNTHESIS OF α -WC POWDER AND STUDY OF ITS PHASE TRANSFORMATIONS UPON ANNEALING

A.V. AGANYAN, A.N. AVAGYAN, A.K. KOSTANYAN, L.A. PETROSYAN, S.G. MANUKYAN, V.S. HARUTYUNYAN

In this paper, we propose an approach for the direct synthesis of α -WC powder by the electrospark discharge method. WC–8% Co (anode) and W (cathode) were used as electrode materials, and deionized water was used as a dielectric liquid. After drying, the synthesized powder was subjected to thermal annealing in atmospheric air at temperatures of 250, 400, and 600°C for 2 h in order to analyze its thermal stability and possible temperature-dependent phase transitions. The phase composition, morphology, and particle sizes of the synthesized powder and powders subjected to thermal annealing were studied by powder X-ray diffraction and scanning electron microscopy techniques. The synthesized powder contains two phases: the dominant α -WC phase (\approx 90 vol.%) and the α -W₂C phase. At annealing temperature of 600°C, both α -WC and α -W₂C phases almost completely transform into the CoWO₄ phase. The processes of formation of the phase components of the synthesized powder and the transition of these components to the CoWO₄ phase as a result of thermal annealing are discussed.